
Random clique codes
Vincent Gripon, Vitaly Skachek, Warren J. Gross and Michael Rabbat

Department of Electrical and Computer Engineering
McGill University

3480 University St., Montréal, QC H3A 2A7, Canada

Abstract—A new family of associative memories based on
sparse neural networks has been recently introduced. These
memories achieve excellent performance thanks to the use of
error-correcting coding principles. In this work, we introduce a
new family of codes termed clique codes. These codes are based
on the cliques in balanced n-partite graphs describing associative
memories. In particular, we study an ensemble of random clique
codes, and prove that such ensemble contains asymptotically good
codes. Furthermore, these codes can be efficiently decoded using
the neural networks based associative memories with limited
complexity and memory consumption.

I. INTRODUCTION

Recently, a new type of associative memories relying on
neural networks has been introduced in [1], [2]. An associative
memory is a device that is able to store messages and to
retrieve them efficiently given only a part of their content.
Contrary to previous models [3], this new device allows to
reach nearly optimal efficiency – the ratio of the number of
information bits learned to the number of bits used.

The structure of these new memories is inspired by that of
modern graph-based codes, such as turbo codes [4] and LDPC
codes [5]. More specifically, these memories are based on two
new types of specially designed error-correcting codes, one
termed thrifty codes, and the other one based on cliques in
graphs [6].

There are strong similarities between the functioning of an
associative memory and that of an error-correcting decoder
associated with an erasure channel. Both systems aim at
retrieving information messages – or codewords – given a part
of their content. On the other hand, an associative memory is
designed to learn new messages whereas a decoder does not
have any learning abilities.

In this manuscript, we propose to use these neural networks
as decoders. We introduce a new family of codes, termed
clique codes, that are specially designed for efficient decoding
using the neural networks architecture. We also prove that
some families of these codes based on random graphs have
good asymptotic properties. The proposed codes are non-
linear, yet they can be concisely described using cliques in
n-partite graphs. We note that existing linear codes, which
can be efficiently decoded over discrete memoryless channels
(DMCs), such as LDPC-like codes, turbo codes or Reed-
Solomon codes, are not suitable for efficient decoding by the
neural networks due to their algebraic structure.

It was observed by experiment [1] that good performance is
achieved in the neural networks associative memory when the
fraction of used edges in the corresponding graph is about 20%

of the all possible edges. For that reason we consider a random
graph model where an edge exists between two vertices with a
fixed probability p. Since the overall code is designed to have
a fixed rate R, we need to increase the alphabet size of the
code when the code length grows.

This paper is structured as follows. Basic notations and
definitions are introduced in Section II. The relations between
codes and the graph structure of the associative memory are
presented in Section III. Maximum-likelihood decoding and
random codes are introduced in Section IV. The new random
clique codes are proposed and discussed in Section V. The
neural networks based decoding algorithm is presented and its
performance is analyzed in Section VI. Finally, the discussion
is concluded in Section VII.

II. DEFINITIONS

Consider a graph G = (V, δ ⊆ V × V) where V is the set
of vertices and δ is the edge relation. Such a graph is said to
be balanced n-partite, n ∈ N, if ∃(Vi)1≤i≤n ⊆ Vn:
• V =

⊔
Vi where

⊔
is the disjoint union operator,

• ∀i, j : |Vi| = |Vj |, where |.| denotes the cardinality,
• ∀i : ∀v1, v2 ∈ Vi : (v1, v2) 6∈ δ.

The sets Vi are called clusters of G.
A clique in a graph is a subset of vertices that are fully

interconnected. We denote by [`] the set of integers between
1 and `. A word w over an alphabet A is a tuple of elements
- called symbols - in A. With no loss of generality, we will
consider in what follows that alphabet A is of the form [`]. A
word will be represented by the sequence of its symbols. If
w ∈ [`]n, n is called the length of w and it is denoted by |w|
(Note that in [1], [2] and [6] the notation c was used rather
than n). The i-th coordinate of a word w, denoted by wi, is
the i-th symbol of w. Given two words of same length w1

and w2, the Hamming distance between w1 and w2, denoted
dH(w1,w2), is the number of coordinates in w1 and w2 that
are not identical (it is 0 if w1 = w2). A code C of length
n over [`] is a set of words (called codewords) of length n
having symbols in [`]. Its size is |C|. To simplify presentation
of the results in this manuscript, we assume that two codes,
which can be obtained one from another using a substitution
of symbols, are identical. The minimum Hamming distance
of the code C, denoted by dmin(C), is defined as:

dmin(C) = min
w1,w2 ∈ C
w1 6= w2

dH(w1,w2) ,

(1,1)

