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Abstract—An original architecture of oriented sparse neural
networks that enables the introduction of sequentiality in as-
sociative memories is proposed in this paper. This architecture
can be regarded as a generalization of a non oriented binary
network based on cliques recently proposed. Using a limited
neuron resource, the network is able to learn very long sequences
and to retrieve them from only the knowledge of any sequence
of consecutive symbols.

Index Terms—oriented neural network; learning machine;
associative memory; sparse coding; directed graph; sequential
learning; efficiency.

I. INTRODUCTION

Sequence learning in neural networks has been an important
research topic in a large number of publications, since the
forward linear progression of time is a fundamental property
of human cognitive behavior. Different approaches have been
carried on. Among them, the most important and commonly
studied are the simple recurrent networks (SRN) [1] [2] and the
short term memory (STM) [3] [4], which uses the dynamics
of neural networks. Other structures have been proposed,
especially those based on the Hopfield network principle
[5]. However, many Hopfield-like connectionist networks do
not have good performance when learning sequences, as
the learning of new information completely disrupts or even
eliminates that previously learnt by the network. This problem
is identified as “catastrophic interference” [6] or “catastrophic
forgetting” (CF) [7] in some literature. There are indeed strong
interferences as the learning process relies on changing the
connection weight (what is called plasticity by neurobiolo-
gists). Therefore, there is no guarantee that the ability of the
network to recall messages will remain still when learning new
ones.

A recently proposed non-oriented kind of network based on
cliques and sparse representations [8] [9] follows a different
approach by comparison with Hopfield-like networks. The
neurons and the connections are all binary. The connection
weight is equal to zero if the connection does not exist,
otherwise this weight is equal to one. Subsequent learning
will never impact on the weights of the existing connections.
Therefore, we explain in this paper how the architecture of
these networks can be efficiently modified to allow learning
sequences with less degree of interference with the previously

learned ones. However, the clique-based networks only enable
the learning of fixed-length messages, and the learning and
retrieving are rather synchronous than following time pro-
gression. In order to learn information arriving in separate
episodes over time, one may replace the non oriented graph
by an oriented one, and consider a more flexible structure than
cliques.

The rest of paper is organized as follows: Section II recalls
the principles of learning fixed length messages by non ori-
ented clique-based networks, which is at the root of the works
presented in this paper. In Section III, the oriented sparse
neural networks based on original oriented graphs, called
“chains of tournaments” are demonstrated to be good material
to learn sequential information. Generalization is proposed in
Section IV. Finally, a conclusion is proposed in Section V.

II. LEARNING FIXED LENGTH MESSAGES ON CLIQUES

Let MB be a set of binary messages of fixed length B
bits. For each message m ∈ MB , we split it into c sub-
messages of length B

c : m = m1m2...mc. Each sub-message
is then associated with a unique extremely sparse codeword
(each sub-message is encoded by a single neuron), within a
unique cluster of neurons in the network. For 1 ≤ i ≤ c, mi

of length B
c can take 2

B
c values, that leads to an extremely

sparse code of length 2
B
c , and the corresponding cluster of

size l = 2
B
c . An example is represented in Figure 1, in

which there are c = 4 clusters (filled circles, filled rectangles,
rectangles and circles) of l = 16 neurons, that we call fanals,
according to the vocabulary in [8]. In this figure, one message
of 16 bits: 1110100111011010 is split into 4 sub-messages,
m1 = 1110,m2 = 1001,m3 = 1101,m4 = 1010. Each sub-
message is then mapped to a unique fanal in the corresponding
cluster. The fundamental idea is to transform the learning of
such a message into embedding a clique into the network
(thick lines in Figure 1 for the message mentioned above).
In graph theory, a clique in an undirected graph is a subset
of its vertices such that every two vertices in the subset are
connected by an edge. Any binary message in M16 can be
learnt by this network in embedding corresponding cliques. Let
(m1,m2, ...,mN ) be any N-tuple of binary messages in MB .
If we denote W (mn) the connection set of the corresponding
clique after learning message mn, the connection set of the
associated graph after learning (m1,m2, ...,mN ) can therefore



