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® Learn M messages,

» Retrieve a learnt message in presence of erasures or errors.



® Learn M messages,

» Retrieve a learnt message in presence of erasures or errors.

» Learning (static): M binary ({—1;1})
M
messages d™: wj; = Z d"d"

i m=1;ij<n
(w;j is specified on M + 1 levels),

W
UJ. » Retrieving (iterative): repeat
Vi, vi < sgn(z Vi wjj).
Example with n = 8 neurons. j#i
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e Diversity (number of learnt messages): Wn(n) sublinear,

e Capacity: 2,Og( ) subquadratic,

Binary information used: 2("- 1)/ogz(M +1),

capacity 1
= Eﬂ:ICIenCy binary information used ™ Iog(n)logz(M—i—l) =63 0.
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2Iog
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e Very limited diversity,
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» Diversity (number of learnt messages): Tog () sublinear,

2Iog
e Capacity: #(n) subquadratic,

« Binary information used: 22 1)logg(M—i— 1),

capacity 1
* = Eﬂ:ICIenCy binary information used ™ Iog(n)logz(M—i—l) =63 0.

» As a plausible model:

e Sensitive connections, fully interconnected network, retrieving requires
a very large number of iterations. . .

» As an associative memory:

e Very limited diversity, message length, network size and diversity are
bound together, learning both messages and their opposite. . .
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e Diversity ( number of learnt messages): sublinear, quadratic

o Capacity: 2,og( ) subquadratic,

capacity 1 0
nformation used ™ Iog(n)logz(M—i—l) =63

» As a plausible model:
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a very large number of iterations. . .
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» Diversity (number of learnt messages): subhirear, quadratic
o Capacity: stubguadratie, quadratic

capacity ~
.= Eﬂ:ICIenCy binary information used ™ L.

» As a plausible model:
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» Diversity (number of learnt messages): sublinear, quadratic
e Capacity: subguadratie, quadratic

e = Efficiency g 2t =38

nformation used

» As a plausible model:
e Sensiti ions_fullyi retrievi .
a—very-largenumberof-iterations— Partition into clusters, use of

neural cliques, only winner-take-all and sum, specialized neurons. ..

® As an associative memory:

optimal performance cumulative non destructlve learning, strong
resilience. ..
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» Cliques are fully interconnected subsets of nodes,

* Two distinct cliques with ¢ nodes have at least 2(c — 1) different
connections:

# Partition the network into clusters,

» Force cliques to contain one and only one neuron per cluster.
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® Example: ¢ = 4 clusters of | = 16 neurons each,
®
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1000 0011 0010 1001 ,
S = = =

jiincy jaincy jzincs jsincy

® Local
correspondance,

» Global retrieving:
sum of inputs,

» Local retrieving:
winner-take-all,

» Possibly iterates
the two last
steps.
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¢ = 8 clusters of / = 256

1 neurons,

‘| Error probability while
retrieving learnt messages
with 4 out of 8 clusters with
no provided information.
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* Gain in comparison with the Hopfield network: 250 in diversity, 20 in
capacity, and 20 in efficiency (2.6% — 52%).
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T T
c=4 (simulated) +
c=6 (simulated)  x
c=8 (simulated) =
c=4, theoretical
c=6, theoretical -,
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Various ¢ values and / = 512
neurons per cluster,

Error probability of second
kind (probability to accept a
non learnt message).

» Dramatic increase in performance compared to Hopfield network:
1071 in diversity, 52 in capacity, 52 in efficiency (2.6% — 137%),
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Memory used (bits)

Capacity of Hopfield neural
networks and of our model
(in the case of associative
memory and a single
iteration) in function of the
amount of used information.
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» A novel neural architecture has been proposed which improves
considerably diversity, capacity and efficiency,

» Biological plausibility has also been increased: binary connections,
cliques over clusters, few iterations. ..

» See V. Gripon and C. Berrou, "Sparse neural networks with large
learning diversity", to appear in IEEE Trans. on Neural Networks.

» Available online at http://arxiv.org/abs/1102.4240 .

This new kind of recurrent neural networks offer many openings in
computational intelligence.
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Thank you for your attention!