(1,2)

(2,1)

(2,2)

(3,2)

(3,1)

Figure 1. Balanced 3-partite graph (n = 3) associated with the code C =
{112; 121; 211}. For example, this graph contains an edge between nodes
(2,2) and (3,1) as the code contains at least one word of the form *21, where
* denotes any symbol.

and the relative minimum Hamming distance is α = dmin/n.
Finally, we define the rate of the code C as

R =
log`(|C|)

n
. (1)

III. CLIQUE-CLOSURE OF CODES

Let C be a code of length n ∈ N over [`]. Such a code
can be associated with a balanced n-partite graph using the
function f : C 7→ G, G = (V, δ) and V = [n]× [`], such that:
• ∀i ∈ [n] : Vi = {i} × [`],
• ∀(i1, j1), (i2, j2) ∈ V : ((i1, j1), (i2, j2)) ∈ δ ⇔ ∃w ∈
C : wi1 = j1 and wi2 = j2.

For example, consider the code C1 = {112; 121; 211} of length
n = 3 over [2]. The balanced 3-partite graph associated with
C1 is depicted in Figure 1.

Remark 1. With distinct codes can be associated the same n-
partite graph (i.e. f is not injective). For example, consider
codes C1 and C2 = C1 ∪ {111}.

It can be observed that the set of codes that correspond
to a given n-partite graph form a complete partial order
according to the relation ⊆ over the sets. This result is stated in
Theorem 3. As a prerequisite, we first introduce the maximum
code CM associated with a balanced n-partite graph.

Definition 2. Consider a balanced n-partite graph G = (V, δ).
Let Vi = {(i, 1), (i, 2), . . . , (i, `}. The maximum code CM
over [`] associated with G is the code that contains all the
words w such that the vertices {(i, wi) ∈ V : 1 ≤ i ≤ n}
form a clique in G.

This leads us to the next theorem.

Theorem 3. Let G = (V, δ) be a balanced n-partite graph
and let CM be its associated maximum code. Each code C
such that f(C) = G satisfies C ⊆ CM .

Proof: Consider C such that f(C) = G and w ∈ C. By
definition ∀i, j ∈ [n], i 6= j : ((i, wi), (j, wj)) ∈ δ. Thus,

{(i, wi) : 1 ≤ i ≤ n} form a clique in G, and so w ∈ CM .

The last theorem motivates the following definition.

Definition 4. The clique-closure of a code C is the maximum
code associated with f(C).

In the sequel, a code C, whose clique-closure is C itself,
will be called a clique code. Its corresponding graph G will
be called a clique graph.

IV. ML-DECODING

Given an alphabet A, a memoryless erasure channel C
associated with A having erasure probability ρ is a random
function EρA : A → A ∪ {⊥}, where ⊥ 6∈ A is a special
“erasure” symbol, such that:

EρA(a) =

{
a with probability 1− ρ
⊥ with probability ρ .

We extend the definition of EρA to words of length n over
A as follows:

∀w ∈ An : EρA(w) = w̃ such that ∀i ∈ [n] : w̃i = EρA(wi) .

Assume that the channel C (or any other DMC) is applied
to the transmitted word w ∈ C, and the resulting received
word w̃ ∈ ([`] ∪ {⊥})n is produced. Given w̃, we want to
recover w. The decoder that minimizes error probability is
the maximum likelihood (ML) decoder, which is the mapping
DML : ([`]∪{⊥})n → C such that DML(w̃) = w whenever

∀w′ ∈ C, w′ 6= w : P(w̃ received |w transmitted)

≥ P(w̃ received |w′ transmitted) , (2)

where P(· | ·) denotes the conditional probability. For the
given channel C, the ML decoder is equivalent to the minimum
distance (MD) decoder DMD, which is defined as follows:
given the received word w̃,

DMD(w̃) = arg min
w∈C

dH(w̃,w) .

Let us define the weight distribution function W : N×C →
N that associates with a distance d ∈ N and a codeword w ∈ C
the number of codewords at distance d from w. A code is said
to be identically distributed if

∀w1,w2 ∈ C, ∀d ∈ N : W (d,w1) = W (d,w2) = W (d) ,

i.e. the weight distribution is independent of the codeword.
Typically, for applications one is interested in codes with

simultaneously high rate and low decoding error probability.
A well-known family of good codes is a random code family.
A (nonlinear) random code Cr of length n over [`] can be
obtained, for example, by generating all its codewords in the
following manner. Each symbol in it is selected randomly and
independently, and identically distributed over the elements of
[`]. For such code, the expected weight distribution function
is:

E[W (d)] = |Cr| ·
(
n

d

)(
1

`

)n−d(
`− 1

`

)d
.