0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

1100 1101 1110 11111100 1101 1110 1111

1000 1001 1010 10111000 1001 1010 1011

0100 0101 0110 01110100 0101 0110 0111

0000 0001 0010 00110000 0001 0010 0011

Fig. 1. Learning process illustration for non-oriented clique-based networks.
The pattern to learn (with thick edges) connects fanals from four clusters
composed of 16 fanals each (filled circles, filled rectangles, rectangles and
circles).

be defined by the union:

W (m1,m2, ...,mN ) =

N⋃
n=1

W (mn) (1)

The clique offers a large degree of redundancy that one can
take advantage of during the retrieval process. For instance,
there are 6 edges in a clique of 4 vertices, but only two of
them are sufficient to identify such a clique. If some of the sub-
messages are erased, it is likely that the whole message can
still be retrieved thanks to this high redundant representation.

Let us denote by vij the actual value of nij , which is the
jth fanal in the ith cluster. ω(ij)(i′j′) is the connection weight
between nij and ni′j′ . ω(ij)(i′j′) = 1 if this connection exists,
0 otherwise. The message retrieving can then be expressed by
an iterative process as following:

∀i, j, vij ←
c∑

i′=1

min

 l∑
j′=1

ω(ij)(i′j′)vi′j′ , 1

+ γvij (2)

vmaxi ← max
j

(vij) (3)

∀i,∀j, vij ←

{
1 if vij = vmaxi and vmaxi ≥ σ
0 otherwise

(4)

Equation (2) counts for each candidate in their corresponding
cluster the number of connections to active fanals in other
clusters. This equation offers an improvement with respect to

that in [8] via the min function, which guarantees that the
maximum contribution of a cluster can not exceed one. γ is the
memory effect, which we generally set to 1. Equation (3) picks
up the maximum fanal value in each cluster. If the input pattern
contains the set of fanals corresponding to a learnt message,
as these correct fanals connect to at least one active fanal per
cluster, they will always have the maximum score after (2),
and thus will be selected by (4), which expresses the “winner-
take-all” rule. σ is a threshold, which deserves to be well
chosen according to different applications. At a particular step
of the process, there can be several fanals having the maximum
score, which we call ambiguities, in a given cluster. Further
iterations are helpful to continuously minimize the number of
ambiguities, and hopefully to converge to a stable solution.

The number of messages that these clique-based sparse
neural networks are able to learn and recall outperforms the
previously state-of-the-art neural networks. For instance, for
the same amount of used memory of 1.8 × 106 bits, the
clique-based network model with c = 8 and l = 256 is 250
times superior to Hopfield Neural Networks (HNN) in terms
of diversity (the number of messages that the network is able
to learn and to retrieve) [8]. The diversity follows a quadratic
law of the number of neurons per cluster, while that of HNN
follows a sublinear law of the total number of neurons.

III. LEARNING LONG SEQUENTIAL MESSAGES ON CHAIN
OF TOURNAMENTS

The clique-based networks offer good performance in learn-
ing fixed length atemporal messages. The way to map a sub-
message to a particular fanal in the corresponding cluster via a
very sparse code makes the length of the sub-message strictly
equal to log2(l), with l the number of fanals per cluster. All
the clusters are synchronously involved in the learning and
the retrieving process. An order of sub-messages is naturally
predefined by the bijection between clusters and sub-messages.
For instance, in Figure 1, this predefined ordering is : circle,
filled circle, filled rectangle and rectangle. This ordering is not
reflected in the decoding equations (2) - (4).

However, sequentiality and temporality is omnipresent in
human cognitive behavior. Non oriented graphs and more
particularly the cliques are not suitable to learn and retrieve
sequential messages. An architecture with unidirectional links
seems the right way to go, since for example it is much more
difficult to sing a song in a reversed order. The information
dependencies should also be limited in a certain neighborhood
of time. For instance, in order to continue playing, a pianist
only needs to remember a short sequence of several notes that
he has just played, instead of what he played one hour ago.
Inspired by clique-based networks, the main contribution of
this paper is to propose an oriented graph regularly defined,
which we call a “chain of tournaments” that is able to learn
very long sequences using a limited number of neurons, and
then to retrieve the next element of a sequence uniquely from
the knowledge of part of the previous ones.

