
Compressing multisets using tries
Vincent Gripon, Michael Rabbat, Vitaly Skachek and Warren J. Gross

Department of Electrical and Computer Engineering
McGill University, 3480 University St., Montréal, QC H3A 2A7, Canada

Emails: vincent.gripon@ens-cachan.org, michael.rabbat@mcgill.ca, vitaly.skachek@gmail.com, warren.gross@mcgill.ca

Abstract—We consider the problem of efficient and lossless
representation of a multiset of m words drawn with repetition
from a set of size 2n. One expects that encoding the (unordered)
multiset should lead to significant savings in rate as compared
to encoding an (ordered) sequence with the same words, since
information about the order of words in the sequence corresponds
to a permutation. We propose and analyze a practical multiset
encoder/decoder based on the trie data structure. The act of
encoding requires O(m(n + logm)) operations, and decoding
requires O(mn) operations. Of particular interest is the case
where cardinality of the multiset scales as m = 1

c
2n for some

c > 1, as n → ∞. Under this scaling, and when the words in
the multiset are drawn independently and uniformly, we show
that the proposed encoding leads to an arbitrary improvement
in rate over encoding an ordered sequence with the same words.
Moreover, the expected length of the proposed codes in this
setting is asymptotically within a constant factor of 5

3
of the

lower bound.

I. INTRODUCTION

Many commonly encountered data sources produce se-
quences of data where the sequential information is mean-
ingful. Characters must be placed in a particular order to form
understandable words; the order of words follows syntactic
rules to reflect the meaning of a sentence; a song is recogniz-
able if its notes are played in the right order.

However, in a number of relevant data processing and
communication tasks, the order of information is not required.
For example, many natural language processing methods op-
erate on the so-called “bags-of-words” representation of a
document, discarding all order information and only keeping
record of which words appear in the document and how many
times each appears. In mathematical terms, the bag-of-words is
a multiset—a set in which some elements may appear multiple
times. Similarly, when storing the items in an inventory, the
order in which entries are recorded does not matter as long as
the items and counts are all preserved1.

The order information which is discarded by the non-
injective mapping from a sequence to the corresponding mul-
tiset is equivalent to a permutation (when a multiset has m
words, approximately log2m! bits are required to encode such
a permutation), and so one would expect that encoding only
the multiset could result in significant savings [1].

In this paper we propose and analyze a practical method
for compressing a multiset. Our method is built upon a data
structure called a trie (also known as a prefix tree). Tries were

1On the other hand, the order and way in which data is stored may
have important implications for the computational complexity of decoding,
searching or processing the encoded data set.

introduced independently by La Briandais [2] and Fredkin [3],
with Fredkin suggesting the name to indicate their use for
information retrieval while simultaneously evoking the tree-
like structure. Tries naturally capture the set of elements
appearing in a multiset. We augment this structure with counts
of how many times each element appears in the multiset.
When encoding a multiset containing m words drawn (with
repetition) from a set of size 2n, the computational complexity
of our encoder is O(m(n + log(m))) and the complexity of
our decoder is O(mn). For the case where words are drawn
from an i.i.d. Bernoulli 1/2 source, we derive an expression
for the expected code length and show that it asymptotically
is within a constant of a lower bound on the multiset entropy
when m,n→∞, m = 2n/c for some c > 1. Our results are
based on combinatorial arguments related to the structure of
random tries.

A. Related work

Cover [4] proposes a uniquely decipherable compression
scheme for sets of binary sequences based on index functions.
Later, Lempel [5] observes that order is not always important
in a message and proposes the development of multiset de-
cipherable codes—codes which are not necessarily uniquely
decipherable but for which every decoding results in the same
multiset. In contrast, the codes developed in this paper are
uniquely decipherable (i.e., prefix codes).