Generally, in order to admit good decoding performance, a
typical codeword should have a small number of codewords
at small distances from it.

When using neural networks based decoders, popular al-
gebraic linear codes, such as LDPC-type codes, turbo codes
or Reed-Solomon codes, seem to be not suitable for efficient
decoding due to their complex algebraic structure, yet they
can be decoded by inefficient brute-force methods. However,
in general the problem of ML decoding of a arbitrary (linear)
code over binary symmetric channel is known to be NP-
hard [7]. We can think of the naïve ML decoder, which passes
through all the codewords until it finds the one that has the
best match with the input. This decoder is very inefficient, and
its complexity is CML = O(|C|·n). If no compression is used,
this algorithm requires a lot of memory: |C| ·n log2(`) bits (in
order to store all the codewords). In the following section, we
introduce an alternative family of random nonlinear codes that
have rather good minimum distance and can be decoded using
an efficient neural networks based algorithm when used over
the erasure channel.

V. RANDOM CLIQUE CODES

Consider an Erdős–Rényi random clique graph [8] with
parameter p. In its n-partite graph the edges are selected
(given that they are compatible with its n-partite structure)
with probability p independently of each other. We call such
a graph a random clique graph and the maximum code
associated with it a random clique code.

Theorem 5. The expected number of codewords in a random
clique code is:

p(
n
2) · `n . (3)

Proof: Consider n vertices from different clusters in
G.The probability that those vertices form a clique in G is the
probability that the

(
n
2

)
corresponding edges are in G. This

probability is p(
n
2).

Furthermore, the graph contains `n such sets of vertices,
each set forming a distinct possible clique.

Let us now estimate the weight distribution of a random
clique code. Given a codeword w, the probability that any
word w′ at distance d from w, d > 0, is also a codeword is:(

pn−d
)d · p(d

2) .

This expression represents the conditional probability that the
vertices associated with w′ in G form a clique, given that the
edges associated with w form a clique.

Furthermore, the number of possible words at distance d
from w is

(
n
d

)
(`− 1)d. If we assume that ` is large, then the

edges corresponding to distinct sets of vertices associated with
the possible words w′ can be considered to be independent.

Lemma 6. Let w be a codeword and suppose that ` is large.
The expected number of codewords at distance d from w is
then: (

n

d

)
(`− 1)d ·

(
pn−d

)d · p(d
2) . (4)

Note that the probability that w is such that their exists
another codeword w′ at distance d is strictly smaller than the
expression given in (4).

Consider a family of random clique codes Fp, where the
corresponding random clique graphs are constructed by taking
each edge with fixed probability p > 0. We have the following
lemma:

Lemma 7. If the codes in Fp are of average rate R, then `
and R are connected as follows:

` =

(
1

p

) n−1

2(1−R)

. (5)

Proof: By using (1) and (3) we obtain that the average
size of the code C is `Rn = p(

n
2) ·`n. By rearranging the terms,

we obtain the desired connection.
By combining the above results, we have the following

theorem:

Theorem 8. Let d = αn be the average minimum Hamming
distance of the family of codes Fp, and let R be its average
rate. Then, for any fixed small ε > 0, n and ` can be chosen
large enough such that:

R ≥ α(1− α)

1 + 2α− α2 − ε .

Proof: Pick a codeword w in a random clique code C and
fix a distance d > 0. Denote by Pd(w) the probability that
there exists at least one codeword in C at distance d from w.
By the union bound, the probability P̂d that there exists one
pair of codewords in C at distance d from each other is:

P̂d ≤
∑
w∈C

Pd(w)

=
∑
w∈C

(
n

d

)
(`− 1)d ·

(
pn−d

)d · p(d
2)

= `nR︸︷︷︸
p1

(
n

d

)
︸︷︷︸
p2

(`− 1)d︸ ︷︷ ︸
p3

(
pn−d

)d · p(d
2) .

Now, by using (5) we express p1 and p3 as functions of p.
We also approximate p2 by using the Stirling’s approximation
(h2(·) is the binary entropy function). Denote α = d

n . Then
log(P̂d) can be approximately upper-bounded by:

log(P̂d) ≤ log(p)

[
n(n− 1)(R+ α)

2(R− 1)
+ αn2 − α2n2

2
− αn

2

]
+ log(2)(n · h2(α)) .

