
Coded Hopfield Networks 
 

Claude Berrou and Vincent Gripon 
Telecom Bretagne, Electronics Department 

UMR CNRS Lab-STICC 
Brest, France 

name.surname@telecom-bretagne.eu 
 
 

Abstract— Error-correcting coding is introduced in 
associative memories based on Hopfield networks in order 
to increase the learning diversity as well as the recall 
robustness in presence of erasures and errors. To achieve 
this, the graph associated with the classical Hopfield 
network is transformed into a bipartite graph in which 
incoming information is linked to orthogonal or quasi-
orthogonal codes. Whereas learning is similar to that of 
classical (i.e. Hebbian) Hopfield networks, memory 
retrieval relies on error correction decoding which offers 
strong discrimination properties between the memorized 
patterns. 

Keywords- Hopfield network, error-correction coding, 
assiociative memory, spread spectrum 

I.  INTRODUCTION 

Since the celebrated Dartmouth conference in 1956, 
organized on John McCarthy's initiative, artificial intelligence 
and its potential applications have continuously aroused the 
interest of many scientists. One of the participants of this 
conference was Claude Shannon, the father of information 
theory, open to many and various aspects of science. 
Surprisingly, they are rare today the theoreticians or 
practitioners of information, in the sense of Shannon's 
approach, who are interested in artificial intelligence or in its 
ramifications. And yet information is the fundamental 
substance of living or artificial systems that learn, 
communicate and decide. This low level of involvement is all 
the more astonishing since biologists are still largely unable to 
explain how information is represented, stored and processed in 
the neocortex. Despite all the efforts carried out these last 
twenty years in the exploration of the brain, thanks to more and 
more sophisticated tools (EEG, MRI,…), the neocortex, from 
the point of view of information, remains terra incognita. 

Regarding the information theory, whose developments 
have long been solicited and captured by the needs of 
telecommunications, in perpetual demand for improvements, 
considerable progress has been achieved in the representation, 
protection, transportation and interpretation of information. In 
particular, recent years have seen the emergence of new 
methods that rely on probabilistic message passing within 
multicellular machines. Each cell is designed so as to process 
an elementary problem in an optimal way and the exchange of 
information between all cells leads to an optimal global 
outcome. Turbo decoding [1] has paved the way for this kind 
of distributed approach. Turbo decoding was then recognized 
as an instance of the very general principle of belief 
propagation [2], which was later found another important 
application in the decoding of Low Density Parity Check 

(LDPC) codes [3,4]. The turbo principle and belief propagation 
are more general than mere error correction techniques and 
their applications have been extended to demodulation, 
detection or equalization, for instance. From this point of view, 
information processing in a receiver is moving closer to how 
the neocortex performs its mental operations, that is, through a 
multidirectional exchange of locally produced messages. 

The functional similarities between a modern error 
correcting decoder and the neocortex are many: distributed 
structure, message passing processing, high level of 
separability between pieces of information, resistance to noise, 
resilience, etc. In particular, the realities of a unique fixed point 
of decoding in the distributed decoder and of a unique thought 
in the biological neural network, both among an astronomic 
number of possibilities, invite us to revisit the neural 
computation field with the help of error correction concepts. 

This article presents a concrete example of formal neural 
networks combined with error correcting codes. This example 
is a simple one as it is based only on Hopfield networks and is 
not intended to be fully representative of the role that coding 
can play in complex neural networks. However, the results that 
are presented here seem significant enough to justify and 
arouse further studies. 

II. BIPARTITE HOPFIELD NEURAL NETWORKS 

A Hopfield neural network (HNN), an example of which is 
drawn in figure 1, is carried by a complete, undirected, 
loopless and weighted graph [5,6]. This graph has n nodes 

(neurons) and 
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)1( −nn
 links. The bidirectional link between 

node i and node j is characterized by the (synaptic) weight 

ijw . This weight results from the learning of M messages of n 

binary antipodal (± 1) values: { }id , i = 1,…,n, the particular 

values id  and jd  being assigned to the i th and j th nodes: 
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This weight may take P = M +1 values. The recalling of a 
particular message, from a part of its content, is performed 
through the iterative process described by the following 

equations, where piv  is the outcome value of i th neuron after p 

iterations: 
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n = 8 variables
  di (-1, +1)

n(n - 1)/2 = 28 links
with weight  

Figure 1.  Classical Hopfield Network with n = 8 neurons. 