In the series of papers [6], [7], [8], Varshney and Goyal
study information theoretic limits and universal codes for
unordered information. For the case where the words to be
encoded are produced by a finite-alphabet source, they point
out that encoding the multiset is equivalent to encoding the
corresponding histogram. Reznik [9] introduces an elegant
combinatorial approach to encoding and enumerating his-
tograms. When considering a histogram of m elements in 2n

bins, the encoding complexity is Ω(m2n) operations.
Reznik [10], [11] considers the problem of encoding a set of

words. These codes have recently been applied to the problem
of efficiently encoding sets of image features in a system
for mobile visual search [12]. Reznik’s approach uses digital
search trees (DSTs) to organize the set. Each vertex in the DST
corresponds to one word in the set. The code is a concatenation
of the structure of the resulting DST, which encapsulates the
prefix of each word, and the word suffixes, which are not
encoded by the tree. The resulting code is shown to offer
improvements close to the logm! rate savings one would
hope for when the source is memoryless. Interestingly, the

structure of the DST, and subsequently its encoding, depends
on the order in which words of the set are processed during
its formation. This would seem to suggest that there is some
inherent redundancy to these codes.

II. CODING OF SEQUENCES

Suppose we have m discrete random variables X1, . . . , Xm,
where each Xi takes values in the space X of size |X | = 2n.
Assume that all Xi are independent and identically distributed
(i.i.d.), with distribution P(Xi = x) = p(x) = p for all
Xi and all x ∈ X . We are interested in efficiently encoding
information about these variables.

A classical result of Shannon [13] shows that the number of
bits required to encode the random variable X with values in
X is bounded from below by its entropy. More specifically, let
C : X → D∗ be a code such that a realization x of a random
variable X is encoded using strings of arbitrary length over
the alphabet D. Let C(x) be the codeword corresponding to x,
and let l(x) denote the length of this codeword. Here we will
be primarily interested in the binary case, D = {0, 1}. The
code C is lossless or non-singular if each x ∈ X is mapped
to a unique value in D∗.

A well-known consequence of the Kraft inequality [14] is
that the expected length of the uniquely decipherable source
code C is lower-bounded by the entropy of X , i.e.,

L =
∑
x∈X

p(x)l(x) ≥ H(X) , (1)

where H(X) = −
∑

x∈X p(x) log2 p(x) is the binary entropy
function. In fact, one can make the stronger statement that, out
of all possible codes, the one with minimum expected length
LX satisfies

H(X) ≤ LX ≤ H(X) + 1 . (2)

Hence, if we assume that the Xi are uniformly distributed,
then H(X) = n, and since X1, . . . , Xm are i.i.d., the
number of bits needed to transmit the ordered sequence
S = (X1, . . . , Xm) is at least LS ≥ mn. Of course, this
bound is achieved when considering the representation that
simply lists all codewords in the sequence, and so LS = mn.

III. LOWER-BOUND FOR CODING MULTISETS

Let Y = {X1, X2, . . . Xm} denote the random multiset
obtained by taking the values appearing in S in an arbitrary
order. We are now interested in finding the minimum number
of bits required to encode this multisetset.

Let Ym denote the collection of all multisets containing m
objects drawn (with repetition) from X , where m < 1

2 · 2
n =

2n−1. Let c , 2n/m > 2. The size of Ym is given by the
multiset coefficient,((

2n

m

))
=

(
2n +m− 1

m

)

=

m∏
k=1

2n + k − 1

m!
. (3)

Although all Xi are assumed to be i.i.d. and uniform, the
induced distribution on Ym is not uniform. Nevertheless, we
have the following result.

Theorem 1. For sufficiently large n, the binary entropy of the
random vector Y as above is bounded from below by

H(Y) ≥ 2n·
(

log2(c) + log2

(
1− 1

c

))
·
(

1− e− 1
c

)
−ε, (4)

for any small ε > 0.

Proof: Start by using the fact that H(Y) ≥ H(Z(Y))
where Z(Y) is the set containing all the elements in Y without
repetition. Note that possible sets Z(Y) are uniform. Then
lower bound H

(
Z(Y)

∣∣|Z(Y)| = m′
)

using log2(m′!) ≤
m′ log2(m′) and Stirling’s approximation. Use the fact that
log(m′) is increasing with m′ to substitute m′ with m where
possible. Finally, sum H

(
Z(Y)

∣∣|Z(Y)| = m′
)
p(|Z(Y)| =

m′) for all m′ ≤ m to obtain the result.
Remark. Note that when c grows, the lower bound in (4)

becomes
H(Y) ≥ mn− log2(m!)− ε︸ ︷︷ ︸

Denote by: H−(Y)

.