When n approaches infinity, this expression is asymptoti-
cally equivalent to

log(p) · n2
[
R+ α

2(R− 1)
+ α− α2

2

]
. (6)

Finally, to force P̂d to converge to 0, we require:

R+ α

2(R− 1)
+ α− α2

2
< 0 .

This brings us to the main result of this section:

Theorem 9. For any fixed value of p, 0 < p < 1, and for
sufficiently large n ∈ N and ` ∈ N (where ` is appropriately
selected based on p and n), there exists a clique code C with
relative minimum Hamming distance at least α and rate R
such that

R ≥ α(1− α)

1 + 2α− α2
− ε ,

for any given small ε > 0.

Proof: Theorem 8 connects the average rate and the
average relative minimum distance of a random code in F .
To obtain the result for a particular code, fix some values of
the parameters n and `, and assume that Fp contains codes
C1, C2, · · · , CM having these values of n and `. Denote by Ri
and αi the rate and the relative minimum Hamming distance,
respectively, of Ci.

To arrive at a contradiction, assume that:

∀i ∈ [M] : Ri <
αi(1− αi)

1 + 2αi − α2
i

− ε0

for some fixed ε0 > 0. Taking the average over all codes, we
obtain:

1

M

M∑
i=1

Ri <
1

M

M∑
i=1

f(αi)− ε0 .

where
f(x) =

x(1− x)

1 + 2x− x2
It is easy to check that f is strictly convex over [0, 1].
Therefore, we obtain

R =
1

M

M∑
i=1

Ri <
1

M

M∑
i=1

αi(1− αi)
1 + 2αi − α2

i

− ε0

<
α(1− α)

1 + 2α− α2 − ε0 ,

where the last inequality is due to convexity of f(·). We
obtained a contradiction with Theorem 8, and the proof
follows.

VI. DECODING CLIQUE-CLOSED CODES USING NEURAL
NETWORKS

Consider a clique-closed code C. In this section, we show
that by substituting vertices with neurons and by providing G
with dynamics, one obtains a neural network that can be used
to efficiently decode clique-closed codes.

Assume that the neurons in Vi are labeled from 1 to `,
and denote by vti,j the value of neuron j in cluster i at time
t, t ∈ N. In the sequel, we introduce ∆ to be the indicator
function associated with δ.

Assume that a codeword w was transmitted over an erasure
channel C, and the word w̃ was received. This word can be
projected onto the neural network as:

∀i ∈ [n], j ∈ [`] : v0i,j =

{
1 if w̃i = j or w̃i = ⊥
0 otherwise .

ML-decoder Neural networks
based decoder

Complexity O(`Rnn) O(n2`2)

Memory (bits) `Rn log2(`)n
(n
2

)
`2

Table I
COMPARISON OF THE COMPLEXITY AND OF THE MEMORY

REQUIREMENTS BY THE ML-DECODING ALGORITHM AND THE EFFICIENT
NEURAL NETWORKS BASED ALGORITHM.

The following dynamics can be used to decode w from w̃:

vt+1
i,j =

1 if vti,j +

n∑
i′=1

max
1≤j′≤l

vti′,j′∆((i, j), (i′, j′))

= n

0 otherwise

(7)

Informally, the dynamics of the network rely on the follow-
ing principle: all the neurons in the network that are connected
to at least one neuron with a non-zero value in each cluster
(with the exception of the clusters they are in) are set to 1.
The others are set to 0.

Note that this algorithm, if implemented in a naive way
and considering a limited number of iterations (in practice a
few are enough), has complexity C = O(n2`2). Considering
a random clique code, this quadratic complexity has to be
compared to the exponential complexity of the ML-decoder:
CML = O(`Rnn). In terms of required memory, when assum-
ing that no compression is used, the new algorithm requires(
n
2

)
`2 bits, while the ML-decoder requires lRn log2(`)n bits.

Table I compares the parameters of the proposed decoding
algorithm with that of the ML-decoder.

The proposed decoding algorithm satisfies two properties,
stated in Theorem 10 and Theorem 11.

Theorem 10. The values of neurons in the network always
converge.

Proof: As neuron values are binary, there is a one-to-
one bijection between the values of neurons vt and the set of
neurons active at time t: Vt = {(i, j) : vi,j = 1}. Therefore it
is equivalent to prove that the set of active neurons converges.
Vt is non-increasing with t. As it takes values in a finite

space (⊆ V0), Vt eventually reaches a minimum subset of
neurons.

Let us denote by t∞ an iteration such that convergence is
met (vt∞ = vt∞+1). In addition, the neurons corresponding
to the original message w are active at iteration t∞:

Theorem 11. ∀i : vt∞i,wi = 1.

