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Motivation 

• Associative Memories: alternatives to indexed memories 

• Contents are linked, links are stored 

• No need to input an explicit address 

• Part of the content of a message is used to retrieve the full message 

• Applications: data mining, set implementation 
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Motivation 

• Classical AM: Hopfield Neural Networks (HNN) 

• Fast retrieval of a partially erased messages when implemented in 

hardware 

• Parallelism 

• Storing links between contents (learning) 

• Efficiency: Information bits stored / Memory bits used 

• Problems of HNN:  

• Efficiency      0 as learning information is increased 

• A message needs to be as long as the network 

• Long messages + limited capacity       low diversity:  Number of 

different messages the network can learn 
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Original Message: 001101101110 

Erased Message:    001____ 11__ 



Gripon-Berrou Neural Networks 

(GBNN)* 

• Case study: 1.6 × 106  bits of physical memory 

• Nearly-optimal efficiency (~1 and ~ ×20 HNN) 

• Large diversity (~ ×250 HNN) 

• Binary connections and nodes (existence or non-

existence) 
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Simplified Block Diagram 
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GBNN: Learning 

• A network consists of  

• c clusters 

• l fanals (neurons) per cluster 

• n neurons  

• A message consists of 

• K bits 

•          sub-messages 

•   
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GBNN 
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= 001101101110 

K 

• Need to present erasures somehow. 

• Replace 0 with -1, 1 stays 1, 0 will mean erased bit. 



GBNN 
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= 001101101110 

K 

• Need to present erasures somehow. 

• Replace 0 with -1, 1 stays 1, 0 will mean erased bit. 

• Clique: activated fanals with fully-interconnected links 

 

Clique 



GBNN: Message Retrieval 

• Local Decoding Type I (LDT-I): 

• Scalar product of a pre-defined matrix g and input bits 

• Followed by maximum detection 

• Compare-and-Select  
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GBNN: Message Retrieval 

• Global Decoding followed by LDT-II 

• Iterative process 
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Hardware Architecture: Learning 

Module 

• Learning Module 

 

•  Memory used: c(c-1)l2 bits 
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Local Decoding Type I (LDT-I) 

• Input messages are antipodal      2 bits per input bit 

required (+1      01) , -1     10, erasure     00) 

• Fanal Activation Module: Max-Function 

• Threshold value (   ) is set to 0 for LDT-I 
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Global Decoding + LDT-II 

• Threshold value is set to c for LDT-II 

• Fanal Activation Module : Max-function (Compare-and-Select) 
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Proof-of-Concept Design Parameters 
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Maximum Diversity:  



FPGA results 

• Software delay measured on AMD Opteron 8387 

(2.8 GHz)   

• Hardware delay calculated using Altera Stratix IV 
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Software vs. FPGA Implementation 
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Conclusions and Future Work  
• Proof-of-concept architecture and 

implementation of a new class of associative 

memories based on sparse clustered neural 

networks 

• Applications: data mining, set implementation 

• Advantage to conventional HNN: 

• Large diversity, nearly-optimal efficiency, lower 

complexity (binary vs. Integer connections) 

• Architecture and Implementation on FPGA 

(Altera Stratix IV) 
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Conclusions and Future Work  

• ~2000 times faster than software when 

implemented on hardware (n=128, c=8) 

• Verified H/W using S/W, compared BER and 

MER 

• Maximum-Function is expensive and resource 

hungry: investigation of efficient implementation 

• Large scale implementation utilizing external 

memory resources 
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Thank you! 

Q/A 
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GBNN: Learning 

• A message is partitioned into 

equally-sized sub-messages  

• Each sub-message is mapped to 

a neuron in a cluster using a 

scalar product of a pre-defined 

matrix with the sub-message 

• Clique is formed 
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