In graph theory, a tournament is a directed graph obtained
by assigning a direction to each edge in a non oriented



complete sub-graph. A tournament offers less redundancy
than a clique, since the number of connections is divided
by two (one can consider an edge in non oriented graphs
as two arrows in opposite direction). The progression of
time is then reflected in the succession of tournaments. An
example of “chain of tournaments” is illustrated in Figure 2.
Clusters are represented by circles, and an arrow represents
not a single connection between two fanals, but a set of
possible connections between two clusters. One can consider
such an arrow as a vectorial connection. The connections are
authorized between the cluster i and j, only if |j− i| ≤ r. r is
the incident degree, which is the number of incoming vectorial
connections of any cluster.

Let us take as an example the longest word in French
“anticonstitutionnellement”, which contains 25 letters. If one
learns this word using the non-oriented clique-based network
introduced in Section II, the network should be composed of
25 clusters of 43 fanals (cardinality of the French alphabet
with accented letters). In fact, there are several ways to divide
this word into sub-words, all of them leading to a network of
an unreasonably large size. (If we divide it into c sub-words
of length 25

c , each cluster should contain 43
25
c neurons and

the total number of neurons would be c × 43
25
c . So, the best

choice is c = 25.) But if one considers this word as a sequence
of letters, it can be learnt by the “chain of tournaments”
illustrated in Figure 2. The associated connectivity graph after
learning this word is partially illustrated by Figure 3. The
connections are successively established as the sequence is
going on. Any sub-sequence of 4 letters is considered as an
entity forming a tournament. For instance, the learning of the
sub-sequence “anti” is equivalent to embedding 6 new arrows
into the graph: a → n, a → t, a → i, n → t, n → i and
t → i. Only three of them are sufficient to define this sub-

i

i+1

i+3

i+2

Fig. 2. Structure of the chain of tournaments with 8 clusters and incident
degree r = 3.
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Fig. 3. The partial connectivity graph after learning the longest French
word “anticonstitutionnellement” in the chain of tournaments of 8 clusters
with incident degree r = 3. For the sake of clarity, only the beginning
of the sequence and corresponding connections are represented. The fanals
corresponding to the first passage are represented by small circles, while those
corresponding to the second passage are represented by squares. All the fanals
are exactly of the same nature despite the different representations.

sequence (a → n, n → t and t → i), and the rest of them
serves as redundancy, which one can take advantage of during
the decoding process. The learning of the next sub-sequence
“ntic” adds another three arrows (n → c, t → c and i → c) to
complete a new tournament. The loop structure of this graph
enables the reuse of neuron resources. A cluster, and even a
neuron, can be used at several times. In Figure 3, when the
cluster on the top is solicited for the second time, connections
to a new fanal corresponding to the letter “t” are established,
without erasing any other existing connections.

The network is then able to retrieve the whole word from
a very limited knowledge of the first three letters “a-n-t”. The
three fanals corresponding to the sub-sequence “a-n-t” are
activated at the beginning. The decision of the fourth letter
is made by selecting the fanal in the next cluster with the
maximum number of connections to “a-n-t”. The correct fanal
“i” will be selected with a score of three. Then, the retrieval
process continues decoding the next letter from the knowledge
of three previous letters “n-t-i”, and so on. Obviously, if this
sequence contains a repetitive sub-sequence of length larger
than 3, this illustrated network is potentially not able to make
a correct decision. Fortunately, this is not the case for the word
“anticonstitutionnellement”. Anyway, it would be possible to
add random signatures to complex sequences in order to solve
this problem.

Formally, after learning S sequences of length L, the
network (chain of tournaments composed of c clusters of l
fanals each with parameter r) is defined by:



∀(i, i′) ∈ [|1; c|]2,∀(j, j′) ∈ [|1; l|]2,

ω(i,j)(i′,j′) =


1,

if 1 ≤ (i′ − i) mod c ≤ r

and ∃s ≤ S,∃k ≤ L

c
,

{
dsi+(k−1)c = j

dsi′+(k−1)c = j′

0, otherwise
(5)

d is the matrix of learnt sequences, where dsi+(k−1)c refers to
the fanal index in the cluster i corresponding to the kth passage
on this cluster by the sth sequence.