Proof: We proceed by induction. To begin, we prove that
if ∀i : vti,wi = 1 then ∀i : vt+1

i,wi = 1. This follows directly
from Equation (7), as for each i 6= j, ((i, wi), (j, wj)) ∈ δ
by construction of G and vtj,wj = 1 by hypothesis. Moreover
∀i : v0i,wi = 1 by definition.

(1,1)

(1,2)

(2,1)

(2,2)

(3,2)

(3,1)

Figure 2. Example of a 3-partite graph containing only one maximum clique
and such that using it as a neural decoder results in an ambiguity when
decoding the word (⊥⊥⊥).

Observe that decoding using a neural network can result
in an ambiguity (several neurons can be active in the same
cluster) even if there is only one codeword corresponding to
the input. Figure 2 depicts an example of a graph that contains
only one maximum clique (corresponding to a code with a
single codeword), but such that decoding the entirely erased
word (⊥⊥⊥) fails in retrieving the unique codeword. Indeed,
each neuron in the network is connected to at least one neuron
in the two other clusters. Thus the decoding converges at the
first step and keeps all its neurons activated. On the other
hand, an ML-decoding would result in (correctly) choosing
the codeword (111).

Figure 3 depicts the dependence of the decoding frame error
rate as a function of the probability of erasure ρ. Two distinct
set of parameters are used. The first set is used for random
clique graphs containing n = 8 clusters, ` = 1000 vertices in
each cluster, with edge probability p = 0.2. The second set
is used for random clique graphs containing n = 12 clusters,
` = 100 vertices each, with edge probability p = 0.5. We have
chosen families of rather small codes (of rates 0.18 and 0.17,
respecitvely) in order to be able to compare them with the
ML decoder. For each set of parameters, and each value of ρ,
the results are averaged over large number of random graphs
and large number of error patterns. The results presented in
Figure 3 compare the performance of the neural networks
decoding with that of the ML decoding.

VII. CONCLUSIONS

We introduced a new family of codes suitable for use
with neural networks: random clique codes. These codes are
shown to be asymptotically good (as shown in Theorem 9).
Furthermore, they can be efficiently decoded using the neural
networks based algorithm described in Section VI.

The presented codes are based on the presence of cliques
in balanced n-partite graphs. By varying the values of the
parameters n, ` and p, the codes can be designed to target a
specific rate and a specific minimum Hamming distance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
E

R
 (

F
ra

m
e
 E

rr
o
r

R
a
te

)

Erasure probability (ρ)

n=8, l=1000, p=0.2, neural network decoding
n=8, l=1000, p=0.2, ML−decoding

n=12, l=100, p=0.5, neural network decoding
n=12, l=100, p=0.5, ML−decoding

Figure 3. Evolution of the codeword decoding error probability as a function
of the erasure channel parameter ρ for an ML-decoder and for the proposed
neural networks based decoder.

Many related questions remain open. We have studied only
one particular family of random clique codes. Alternative
families of random or explicit codes are of interest too. The
presented codes are neither linear nor systematic. It would
be interesting to obtain more structured constructions of such
codes, which admit more efficient encoding and decoding.

ACKNOWLEDGMENT

The authors would like to thank Claude Berrou for providing
valuable comments that improved the manuscript.

REFERENCES

[1] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Transactions on Neural Networks, vol. 22, pp. 1087 –
1096, Jul. 2011.

[2] V. Gripon and C. Berrou, “A simple and efficient way to store many
messages using neural cliques,” Proceedings of IEEE Symposium on
Computational Intelligence, Cognitive Algorithms, Mind, and Brain,
pp. 54 – 58, Apr. 2011.

[3] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh,
“The capacity of the Hopfield associative memory,” IEEE Transactions
on Information Theory, vol. 33, no. 4, pp. 461–482, 1987.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes,” Proceedings of IEEE ICC
’93, vol. 2, pp. 1064–1070, May 1993.

[5] D. J. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” Cryptography and Coding. 5th IMA Conference, number 1025
in Lecture Notes in Computer Science, pp. 100–111, 1995.

[6] V. Gripon and C. Berrou, “Nearly-optimal associative memories based on
distributed constant weight codes,” pp. 269–273, February 2012.

[7] E. R. Berlekamp, R. J. McEliece, and H. C. A. Van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Transactions on
Information Theory, vol. 24, pp. 384–386, 1978.

[8] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes Mathemat-
icae (Debrecen), vol. 6, pp. 290–297, 1959.