On the other hand, H(Y) can be upper bounded using (3)
and some elementary manipulations, which leads to

H(Y) ≤ log2

(((
1 +

m− 1

2n

)
2n
)m)

− log2(m!)

≤ mn+m log2

(
1 +

m− 1

2n

)
− log2(m!)︸ ︷︷ ︸

Denote by: H+(Y)

. (5)

Given the upper bound on H(Y), we can quantify the
rate savings obtained by encoding the multiset Y instead of
the sequence S by examining a bound on the ratio of their
expected lengths,

LY

LS
≤ 1 +

m log2(1 + m−1
2n)− log2(m!)

mn
. (6)

Note that this ratio can also be lower bounded as follows:

LY

LS
≥ 1− log2(m!)

mn
. (7)

When c = 2n/m is large, the upper and lower bounds on
the multiset entropy are tight:

H−(Y) ∼
n→∞

H+(Y) ∼
n→∞

m(n− log2(m)) . (8)

It follows that

LY

LS
∼

n→∞
1− log2(m)

n
∼

n→∞

log2(c)

n
, (9)

which means that the gain in the expected lengths when com-
paring the ordered sequence S to the corresponding unordered
multiset Y can be made arbitrarily large.

In the next section we introduce an algorithm to encode
such unordered multisets Y with a short expected length.

IV. A CONSTRUCTIVE ENCODING USING TRIES

In this section, we develop an encoding technique based on
tries to efficiently encode multisets. Let us fix D = {0, 1}, and
let C : X → {0, 1}n be a bijective mapping from each element
in X to a length-n binary string. We consider compressing
the binary representation CY of the multiset Y ∈ Ym, where
CY = {C(X1), C(X2), . . . , C(Xm)}. Given a multiset CY ,
we denote by µ(w), w ∈ CY the number of occurrences of w
in CY , which we call the degree of w. In particular, we have∑

w∈CY
µ(w) = m.

A trie associated with a set of words W over D is
an edge-labeled tree that contains exactly |W | maximum
branches, with labels corresponding to the words in W . For
example, the trie associated with the set of words W =
{00000, 01000, 10000, 01001, 01101} is depicted in Figure 1.

1

0

0
0 0 0

1

1
0 1

0 0 0

1

0 0 0 0

Figure 1. Trie associated with the set of words W =
{00000, 01000, 10000, 01001, 01101}. It contains 5 maximum branches
corresponding to the words in W .

We extend this representation to multisets by annotating
each leaf (equivalently, each branch) in the trie with the degree
corresponding to the associated word. We call such a structure
a multitrie. Note that this association between multisets and
multitries is a bijection; in the remainder of the paper we do
not distinguish a multiset from its associated multitrie.

To encode a multitrie, we use the following algorithm,
named AlgI:

1) The labels of all branches (together with their corre-
sponding degrees) are listed in lexicographical order.

2) For all words, except for the first word, each bitstring
is replaced by its longest suffix that differs from the
corresponding suffix contained in the previous word.

3) Any occurrence of the pair of bits 01 in the remaining
words is replaced by the chain 0101.

4) The chain 01 is added at the end of each word.
5) If the degree of the word in the multiset is greater than

one, a string of 0’s is appended to the end of each word.
The number of 0’s appended is equal to the degree of
that word in the multiset.

6) Finally, all obtained words are concatenated to form the
encoded string representing the multiset.

Note that this algorithm has computational complexity that
is O(m(n + log(m))), since Steps 2–6 involve traversing all

Step Content
1 [00000:1, 01000:1, 01001:2, 01101:1, 10000:1]
2 [00000:1, 1000:1, 1:2, 101:1, 10000:1]
3 [00000:1, 1000:1, 1:2, 10101:1, 10000:1]
4 [0000001:1, 100001:1, 101:2, 1010101:1, 1000001:1]
5 [0000001, 100001, 10100, 1010101, 1000001]
6 00000011000011010010101011000001

Figure 2. The six steps corresponding to the encoding of the multitrie CY =
{00000, 01000, 10000, 01001, 01001, 01101}. When relevant, the degree of
a branch is added at the end of its labels.

words in the set, and Step 1 involves sorting the words2. We
denote by f the function that associates a multitrie with its
encoding using this algorithm.