After learning S sequences, the density of the network,
which is defined as the ratio between the number of established
connections and that of all potential ones, can be expressed
as:

d = 1−
(
1− 1

l2

)S L
c

(6)

To start the retrieval process, the network should be provided
with any r consecutive symbols, in particular the first r sym-
bols if we want to retrieve the sequence from the beginning. It
is important to note that if the provided part is in the middle
of the sequence, one has to know the emplacement of the
corresponding clusters to begin with. Formally, the decoding
can be expressed as follows:

for r+1 ≤ p ≤ L :



i← p mod c+ 1

∀j, vij ←∑
1≤δ(i′)≤r

min

 l∑
j′=1

ω(i,j)(i′,j′)vi′j′ , 1


where δ(i′) = (i′ − i) mod c
vmaxi ← max

j

(vij)

∀j, vij ←

{
1 if vij = vmaxi

0 otherwise
(7)

The sequence retrieval error rate (SRER) is a measure of the
network performance, which is here defined as the probability
of getting at least one symbol error during the sequence
retrieval process, given the first r consecutive symbols of a
learnt sequence. After learning S sequences, SRER can be
estimated by the following formula:

Pe = 1−

(
1−

[
1−

(
1− 1

l2

)S L
c

]r)(l−1)(L−r)

(8)

By means of simulation, if one considers a chain of tourna-
ments composed of 16 clusters of 512 fanals each with incident
degree 9 learning 10000 random sequences of average length
90 (in symbols), that is to say 8.1 Mbits in total, in 98.4%
of cases the network retrieves successfully the entire sequence

only being provided with the 9 first symbols (10% of the whole
sequence length).

For a fixed error probability, on can deduce the diversity of
the network as:

Smax =

log

(
1−

[
1− (1− Pe)

1
(l−1)(L−r)

] 1
r

)
L
c log

(
1− 1

l2

) (9)

The maximum number of bits stored by the network is
expressed by:

Cmax = Smaxkc log2(l) (10)

where k = L
c , the number of re-use of each cluster. The

quantity of memory used by the network is:

Q = rcl2 (11)

This leads to the expression of the network efficiency, which
is the ratio Cmax

Q :

η =
Smaxk log2(l)

rl2
(12)

Note that the efficiency is not directly dependant on the
number of clusters c, but on k, the number of re-use of each
cluster.

The previous equations lead to Table 1 that gives theoretical
values for several different configurations of the network. With
a sufficient incident degree r, the network efficiency reaches
around 20%.

TABLE I
MAXIMUM NUMBER OF SEQUENCES (DIVERSITY) SMAX THAT A CHAIN OF

TOURNAMENTS IS ABLE TO LEARN AND RETRIEVE WITH AN ERROR
PROBABILITY SMALLER THAN 0.01, FOR DIFFERENT VALUES OF c, l, r

AND L. THE VALUES OF CORRESPONDING EFFICIENCY η ARE ALSO
MENTIONED.

c l r L Smax η

8 512 2 16 155 0.5%

8 512 3 16 1513 3.4%

8 512 3 32 578 2.6%

8 512 2 64 225 2%

20 512 10 100 12741 21.9%

50 512 20 1000 1823 22.2%

The propagation of errors is especially harmful in successive
decoding process. One can investigate the proportion of non
propagative errors which do not cause a second error in
following consecutive r decoding steps. In Figure 4, the chain
of tournaments of 16 clusters of 512 fanals with r = 9 is able
to learn and retrieve 15000 sequences of 90 symbols, that
is to say 810 bits, while maintaining a satisfying proportion
(more than 90%) of non propagative errors. Logically, a chain
of tournaments with r = c − 1 offers the best performance
possible.



0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of learnt sequences

P
ro

po
rt

io
n 

of
 n

on
 p

ro
pa

ga
tiv

e 
er

ro
rs

 

 

l=512, c=16, r=9, L=10*r

l=512, c=16, r=15, L=10*r
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Fig. 4. Proportion of non propagative errors in function of the number of
the sequences learnt by chains of tournaments. The first input symbols are of
10% length of the whole sequences.