 
According to [7], an upper bound on the learning diversity 

(i.e. the number of messages), conditionally to error-free 
recalling, is:  

)log(
max

n

n
M =       (3) 

where log(n) is the natural logarithm. Since the messages have 
length n, an upper bound on the binary capacity bC  is: 
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The quantity of binary information bQ  that the HNN 

requires in order to store M messages is: 
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The storage efficiency 
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The storage efficiency of HNN is fairly poor (e.g. maxη  ≈ 

5 10-2 for n = 100) and tends to 0 when n tends to infinity. 

Let us propose a simple way to combine error correcting 
coding and HNN principles through a bipartite graph, as 
represented in figure 2. This graph links the message and 
codeword contents through weights ijw  resulting from 

learning, like in HNN. Such a scheme has the great advantage 
of making independent the size of the network and the length 
of the messages. This gives us an additional degree of freedom 
to improve the learning diversity of the scheme. 

 Messages Codewords
di (i = 1,...,k) aj (j = 1,...,L)

wij

 
Figure 2.  Bipartite coded Hopfield Network. 

 
The left part of the graph is associated with real messages 

{ }id , i = 1,…, k and the right part with orthogonal or quasi-

orthogonal codewords { }ja , j = 1,…, L where ja  = ± 1. Each 

new incoming message { }id  is associated with a new 

codeword { }ja , different from the previous ones. The 

equations of the network are the following, in which M is the 
number of learnt messages, µ is anyone of these, i and j are the 
left and right indices respectively. s is a particular value of i or 
j. Finally, R is the coding rate, which is quite low for practical 
values of M and L. 
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Equations (7) and (9) are reciprocal of Code Division Multiple 
Access (CDMA) equations for M users and spreading 
sequences of length L, if we liken weights ijw  to the sum, at 

time i, of the M users signals in the chip of index j. If the 
codewords are perfectly orthogonal (Walsh-Hadamard 
sequences) or slightly non orthogonal (pseudo noise sequences 
with normalized cross correlation equal to 1/L) and as far as 
M ≤ L, the content of any message µ can be recovered with a 
high probability in presence of erasures, to a certain amount. 

The selection of message µ is performed by Maximum 

Likelihood (ML) decoding from the estimates of µsa , s = 
1,…,L provided by relation (8). Strictly speaking, the scheme 
of figure 2 can no longer be called a Hopfield network, as the 
decoding does not rely on equations (2), but learning rules 
share the same principle of superposition. Note that relations 
(7) to (9) authorize any type of value (real, integer, binary) for 
{ }id . In the sequel, we will consider only binary values. 

For example, with k = 40 and L = 256, the coded Hopfield 
network is able to learn 256 messages of 40 binary values. 
Figure 3 gives the recall performance of the coded network 
with such parameters, when random erasures occur in { }id . Up 

to an erasure rate of 50%, the network is able to recover any 
message with very high probability. By comparison, the 
performance of the classical HNN having roughly the same 
number of informational weights (≈ 104), that is n ≈ 150, is 



given. We can observe that the network hardly accepts up to 25 
messages, even without any erasure. Learning diversity is then 
considerably increased when error correcting coding is added 
to the neural network, in the same way as communication 
systems are considerably improved using channel coding. Of 
course, this comparison does not take into account the 
complexity of the decoder (whose structure and connections 
are established once for all and do not depend on messages). 
Section III describes a way to implement ML decoding using 
formal neurons. 
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Figure 3.  Compared performance of the coded Hopfield network with k = 40 

and L = 256 and the classical HNN with n = 150 (that is, roughly with the 
same number of weights). The erasure rate τ is the proportion of randomly 

erased values in the message to recover. The word error rate is the proportion 
of messages not correctly recovered (at least one value is wrong). 

 
Where does the diversity gain really come from? Relation 

(5) gives the amount of binary information that a HNN has 
stored after the learning of M messages. The capacity of the 
network (the number of messages multiplied by their length) 
cannot surpass bQ . If the messages have length n, like in the 

HNN, a strict upper bound on M is )(log
2

2 P
n

, independently 

of any other consideration. If, by an appropriate means, the 
length of messages is limited to a value k less than n, this 

upper bound becomes 
k

Pn

2

)(log2
2

. Thus, the upper bound is 

linear in n if full length is targeted and quadratic in n if 
messages have fixed shorter length. As for the capacity, it 
remains unchanged. As already mentioned, the scheme of 
figure 2 is a way to make n and k independent, and then to 
allow and control small values of k. This sparsity in data 
representation, added to the discrimination capacity of 
orthogonal codes, explains the strong diversity gain of coded 
Hopfield networks compared to HNN. 