For example, consider the multiset CY which contains the
same words as in W with the difference that 01001 occurs
twice. Figure 2 illustrates the six steps corresponding to the
encoding of CY .

This encoding is lossless, which means that f is injective.
Moreover, each step in AlgI is reversible. Indeed, to see that,
please observe that after Step 2, each remaining suffix (except
for the first word in the lexicographical order) must start with
1. Therefore, the maximal substring of the form (01)2i+1 can
only appear at the end of each word (when the subsequent 0’s
are discarded). We use this property to design the decoding
algorithm AlgII which computes the inverse mapping f−1:

1) Search for all maximal occurrences of a pattern of the
form (01)2i+1 or (01)2i+10(0)+ (end of the word),
and split the string after each such occurence. Each
obtained sub-string corresponds to a distinct word in the
multiset.

2) Remove the 0’s at the end of each obtained word and set
its degree to be the number of 0’s. If there are no 0’s,
then set its degree to one.

3) Remove the two last symbols (01) for each word.
4) Replace maximal occurrences of (0101)i in each word

by (01)i.
5) For all words, starting with the second word and up to

the last one, add the prefix using the previous word.
The resulting words are the branches characterizing the
multitrie.

Note that the complexity of this decoding algorithm is O(mn)
since each step involves traversing the entire bitstring. Figure 3
illustrates the five steps corresponding to the decoding of the
string obtained at the last step of Figure 2.

The next section analyzes the expected length of encoded
multisets using AlgI.

V. PERFORMANCE OF ALGI FOR MULTITRIE ENCODING

Let us fix a multiset with the parameters of Section IV.
Throughout this section we assume that the words w in the
multiset CY are i.i.d. samples from a Bernoulli 1/2 source.

2We assume the machine performing the encoding operates on words of
length at least n bits. If this is not the case, then each comparison in Step 1 has
complexity O(n) and so the overall encoding complexity is O(mn logm).

Step Content
0 000000110000110100110101011000001

1 [0000001, 100001, 10100, 1010101, 1000001]
2 [0000001:1, 100001:1, 101:2, 1010101:1, 1000001:1]
3 [00000:1, 1000:1, 1:2, 10101:1, 10000:1]
4 [00000:1, 1000:1, 1:2, 101:1, 10000:1]
5 [00000:1, 01000:1, 01001:2, 01101:1, 10000:1]

Figure 3. The five steps corresponding to the decoding of the string obtained
in Step 6 in Figure 2. When relevant, the degree of a branch is added at the
end of its labels.

The expected length of the encoded string associated with such
a multiset using AlgI can be expressed as a function of n and
m. More precisely, this expected length L can be decomposed
into four terms,

L = L2 + 2L3 + 2L4 + L5 , (10)

where L2 corresponds to the expected total number of bits
in the strings obtained after Step 2, L3 to the the expected
number of duplicated pairs 01 in Step 3, L4 to the expected
number of chains 01 added in Step 4, and L5 to the expected
number of 0’s added in Step 5 of AlgI.

In the following lemmas, we develop the expected values
of L2 and L3.

Lemma 2. Let Ek = 2k(1− (1− 2−k)m). Then

L2 =

n∑
k=1

Ek .

Proof: A multitrie contains at most 2k edges at depth
k. Based on the source statistics, the probability that any of
these edges is used by a word is pk = 2−k. Given m messages,
the probability that the multitrie contains a particular edge is
obtained by considering the converse of the probability that
this edge is not used, the latter being (1− pk)

m. Thus the
expected number of edges at depth k in the multitrie is given
by Ek. The expected total number of bits after Step 2 is equal
to the number of edges in the multitrie which is obtained by
summing Ek over all levels k = 1, . . . , n.

