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Hop�eld neural networksAssoiative memories: prinipleLearn M messages,Retrieve a learnt message in presene of erasures or errors.The Hop�eld network
i jwijExample with n = 8 neurons.

Learning (stati): M binary ({−1; 1})messages dm: wij = M∑m=1;i ,j≤n dmi dmj(wij is spei�ed on M + 1 levels),Retrieving (iterative): repeat
∀i , vi ← sgn(∑j 6=i vjwij).Gripon and Berrou (Téléom Bretagne) Many messages in neural liques April 15, 2011 2 / 11
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Bounds and limitationsBounds (n neurons)Diversity (number of learnt messages): n2log(n) sublinear,Capaity: n22log(n) subquadrati,Binary information used: n(n−1)2 log2(M + 1),
⇒ E�ieny apaitybinary information used ≈ 1log(n)log2(M+1)−−−→n→∞

0.LimitationsAs a plausible model:Sensitive onnetions, fully interonneted network, retrieving requiresa very large number of iterations. . .As an assoiative memory:Very limited diversity, message length, network size and diversity arebound together, learning both messages and their opposite. . .Gripon and Berrou (Téléom Bretagne) Many messages in neural liques April 15, 2011 3 / 11
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Why liques?Strong separabilityCliques are fully interonneted subsets of nodes,Two distint liques with  nodes have at least 2( − 1) di�erentonnetions:
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Our model: learningExample:  = 4 lusters of l = 16 neurons eah,1000
︸︷︷︸j1 in 1 0011

︸︷︷︸j2 in 2 0010
︸︷︷︸j3 in 3 1001

︸︷︷︸j4 in 4,
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PerformaneAssoiative memories
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PerformaneClassi�ation
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y 

of
 a

cc
ep

tin
g 

a 
ra

nd
om

 m
es

sa
ge

Network density (d)

c=4 (simulated)
c=6 (simulated)
c=8 (simulated)
c=4, theoretical
c=6, theoretical
c=8, theoretical Various  values and l = 512neurons per luster,Error probability of seondkind (probability to aept anon learnt message).Dramati inrease in performane ompared to Hop�eld network:1071 in diversity, 52 in apaity, 52 in e�ieny (2.6%→ 137%),Gripon and Berrou (Téléom Bretagne) Many messages in neural liques April 15, 2011 8 / 11



Comparison in apaity with Hop�eld neural networksCapaity
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ConlusionResultsA novel neural arhiteture has been proposed whih improvesonsiderably diversity, apaity and e�ieny,Biologial plausibility has also been inreased: binary onnetions,liques over lusters, few iterations. . .Further detailsSee V. Gripon and C. Berrou, "Sparse neural networks with largelearning diversity", to appear in IEEE Trans. on Neural Networks.Available online at http://arxiv.org/abs/1102.4240 .OpeningsThis new kind of reurrent neural networks o�er many openings inomputational intelligene.Gripon and Berrou (Téléom Bretagne) Many messages in neural liques April 15, 2011 10 / 11



Thank you for your attention!
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