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Motivation

Code based associative memories
Do not miss Claude Berrou’s presentation Wednesday 2:10pm.

Associative memories and erasure correcting decoders
In both cases, retrieve missing pieces of information.

Neural networks as efficient decoders
Associative memories can be efficiently implemented using neural
networks.

Motivation
Build asymptotically good (non-zero minimum distance, non-zero rate)
non-linear codes with efficient decoders and polynomial representations
that are suitable for use with neural networks.
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What is a clique?

Definition
Subset of vertices in a graph that are fully inter-connected.

Example

Idea
Use cliques to represent codewords.
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From codes to cliques

Example of
4-ary code

000
032
111
123
203
232
312
320

ψ−→

Associated cliques

0

1

2

3

01
2

3

0

1
2 3

Symbol 0

Symbol 1

Symbol 2
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Clique codes

From cliques to codes

0

1

0
1

1
0

ψ−1

C1 =

{
000,010,
001,100

}
C2 =

{
010,

001,100

} ??

Complete Partial Order

C1

C2

la
rg
er

co
de
s
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Random clique codes

Definition
Random clique code , Maximum clique code associated with an
Erdős–Rényi random graph

Erdős–Rényi graph
Each edge exists independently with probability p.
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Number of codewords

Parameters
In the graph In the codes

n Number of clusters Length of codewords
l Vertices per cluster Alphabet size
p Density of edges −−−

Distance between cliques ⇔ Hamming distance between codewords.

Number of codewords/cliques

E(#C) = p(
n
2) · `n Our choice: p fixed, (n, l) = f(p)

Remarks
For a fixed p, an exponential number of codewords. . .
A polynomial number of connections in the graph (p

(n
2

)
l2),

The codes are non-linear.
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Minimum distance

Theorem
For p, 0 < p < 1, fixed, ∃C with relative minimum Hamming distance
at least α = dmin

n and rate R (R , log`(|C|)
n ) such that

R ≥ α(1− α)
1+ 2α− α2 − ε ,

for any given small ε > 0.

Sketch of the proof
Look at the probability to have two codewords at distance ≤ d0,
To avoid dependence issues, look at large family of large random
clique codes,
Prove the result to be true in average over such a family,
Use convexity arguments to extend the result to a particular code.
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Neural networks-based algorithm

Erasure channel
000

0*0

000

Channel

Decoder

Algorithm

0

1

2

3

01
2

3

0

1
2 3

Symbol 0

Symbol 1

Symbol 2
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Complexity and decoding

Complexities
Computational complexity O(n2`2)

Memory (bits)
(
n
2

)
`2
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Erasure probability (ρ)

n=8, l=1000, p=0.2, neural network decoding
n=8, l=1000, p=0.2, ML−decoding

n=12, l=100, p=0.5, neural network decoding
n=12, l=100, p=0.5, ML−decoding
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Conclusions & open questions

Conclusions
Introduced a new family of random codes. . .
Asymptotically good, non-linear and polynomially represented,
They can be decoded using a small and fast neural networks based
algorithm.

Open questions
Find an efficient encoding scheme,
Investigate other sets of parameters (p = f(n, `)),
Consider other types of random graphs,
Adapt the decoding algorithm to other channels. . .
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