IV. LEARNING VECTORIAL SEQUENCES

As a matter of fact, the structure represented in Figure
2 is a generalization of clique-based networks. It becomes
a clique by setting r = c − 1 (two oriented connections
being equivalent to a non oriented one). It is still possible
to generalize furthermore this topology:

1) A chain of tournaments is not necessarily a closed loop;
2) A given element of the sequence at time τ , sτ , is not

necessarily a single symbol, but a set of parallel symbols
that corresponds to a set of fanals in different clusters.
The sequence then becomes vectorial. We call these sets
of parallel symbols as “vectors” or “patterns”.

An illustration of this generalization is given in Figure 5.
The network is composed of 100 clusters, represented by
squares in the grid. Four patterns with different sizes are
represented: filled circles (size 4), grey rectangles (size 3),
grey circles (size 2) and filled rectangles (size 5). There are
no connections within a pattern. Two patterns that are linked
are associated through an oriented complete bipartite graph.
The succession of patterns is then carried by a chain of
tournaments with parameter r. In Figure 5, we have r = 2,
since the first pattern (filled circles) is connected to the second
(grey rectangles) and to the third (grey circles), but not to the
fourth (filled rectangles). This concept is similar to that in
[10], although the latter only considers connections between
two consecutive patterns, and the way of the organization in
clusters is different.

During the decoding process, the network is provided with
r successive patterns. A priori, the locality of the next pattern
is unknown. As a consequence, at each step of the decoding,
one has to process a global “winner-take-all” rule instead of

Fig. 5. Learning vectorial sequences in a network composed of 100 clusters
by the generalized chain of tournaments. Clusters are represented by squares in
the grid. Four patterns with different sizes are represented: filled circles, grey
rectangles, grey circles and filled rectangles. The incident degree is r = 2.

a local selection expressed in (3) or (7). In other words, one
has to go through the whole network to select all the fanals
with the maximum score, which is normally the product of
the incident degree and the size of patterns, instead of doing
this selection within selected clusters.

By means of simulation, our network learns a set of long
vectorial sequences composed of randomly generated patterns,
and it shows outstanding performance in retrieving them. For
example, with the incident degree r = 1, the network com-
posed of only 6400 neurons (100 clusters × 64 fanals/cluster)
is able to learn a sequence of 40000 random patterns of size 20
each, that is to say about 10 Mbits, with a SRER = 10% despite
a relatively high network density d = 0.32. Nevertheless, this
network is more at ease to learn sequences of big patterns
(for instance, size 20) rather than those of small patterns (for
instance, size 3), which suffers more from the problem of error
propagation and diaphony. Since the patterns are randomly
generated, one has few chance to get too many similar patterns.
Anyway, in a similar way as mentioned in Section III, our
model is also able to learn sequences of correlated patterns as
well as those of non correlated ones, although the provided
input patterns should not be strongly correlated with the rest
of the sequence. The cost is to add random signatures in order
to decorrelate the source, and to correspondingly double the
number of clusters and neurons.

V. CONCLUSION AND OPENING

While the clique-based non oriented networks enable the
learning of fixed length atemporal messages, the model pro-
posed in this paper is able to learn very long sequences, the
length of which is not limited by the size of the network, but



only by its binary resource. As described in Section IV, the
network made of 6400 neurons is able to learn a vectorial
sequence composed of 40000 patterns of 20 parallel symbols,
which corresponds to about 10 Mbits of information. This
property could give them the ability to encode the flows with
voluminous information, such as multimedia streams.

This model remains simple to be implemented, since all the
connections and the neurons are binary. Oriented graphs are
biologically plausible, as synapses (neuronal inputs) and axons
(neuronal outputs) are not interchangeable.

Generally, time is embodied in a temporal message in two
ways: temporal order and time duration. By now, the time
involved in our model is discrete. It would be thus interesting
to introduce the notion of duration in associative memories,
which will have utilities to applications like natural language
processing considering phoneme sequences. The learning of
abstract structure [11] [12], which might lead to a hierarchical
architecture, is another interesting possibility that remains
open to further investigation.
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