III.  NEURAL IMPLEMENTATION OF ML  DECODING 

Generally speaking, ML decoding relies on a bipartite 
graph linking the content and activity of codewords. With 
received data { }jx , j = 1,…,J, which are real in the general 

case, are associated J neurons with real values { }jy . On the 

other side of the graph, Q neurons called fanals with binary 

values (0, 1) { }qu , q = 1,…,Q materialize the Q possible 

codewords. The edges of the graph have binary weights (± 1) 

jqt . An example is given in figure 4 for six 4-bit codewords. 

The decoding operations are given by the following equations, 
which take into account a possible message passing procedure 
at a higher level of processing: 

Initialisation: 

00 =jy    j = 1,…,J 

jj xy =1    j = 1,…,J     (11) 
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γ is a memory parameter which allows us to keep, at rank p 
of the iterative process, a fraction of the results obtained at rank 
p – 1. This memory effect is essential when several codes are 
combined in a composite network but has not to be exaggerated 
to avoid the persistence of errors. When just one code is 
considered, there is no global iterative decoding and the 
memory effect has obviously no interest. 

Note that equations (13) and (14) authorize several fanals to 

be activated (i.e. 1=p
qu  for different q), this being possible 

when one or several inputs jx  are erased. 
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received/decoded messages {xj} ( j = 1,..., 4)
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data neurons { yj}

fanals {uq} (q = 1,..., 6) with values 0 or 1  
Figure 4.  Bipartite graph for the encoding/decoding of Q = 6 codewords of 
J = 4 bits (+1+1+1-1,-1-1+1+1,-1+1-1+1, -1-1-1-1,-1+1+1-1,+1-1+1-1). Full 

lines correspond to value +1, dashes to -1. 



σ is the activation threshold of fanals. To perform a true 
ML decoding, σ must be −∞  but, depending on the 
application, a finite value may be given to σ, that is, fanals 
must satisfy a lower bound of activity to be taken into account. 
For instance, having σ = 0 and all inputs erased, the condition 

0max >pz  of (14) keep all fanal values to zero. So, this 
algorithm performs a kind of soft-output decoding, able to 
process totally or partially erased incoming messages. 

A way to implement the maximum function with neurons 
comes from the following equivalence, where A and B are two 
real numbers: 

22
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Using neurons with transfer function: 

) ,0max( inputoutput Σ=     (18) 

this equivalence may be implemented by the circuit of figure 5 
for any value of A and B, provided that at least one is positive. 

A B

max(A, B)

weights +/- 0,5

weight 1

 
Figure 5.  Neural implementation of the maximum function for two numbers 
A and B (one at least being positive), using neurons having transfer function 
output = max(0, input). Full lines correspond to positive weights, dashes to 

negative ones. 
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Figure 6.  Neural implementation of the maximum function for Q (a power of 
2) values, at least one of them being positive. The feedback loop assures that 

only neurons which have maximum incoming signals remain active, with 
output equal to 1 

By cascading the circuit of figure 5 into a succession of 
maxima researches, the maximum function can be 
implemented for any number of inputs provided that at least 
one value is positive. Figure 6 depicts such a scheme for Q, a 

power of two, values. The maximum value stemming from the 
selector is lowered by 1 and the result is used as an inhibitory 
input for all neurons of the first layer. Therefore, only neurons 
which have maximal incoming signals remain active, with 
output equal to 1. 

IV.  INCREASING THE LEARNING DIVERSITY 

The learning diversity of the network in figure 2 is limited 
by the properties of equation (9). For M > L, the codewords 
are no longer orthogonal and errors creep into the estimates of 

µ
sd , which are not elements of a code and cannot be corrected. 

In order to increase diversity beyond L while keeping the 
bipartite model of figure 2, we need to orthogonalize the 
messages (and then to make them corrigible) with the aid of 
small bipartite encoders, also similar to the model of figure 2. 
The incoming binary (antipodal) message of length k is 
segmented in B blocks of length κ = k/B and with each block 
is associated a set of l = 2κ orthogonal (Walsh-Hadamard) 
codewords of length l. Furthermore, since it is no longer 
possible to have perfectly orthogonal codewords {aj} of length 
L when M > L, these will be simply obtained by random 
drawing. Their mean Hamming distance is then L/2 with a 

standard deviation L  (binomial law). 

