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Abstract— Error-correcting coding is introduced in
associative memories based on Hopfield networks order
to increase the learning diversity as well as theecall
robustness in presence of erasures and errors. Telaeve
this, the graph associated with the classical Hopfid
network is transformed into a bipartite graph in which
incoming information is linked to orthogonal or quasi-
orthogonal codes. Whereas learning is similar to #t of
classical (i.e. Hebbian) Hopfield networks, memory
retrieval relies on error correction decoding which offers
strong discrimination properties between the memoted
patterns.
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I. INTRODUCTION

(LDPC) codes [3,4]. The turbo principle and bepedpagation
are more general than mere error correction tecksicand
their applications have been extended to demodulati
detection or equalization, for instance. From pguost of view,
information processing in a receiver is moving elo® how
the neocortex performs its mental operations, ithahrough a
multidirectional exchange of locally produced messa

The functional
correcting decoder and the neocortex are manyritiged
structure, message passing processing, high level
separability between pieces of information, resistato noise,
resilience, etc. In particular, the realities afraque fixed point
of decoding in the distributed decoder and of ajuaithought
in the biological neural network, both among arrasimic
number of possibilities, invite us to revisit theeunal
computation field with the help of error correctiooncepts.

This article presents a concrete example of fomealral

Since the celebrated Dartmouth conference in 1956etworks combined with error correcting codes. Tehiample

organized on John McCarthy's initiative, artificiatelligence
and its potential applications have continuouslyused the
interest of many scientists. One of the participaat this
conference was Claude Shannon, the father of irztom

is a simple one as it is based only on Hopfieldvwoeks and is
not intended to be fully representative of the riblat coding
can play in complex neural networks. However, gwsults that
are presented here seem significant enough tofyjuatid

theory, open to many and various aspects of sciencg,qguse further studies.

Surprisingly, they are rare today the theoreticiaos
practitioners of information, in the sense of Shars
approach, who are interested in artificial intedhge or in its
ramifications. And yet information
substance of living or artificial systems that
communicate and decide. This low level of involveinis all

the more astonishing since biologists are stilyédy unable to
explain how information is represented, stored @odessed in
the neocortex. Despite all the efforts carried thdse last
twenty years in the exploration of the brain, thetdkmore and
more sophisticated tools (EEG, MRI,...), the neocqrfeom

the point of view of information, remaimerra incognita

Regarding the information theory, whose developsient
have long been solicited and captured by the nemds

telecommunications, in perpetual demand for impnosets,
considerable progress has been achieved in thesemation,
protection, transportation and interpretation dbimation. In
particular, recent years have seen the emergencaewf
methods that rely on probabilistic message passiitgin

multicellular machines. Each cell is designed sdoagrocess
an elementary problem in an optimal way and thénamge of
information between all cells leads to an optimdbbal

outcome. Turbo decoding [1] has paved the way Ha kind
of distributed approach. Turbo decoding was thewgrized
as an instance of the very general
propagation [2], which was later found another ingat
application in the decoding of Low Density Paritheck

Is_the fundan’igtr drawn in figure 1, is carried by a complete, unclied,

principle ofiebel

II.  BIPARTITE HOPFIELD NEURAL NETWORKS
A Hopfield neural network (HNN), an example of wihiis

loopless and weighted graph [5,6]. This graph hasodes
(neurons) and@ links. The bidirectional link between

nodei and node is characterized by the (synaptic) weight

W . This weight results from the learning Mfmessages of
binary antipodal ¥ 1) values:{d}, i = 1,...n, the particular
valuesd; andd; being assigned to ti8 andj" nodes:

M
Wij = Zdimdjm (1)
m=1

This weight may takd®> = M +1 values. The recalling of a
particular message, from a part of its contentpesformed
through the iterative process described by theofalig

equations, Wherevip is the outcome value @f neuron aftep
iterations:

similarities between a modern error
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Figure 1. Classical Hopfield Network with = 8 neurons.
According to [7], an upper bound on the learningedsity

(i.e. the number of messages), conditionally to enree-f
recalling, is:

n
log(n)

®3)

max =

where logf) is the natural logarithm. Since the messages have Zwsja = Zdé"Za au +Ld}

lengthn, an upper bound on the binary capacy is:

n2
NMmax = ——— (4)

log(n)

The quantity of binary informationQp, that the HNN
requires in order to stoMd messages is:

Coh,max =

n(n-1)loga(M +1) _ n’loga(M +1)

= 2 2

®)

The storage efficiency =% is then upper-bounded by:
b

Cp, max _ 2n?
Nmax = Q  n(n-Dlog(n)logs(M max+1)
X (6)
Iog(n)l 92(I g(n) +1)

The storage efficiency of HNN is fairly pooed. Nmax =
5 102 for n = 100) and tends to O whertends to infinity.

