ARCHITECTURE AND IMPLEMENTATION OF AN ASSOCIATIVE MEMORY USING SPARSE CLUSTERED NETWORKS

McGill University Department of Electrical and Computer Engineering

> ISCAS 2012 – Seoul Korea May 23

Hooman Jarollahi – Ph.D. Candidate Naoya Onizawa, Vincent Gripon, Warren Gross

Outline

- Motivation
- New class of Associative Memories (AMs) using sparse clustered neural networks
- FPGA implementation and results
- Conclusions and future work

Motivation

- Associative Memories: alternatives to indexed memories
- Contents are linked, links are stored
- No need to input an explicit address
- Part of the content of a message is used to retrieve the full message
- Applications: data mining, set implementation

Motivation

- Classical AM: Hopfield Neural Networks (HNN)
 - Fast retrieval of a partially erased messages when implemented in hardware Original Message: 00110110111
 - Parallelism

Original Message: 001101101110 Erased Message: 001____11___

- Storing links between contents (learning)
 - Efficiency: Information bits stored / Memory bits used
- Problems of HNN:
 - Efficiency $\rightarrow 0$ as learning information is increased
 - A message needs to be as long as the network
 - Long messages + limited capacity → low diversity: Number of different messages the network can learn

Gripon-Berrou Neural Networks (GBNN)*

- Case study: 1.6×10^6 bits of physical memory
 - Nearly-optimal efficiency (~1 and ~ ×20 HNN)
 - Large diversity (~ ×250 HNN)
- Binary connections and nodes (existence or nonexistence)

* V. Gripon and C. Berrou, "Sparse neural networks with large learning diversity," *Neural Networks, IEEE Transactions on*, vol. 22, no. 7, pp. 1087 –1096, july 2011.

Simplified Block Diagram

6

GBNN: Learning

- A network consists of
 - c clusters
 - *l* fanals (neurons) per cluster
 - *n* neurons
- A message consists of
 - *K* bits
 - K/c sub-messages
 - $\kappa = K/c = log_2(l)$

c clusters

- Need to present erasures somehow.
- Replace 0 with -1, 1 stays 1, 0 will mean erased bit.

- Need to present erasures somehow.
- Replace 0 with -1, 1 stays 1, 0 will mean erased bit.
- Clique: activated fanals with fully-interconnected links

9

GBNN: Message Retrieval

- Local Decoding Type I (LDT-I):
 - Scalar product of a pre-defined matrix g and input bits
 - Followed by maximum detection
 - Compare-and-Select

GBNN: Message Retrieval

- Local Decoding Type I (LDT-I):
 - Scalar product of a pre-defined matrix g and input bits
 - Followed by maximum detection

g =

GBNN: Message Retrieval

- Global Decoding followed by LDT-II
- Iterative process

$$\forall i, j, v(n_{i,j}) \leftarrow \sum_{i'=1}^{c} \sum_{j'=1}^{l} w_{(i',j')(i,j)} v(n_{(i',j')}) + \gamma v(n_{(i,j)})$$

$$v(n_j) \leftarrow \begin{cases} 1, & \text{if } v(n_j) = v_{max} \\ & \text{and } v_{max} \ge \sigma \\ 0, & \text{otherwise} \end{cases}$$

Hardware Architecture: Learning Module

Local Decoding Type I (LDT-I)

- Input messages are antipodal $\rightarrow 2$ bits per input bit required (+1 $\rightarrow 01$), -1 $\rightarrow 10$, erasure $\rightarrow 00$)
- Fanal Activation Module: Max-Function
- Threshold value (σ) is set to 0 for LDT-I

Global Decoding + LDT-II

- Threshold value is set to *c* for LDT-II
- Fanal Activation Module : Max-function (Compare-and-Select)

Proof-of-Concept Design Parameters

No. of Neurons (n)	128
No. of Clusters (c)	8
No. of Fanals per Cluster (l)	16
Message Length (bits)	32
κ	4
Maximum Diversity (Upper bound) (M_{max})	224

Maximum Diversity:
$$M_{max} = \frac{(c-1)n^2}{2c^2 log_2(n/c)}$$

FPGA results

- Software delay measured on AMD Opteron 8387 (2.8 GHz)
- Hardware delay calculated using Altera Stratix IV

Memory usage dedicated to w (bits)	14,336
Dedicated Logic Registers	15,783/182,400(9%)
Combinational Look-up Tables (LUT)	35,224/182,400(19%)
Total pins	169/888(19%)
Slow 900mv 85C maximum frequency (Mhz)	107.15
Training, Retrieving delay (per message)	$10 \ ns, \ 50 \ ns$
Software to hardware delay ratio	≈ 2000

Software vs. FPGA Implementation

Conclusions and Future Work

- Proof-of-concept architecture and implementation of a new class of associative memories based on sparse clustered neural networks
- Applications: data mining, set implementation
- Advantage to conventional HNN:
 - Large diversity, nearly-optimal efficiency, lower complexity (binary vs. Integer connections)
- Architecture and Implementation on FPGA (Altera Stratix IV)

Conclusions and Future Work

- ~2000 times faster than software when implemented on hardware (n=128, c=8)
- Verified H/W using S/W, compared BER and MER
- Maximum-Function is expensive and resource hungry: investigation of efficient implementation
- Large scale implementation utilizing external memory resources

Thank you! Q/A

GBNN: Learning

$$\kappa = K/c = \log_2(l)$$

- A message is partitioned into equally-sized sub-messages
- Each sub-message is mapped to a neuron in a cluster using a scalar product of a pre-defined matrix with the sub-message
- Clique is formed