Lemma 3.
L3 ≤

L2 − En

3
+
n

6
+

1

3
. (11)

Proof: We want to bound the number of appearances of
01 in any string obtained after Step 2 of AlgI. In Step 2,
the first word in lexicographical order is left untouched, and
all remaining words are shortened. We estimate the expected
length ` of each of the shortened strings using Lemma 2.
Note that En is the number of unique words appearing in
the multiset, and thus the number of leafs in the multitrie.
Consequently,

` =
L2 − n
En − 1

. (12)

Next, note that the distribution of pairs of bits in these words
is not uniform. More precisely, the probabilities (a) to observe

the pair 00 and (b) to observe the pair 10 in the produced
words are both higher than that of observing the pair 01. To
show (a), note that the word of the form a01b can remain as
a result of applying Step 2, only if there is no word of the
form a00c appearing beforehand. Therefore it is more likely
to observe 00 than 01.

Moreover, to show (b), note that by construction of the
multitrie, except for the first word, each suffix remaining after
Step 2 begins with a 1. Thus, each word that contains 01 also
contains 10. Moreover, between each pair of occurrences of
01 within one word, 10 also appears at least once. Hence, it
is also more likely to observe 10 than 01.

Denote by pXY the probability to observe the pair XY. It
follows that 3p01 + p11 ≤ 1, and thus p01 ≤ 1

3 .
Let L′3 denote the expected number of pairs 01 in any

bitstring except for the first one obtained after Step 2 of AlgI.
Since there are `− 1 pairs of symbols in a word of length `,
it follows that

L′3 = (En − 1)(`− 1)/3 (13)

≤ L2 − n− En + 1

3
. (14)

Finally, the first word contains a maximum of n/2 01’s. Thus,
L3 = n

2 + L′3, and we obtain the desired result.
Using these results, we can bound the total expected length

to code a multiset of m words drawn independently and
uniformly from a set of size |X | = 2n.

Theorem 4.

L ≤ 5

3

n∑
k=1

Ek +
4m

3
+

2n

3
+

2

3
. (15)

Proof: It follows directly from the definitions of Steps 4
and 5 in AlgI that L4 = En and L5 = m − En. Use this in
equation (10), together with Lemmas 2 and 3 and the fact that
m ≥ En, to obtain the claim.

Armed with this bound on the expected code length, we
can compare the performance of the proposed multitrie code
to the bounds discussed in Section III. Note that

n∑
k=1

Ek ≤ 2n+1 , (16)

and so Theorem 4 gives:

L ≤ 5

3
2n+1 +

4m

3
+
n

3
+

2

3
. (17)

It follows that
L

LS
≤ 5× 2n+1

3mn
+

4

3n
+

1

3m
+

2

3mn
. (18)

In particular, if there exists c > 2 such that m = 2n/c we
obtain

L

LS
≤ 10c

3n
+

4

3n
+

c

3 · 2n
+

2c

3n · 2n
−→
n→∞

0 . (19)

In other words, and not surprisingly, the multitrie compression
technique can result in an arbitrarily large gain in the expected

length when compared to that of a corresponding ordered
sequence S.

Under the same scaling behavior, and provided that there
exists an integer ` ≥ 0 such that c = 2`, the bound in (16)
can be sharpened to obtain a stronger result. Note that the
condition m = 2n−l is not restrictive, since

∑n
k=1Ek is non-

increasing with c and thus the bound for any c is given by
rounding up to the next largest power of two.

Theorem 5. Let ` be a non-negative integer, and c = 2`. Then
for any ε > 0, there exists a positive integer n0 such that for
any n ≥ n0 we have

L

LY
≤ 5

3

[
2

log2(c)
+ c(1− e− 1

c)

]
+ ε −→

c→∞

5

3
+ ε . (20)

Proof: Let us first split the sum into two parts at the index
k′ = n− `:

n∑
k=1

Ek =

k′∑
k=1

Ek +

n∑
k=k′+1

Ek . (21)

The first part can be upper bounded by 2k
′+1. In the second

part, note that there are ` terms in the sum and each term is
bounded by Ek ≤ En. Thus,

∑n
k=k′+1Ek ≤ `En. Moreover,

since (1− 1
n)r ≤ er/n,

En ∼
n→∞

2n(1− e− 1
c) . (22)

Thus, we obtain
n∑

k=1

Ek ≤ L+
2 , (23)

where L+
2 ∼

n→∞
2n+1/c+ `2n(1− e− 1

c) .