Let us propose a simple way to combine error ctngc
coding and HNN principles through a bipartite grags
represented in figure 2. This graph links the mgssand
codeword contents through weightsy; resulting from

learning, like in HNN. Such a scheme has the gadatintage
of making independent the size of the network dmedl¢ngth
of the messages. This gives us an additional degrgeedom
to improve the learning diversity of the scheme.

Codewords

8(=1..1)

Messages

d@=1,.K

Figure 2. Bipartite coded Hopfield Network.

The left part of the graph is associated with raaksages
{di},i =1,...,k and the right part with orthogonal or quasi-

orthogonal codewordga;},j = 1,...,L whereaj =+ 1. Each
new incoming messaggd} is associated with a new
codeword {aj}, different from the previous ones. The

equations of the network are the following, in whid is the
number of learnt messaggsis anyone of thesé andj are the
left and right indices respectivelyis a particular value dfor
j- Finally, R is the coding rate, which is quite low for praatic
values ofM andL.

M
wj = > d"a}’ (7
m=1

K Mok
Y wisd! = > ad'y dMd!" +kab (8)
i=1 m=l  i=1

M

(9)

m=1 =1

m#
R = 10g2(M) (10)

L

Equations (7) and (9) are reciprocal of Code DavidMultiple
Access (CDMA) equations forM users and spreading
sequences of length if we liken weightswjj to the sum, at

time i, of the M users signals in the chip of indgxIf the
codewords are perfectly orthogonal (Walsh-Hadamard
sequences) or slightly non orthogonal (pseudo re@sgences
with normalized cross correlation equal td)land as far as

M <L, the content of any messagecan be recovered with a
high probability in presence of erasures, to aate@mount.

The selection of message is performed by Maximum

Likelihood (ML) decoding from the estimates @k, s =

1,...L provided by relation (8). Strictly speaking, treheme
of figure 2 can no longer be called a Hopfield raty as the
decoding does not rely on equations (2), but learmules
share the same principle of superposition. Noté rdlations
(7) to (9) authorize any type of value (real, imedinary) for
{di}. In the sequel, we will consider only binary vaue

For example, wittk = 40 andL = 256, the coded Hopfield
network is able to learn 256 messages of 40 binaiyes.
Figure 3 gives the recall performance of the codetivork
with such parameters, when random erasures ocdut Jin Up
to an erasure rate of 50%, the network is ablestover any
message with very high probability. By comparisghe
performance of the classical HNN having roughly tane
number of informational weights=(10%), that isn = 150, is



given. We can observe that the network hardly asagpto 25 values (0, 1){ug}, g = 1,...Q materialize theQ possible
messages, even without any erasure. Learning divésghen

considerably increased when error correcting codingdded
to the neural network, in the same way as commtioita
systems are considerably improved using channehgo®f The decoding operations are given by the follovengations,
course, this comparison does not take into accabet Which take into account a possible message pagsowpdure
complexity of the decoder (whose structure and eotions  at a higher level of processing:

are established once for all and do not depend essages).

codewords. The edges of the graph have binary wseighl)
tjg . An example is given in figure 4 for six 4-bit @wiords.

- ) . e Initialisation:
Section Ill describes a way to implement ML decgdirsing
formal neurons. y? =0 j=1,..)
Word error rate y} =xj j=1,..7 (1)
1
] . .
At iterationp (1< p < Pmay:
J
- . . _ . _1 _
©25 1500 messages) / Z; =Y tig(y +w™) a=1..0 (12)
=
= / J
/
o
o5 = / Zhax = ma>{z(§’} (13)
/ uf =1 if z§ =zRax and if zZRax >0
/ uf =0 otherwise (14)
Coded Hopfield network
(256 40-bit messages) p Q p
%0 05 1 at
Erasure ratet] pr =1if Vjp >0
Figure 3. Compared performance of the coded Hopfield netwatk k = 40
andL = 256 and the classical HNN witte 150 (that is, roughly with the p_ “1if vP <0
same number of weights). The erasure tasethe proportion of randomly yJ - J
erased values in the message to recover. The wandrate is the proportion
of messages not correctly recovered (at least ahm\s wrong). yjp =0 if Vjp =0 (16)