Figure 7 gives an example of such a construction for k = 24 
and B = 4 (κ= 6). The decoding of local and global codes relies 
on equations (11) to (16), in which J = Q = 64 for local codes 
and J = L and Q = M for the global code. 
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Figure 7.  Architecture of a coded Hopfield network with segmented input. In 
this example, the incoming binary messages of length k = 24 are segmented in 

B = 4 blocks, each addressed by κ =6 bits. For every block, the l = 2κ = 64 
possible values of the sub-message are associated with as many Walsh-

Hadamard codewords of length 64. Then, the 256 binary values obtained from 
the concatenation of these codewords are linked to random codewords of 

length L through a bipartite coded Hopfield network with weights wij. 

 
Figure 8 gives the result of simulations for the composite 

network of figure 7, for three values of L: 256, 512 and 1024. 
M messages are learnt and then recalled whereas one of the 
four segments is not provided with input information. In this 
experiment, we have γ = 1/8 and σ = 0. The maximum number 
of iterations is pmax = 2, the transfer of information between 
local decoders and the global decoder being performed 
synchronously. 

We can observe that learning diversity can significantly go 
beyond L (about 3 times the value of L for a word error rate of 



10-1). Compared to HNN (having roughly the same number of 
weights as the coded network with L = 512), diversity is 
multiplied by 22, 45 and 75 for the three increasing values of 
L and still with a word error rate of 10-1. As explained at the 
end of section II, these strong gains on diversity come both 
from the representation of messages with a limited number of 
bits and from the discrimination capability of the different 
decoders. As for capacity, the gains are not so large (between 
2 and 3) and maxη  is not significantly increased, compared to 

the value given by (6), because P, the number of possible levels 
for weights ijw  has slightly increased. 
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Figure 8.  Compared performance of the coded Hopfield network of figure 7 
(k = 4x6 bits and L = 256, 512 and 1024) and a classical HNN with n = 515 
(that is, roughly with the same number of weights as the coded network with L 
= 512). The word error rate is the proportion of messages not correctly 
recovered (at least one value is wrong). There is no erasure in the case of 
HNN whereas one of the four blocks is not provided with information in the 
case of the coded network. For a word error rate of 10-1, the coding gain in 
diversity is about 22, 45 and 75 for the three values of L. 

V. CONCLUSIONS AND PERSPECTIVES 

The results presented in this paper illustrate the role that 
error correcting codes, combined with sparse data 
representation, can play in neural networks. The gains in 
learning diversity are considerable and increase quasi-linearly 
with the length L of the global code in composite schemes 
similar to that of figure 7. For a given and fixed value k of the 
message length, this also means that the diversity grows 
linearly with the number of informational weights while the 
diversity in classical HNN grows in proportion of the square 
root of this number, and even less, considering the denominator 
in relation (3). In other terms, the coded network diversity 
follows a quadratic law with the number of neurons instead of a 

linear law for the classical HNN, as was anticipated in section 
II. 

If the long term perspective is to design and build machines 
that behave as the cortex, diversity is a much more important 
parameter than capacity. The number of pieces of information 
counts more than their sizes. From a cognitive point of view, it 
is better to learn (and possibly combine) 1000 messages of 10 
characters than to learn 10 messages of 1000 characters! 

The comparison we have made between classical and 
coded HNN does not take into account the complexity of the 
different decoders, especially the global decoder which has to 
consider M codewords of length L, that is ML binary 
connections. Though the structure and connections of these 
networks are established once for all, independently of the 
messages to learn and recall, it is unrealistic to contemplate 
circuits based on the principles described in section III, in 
particular the too well structured circuit depicted in figure 6, 
which is not biologically plausible. Nonetheless, the recent 
developments in coding theory taught us that the ML decoding 
of long codes is not insurmountable if distributed coding is 
considered. Then, the question that is asked now is: is it 
possible to replace a unique neural decoder having to process 
M messages of length L with a small number of elementary 
neural decoders handling M' « M messages of length L' « L 
(like a turbo product decoder, for instance)? If the answer is 
positive, then we would be able to design realistic neural 
networks offering both very large learning diversity and robust 
recalling. 
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