We conclude by incorporating these results together with (9)
into (15).

It follows from Theorem 5 that for a fixed value of c > 2,
the ratio between the expected length of the string compressed
using the multitrie method and the lower bound approaches
constant when n grows. This ratio can be made arbitrarily
close to 5/3 by taking c large enough.

Figure 4 depicts (a) the ratio of L obtained by simulations
to theoretical values of Ls; (b) the ratio of theoretical values
of LY to LS . Both ratios are functions of n, for c = 1 and
c = 10.

VI. CONCLUSION

We introduced an algorithm (AlgI) to compress multisets of
binary words obtained using a Bernoulli 1/2 source. When the
number of words in the multiset scales as m = 2n/c, c > 1
as n→∞, with n being the length of words, we proved this
algorithm is asymptotically at a constant factor (at most 5/3)
from the lower bound introduced in Section III. Moreover, this
algorithm has a very low computational complexity (O(m(n+
logm)) for encoding and O(mn) for decoding), which makes
it scalable for large inputs.

 0.01

 0.1

 1

 6 8 10 12 14 16 18 20

C
o
m

p
re

s
s
io

n
 r

a
te

n

Encoded multisets, c=1
Lower bound, c=1

Encoded multisets, c=10
Lower bound, c=10

Figure 4. The figure presents: (a) the ratio of the value of L obtained by
simulations to the theoretical value of LS ; (b) the ratio of the theoretical
values of LY to LS . Both ratios are functions of n, for c = 1 and c = 10.

We believe the results presented in this manuscript can eas-
ily be extended to more general sources by first compressing
all the individual words, and then applying AlgI.

Future work includes providing algorithms for common
operations on the encoded multisets—including union, in-
tersection, lookup—with limited complexity, and considering
lossy algorithms to further approach the lower bound.
Acknowledgements: The authors thank Luc Devroye for an
illuminating discussion and Yuriy Reznik for pointing out use-
ful related work. This work is supported in part by the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] L. Varshney, “Optimal information storage: Nonsequential sources and
neural channels,” S.M. Thesis, Dept. Electrical Engineering and Com-
puter Science, MIT, Boston, MA, Jun. 2006.

[2] R. de La Briandais, “File searching using variable length keys,” in
Proc. Western Joint Computer Conference, 1959, pp. 295–298.

[3] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, 1960.

[4] T. Cover, “Enumerative source encoding,” IEEE Trans. on Inf. Theory,
vol. 19, no. 1, pp. 73–77, 1963.

[5] A. Lempel, “On multiset decipherable codes,” IEEE Trans. Inf. Theory,
vol. 32, no. 5, pp. 714–716, Sep. 1986.

[6] L. Varshney and V. Goyal, “Toward a source coding theory for sets,” in
Proc. IEEE DCC, Snowbird, UT, Mar. 2006.

[7] ——, “Ordered and disordered source coding,” in Proc. ITA, San Diego,
CA, Feb. 2006.

[8] ——, “On universal coding of unordered data,” in Proc. ITA, San Diego,
CA, Jan. 2007.

[9] Y. Reznik, “An algorithm for quantization of discrete probability distri-
butions,” in Proc. IEEE DCC, Snowbird, UT, Mar. 2011.

[10] ——, “Coding of sets of words,” in Proc. IEEE DCC, Snowbird, UT,
Mar. 2011.

[11] ——, “Codes for unordered sets of words,” in Proc. IEEE ISIT,
St. Petersburg, Russia, Jul. 2011.

[12] V. Chandrasekhar, S. Tsai, Y. Reznik, G. Takacs, D. Chen, and B. Girod,
“Compressing features sets with digital search trees,” in Proc. IEEE
Int. Workshop on Mobile Vision (IWMV), Barcelona, Spain, Nov. 2011.

[13] C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, Jul., Oct. 1948.

[14] L. Kraft, “A device for quantizing, grouping, and coding amplitude mod-
ulated pulses,” M.S. Thesis, Dept. Electrical Engineering and Computer
Science, MIT, 1949.