) ) ) y is a memory parameter which allows us to keeparat p
Where does the diversity gain really come from?af@h  f the jterative process, a fraction of the resoitgined at rank
(5) gives the amount of binary information that &N has p — 1. This memory effect is essential when sevevedes are
stored after the learning &l messages. The capacity of the .ompined in a composite network but has not toxaggerated
network (the number of messages multiplied by themgth) 5 ayoid the persistence of errors. When just oadecis
cannot surpas€), . If the messages have lengthlike in the  considered, there is no global iterative decodimgl ahe

memory effect has obviously no interest.
HNN, a strict upper bound avl is glogz(P), independently y y

Note that equations (13) and (14) authorize sevVaralls to

of any other consideration. If, by an appropriateans, the be activatedife. u§ =1 for differentq), this being possible

length of messages is limited to a vakidess tham, this
n2 logz(P) when one or several inputs are erased.
upper bound becomesT. Thus, the upper bound is

linear in n if full length is targeted and quadratic m if
messages have fixed shorter length. As for the aigpait
remains unchanged. As already mentioned, the schafme
figure 2 is a way to maka andk independent, and then to
allow and control small values & This sparsity in data
representation, added to the discrimination capaaf
orthogonal codes, explains the strong diversity gdi coded
Hopfield networks compared to HNN.

I1l. NEURAL IMPLEMENTATION OF ML DECODING /
Generally speaking, ML decoding relies on a biparti 1 2 3 4 5 6
graph linking the content and activity of codewordfgith fanals {ug} (g = 1,..., 6) with values O or 1

received data{x,-} ,J = 1,...J, which are real in the general Figure 4. Bipartite graph for the encoding/decoding®# 6 codewords of
. . ) J=4bits (+1+1+1-1,-1-1+1+1,-1+1-1+1, -1-1-1-1,-#+431,+1-1+1-1). Full
case, are associatddneurons with real valuefy;} . On the lines correspond to value +1, dashes to -1.

other side of the graplQ neurons calledanals with binary




o is the activation threshold of fanals. To perfoanirue
ML decoding,  must be - but, depending on the
application, a finite value may be given & that is, fanals
must satisfy a lower bound of activity to be talkeio account.

power of two, values. The maximum value stemmiogfthe
selector is lowered by 1 and the result is usednamhibitory
input for all neurons of the first layer. Therefpomly neurons
which have maximal incoming signals remain actiwéth

For instance, having = 0 and all inputs erased, the condition©utput equal to 1.

zPax>0 of (14) keep all fanal values to zero. So, this

algorithm performs a kind of soft-output decodiraple to
process totally or partially erased incoming messag

A way to implement the maximum function with neuson
comes from the following equivalence, whé&andB are two
real numbers:

A+B

A-B
max(A, B) = +— 17
ey =22B A an
Using neurons with transfer function:
output= max(0, Z input) (18)

this equivalence may be implemented by the cireifigure 5
for any value ofA andB, provided that at least one is positive.

A B

|

weights +/- 0,5—

weight ——

max(@, B)

Figure 5. Neural implementation of the maximum function fantnumbers
A andB (one at least being positive), using neurons tgatransfer function
output= max(0,inpuf). Full lines correspond to positive weights, dastoe

negative ones.

Figure 6. Neural implementation of the maximum function @xa power of
2) values, at least one of them being positive. fEeeback loop assures that
only neurons which have maximum incoming signafsai@ active, with
output equal to 1

By cascading the circuit of figure 5 into a suco@sf
maxima researches, the maximum function can
implemented for any number of inputs provided thateast
one value is positive. Figure 6 depicts such amehforQ, a

V.

The learning diversity of the network in figurelimited
by the properties of equation (9). Rdr> L, the codewords
are no longer orthogonal and errors creep inte#tenates of

INCREASING THE LEARNING DIVERSITY

d¥ , which are not elements of a code and cannot bected.

In order to increase diversity beyohdwhile keeping the
bipartite model of figure 2, we need to orthogaralithe
messages (and then to make them corrigible) wihaid of
small bipartite encoders, also similar to the maxfdigure 2.
The incoming binary (antipodal) message of lengths
segmented ifB blocks of lengthk = k/B and with each block
is associated a set df= 2 orthogonal (Walsh-Hadamard)
codewords of lengtH. Furthermore, since it is no longer
possible to have perfectly orthogonal codeworsdf length
L when M > L, these will be simply obtained by random
drawing. Their mean Hamming distance is theg@ with a

standard deviation/L (binomial law).

Figure 7 gives an example of such a constructiok fo24
andB = 4 (= 6). The decoding of local and global codes relies
on equations (11) to (16), in whidh= Q = 64 for local codes
andJ =L andQ = M for the global code.

Walsh-Hadamard

codewords
messages

random
codewords

|-

Figure 7. Architecture of a coded Hopfield network with segreel input. In
this example, the incoming binary messages of lekgt24 are segmented in
B = 4 blocks, each addressedky6 bits. For every block, tHe= 2 = 64
possible values of the sub-message are associétedsimany Walsh-
Hadamard codewords of length 64. Then, the 256pweues obtained from
the concatenation of these codewords are linkedrtdom codewords of
lengthL through a bipartite coded Hopfield network withigresw;.

Figure 8 gives the result of simulations for thenposite
network of figure 7, for three values bf 256, 512 and 1024.
M messages are learnt and then recalled whereasfahe
four segments is not provided with input informatidn this
experiment, we havwe= 1/8 ands = 0. The maximum number
of iterations ispmax = 2, the transfer of information between
local decoders and the global decoder being peddrm

b3ynchr0nously.

We can observe that learning diversity can sigaiftty go
beyondL (about 3 times the value bffor a word error rate of



10%). Compared to HNN (having roughly the same nunafer
weights as the coded network with = 512), diversity is
multiplied by 22, 45 and 75 for the three incregsialues of

L and still with a word error rate of 10As explained at the
end of section Il, these strong gains on diversiiyne both
from the representation of messages with a limitechber of
bits and from the discrimination capability of tliferent
decoders. As for capacity, the gains are not sgeléibetween

2 and 3) andmax is not significantly increased, compared to

the value given by (6), becauBgthe number of possible levels
for weightsw;; has slightly increased.

Word error rate

gl [ T T ]
‘ Coded HNN
(messages of 4x6 bits,
( 6‘ bits erased) |
) L = 256
Classical HNN
0.5 (515-bit messageg,
no erasure)
L=512
/’ / i
L =1024]
0 J | |+ S
0 1000 2000 3000

Number of messageM]

Figure 8. Compared performance of the coded Hopfield netvadrkgure 7
(k = 4x6 bits and_ = 256, 512 and 1024) and a classical HNN with 515
(that is, roughly with the same number of weigtgshee coded network with

= 512). The word error rate is the proportion ofsssges not correctly
recovered (at least one value is wrong). Thereoisrasure in the case of
HNN whereas one of the four blocks is not provigeéth information in the
case of the coded network. For a word error rat&03f the coding gain in
diversity is about 22, 45 and 75 for the three galafL.

V. CONCLUSIONS AND PERSPECTIVES

The results presented in this paper illustratertie that
error correcting codes, combined with sparse
representation, can play in neural networks. Thimsgan
learning diversity are considerable and increasssiginearly

linear law for the classical HNN, as was anticipaite section
Il.

If the long term perspective is to design and boikthines
that behave as the cortex, diversity is a much nmoportant
parameter than capacity. The number of piecesfofrmation
counts more than their sizes. From a cognitive tpafiview, it
is better to learn (and possibly combine) 1000 agss of 10
characters than to learn 10 messages of 1000 ¢hesiac

The comparison we have made between classical
coded HNN does not take into account the complexitthe
different decoders, especially the global decodeiclhivhas to
consider M codewords of lengthL, that is ML binary
connections. Though the structure and connectidnthase
networks are established once for all, indepengeotl the
messages to learn and recall, it is unrealisticdotemplate
circuits based on the principles described in eactil, in
particular the too well structured circuit depictedfigure 6,
which is not biologically plausible. Nonetheleskg trecent
developments in coding theory taught us that theddtoding
of long codes is not insurmountable if distributezding is
considered. Then, the question that is asked nowsist
possible to replace a unique neural decoder hawamrocess
M messages of length with a small nhumber of elementary
neural decoders handling' « M messages of length’ « L
(like a turbo product decoder, for instance)? B #nswer is
positive, then we would be able to design realisteural
networks offering both very large learning diversind robust
recalling.
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