Random clique codes

Vincent Gripon

Vitaly Skachek Warren J. Gross Michael Rabbat

McGill University

August 28th, 2012

Gripon Skachek Gross Rabbat (McGill)

Random clique codes

Co-authors

McGill University

Michael Rabbat

Gripon Skachek Gross Rabbat (McGill)

Random clique codes

August 28th, 2012

2 / 12

Do not miss Claude Berrou's presentation Wednesday 2:10pm.

Associative memories and erasure correcting decoders

In both cases, retrieve missing pieces of information.

Neural networks as efficient decoders

Associative memories can be efficiently implemented using neural networks.

Motivation

Do not miss Claude Berrou's presentation Wednesday 2:10pm.

Associative memories and erasure correcting decoders

In both cases, retrieve missing pieces of information.

Neural networks as efficient decoders

Associative memories can be efficiently implemented using neural networks.

Motivation

Do not miss Claude Berrou's presentation Wednesday 2:10pm.

Associative memories and erasure correcting decoders

In both cases, retrieve missing pieces of information.

Neural networks as efficient decoders

Associative memories can be efficiently implemented using neural networks.

Motivation

Do not miss Claude Berrou's presentation Wednesday 2:10pm.

Associative memories and erasure correcting decoders

In both cases, retrieve missing pieces of information.

Neural networks as efficient decoders

Associative memories can be efficiently implemented using neural networks.

Motivation

What is a clique?

Definition

Subset of vertices in a graph that are fully inter-connected.

Example

Idea

Use cliques to represent codewords.

Gripon Skachek Gross Rabbat (McGill)

Random clique codes

What is a clique?

Definition

Subset of vertices in a graph that are fully inter-connected.

Example

Idea

Use cliques to represent codewords.

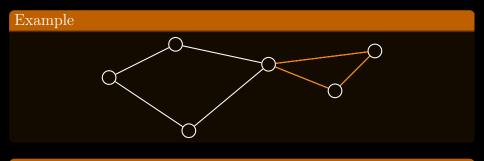
Gripon Skachek Gross Rabbat (McGill)

Random clique codes

What is a clique?

Definition

Subset of vertices in a graph that are fully inter-connected.

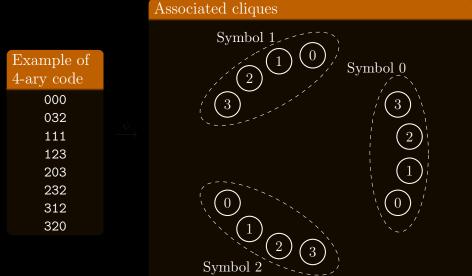


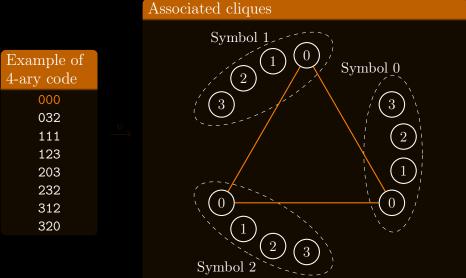
Idea

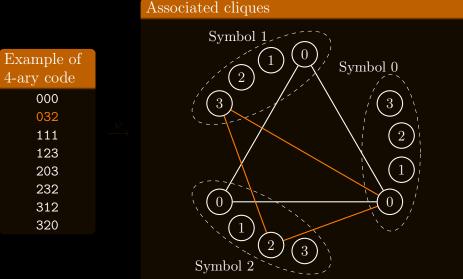
Use cliques to represent codewords.

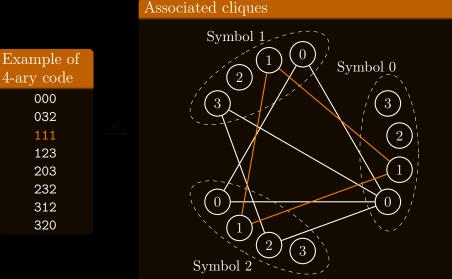
Gripon Skachek Gross Rabbat (McGill)

Random clique codes

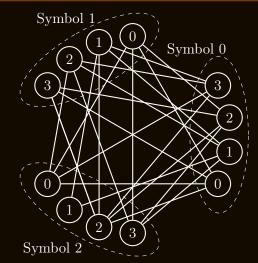


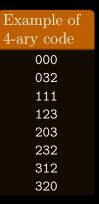


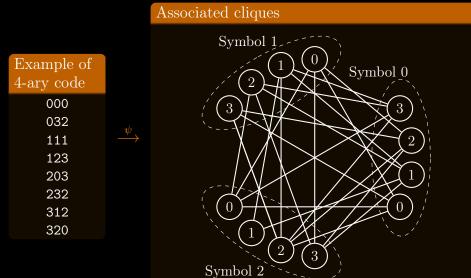




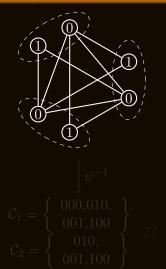
/ 12



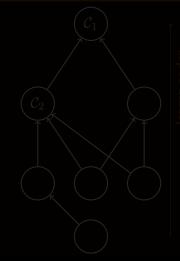




From cliques to codes

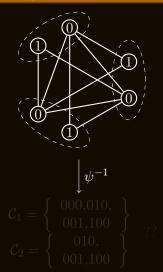


Complete Partial Order

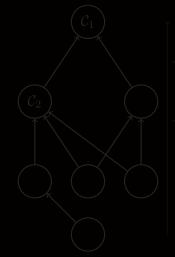


Gripon Skachek Gross Rabbat (McGill)

From cliques to codes

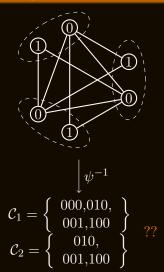


Complete Partial Order

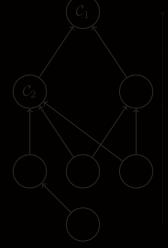


urger code

From cliques to codes

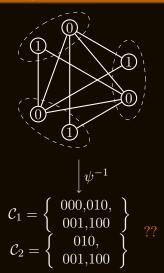


Complete Partial Order (c_r)

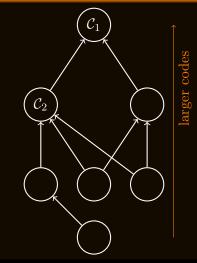


Gripon Skachek Gross Rabbat (McGill)

From cliques to codes



Complete Partial Order



Gripon Skachek Gross Rabbat (McGill)

Definition

Random clique code \triangleq Maximum clique code associated with an Erdős–Rényi random graph

Erdős–Rényi graph

Each edge exists independently with probability p.

Parameters

	In the graph	In the codes
n	Number of clusters	Length of codewords
l	Vertices per cluster	Alphabet size
р	Density of edges	

Distance between cliques \Leftrightarrow Hamming distance between codewords.

Number of codewords/cliques

 $\mathrm{E}(\#\mathcal{C}) = \mathrm{p}^{\binom{n}{2}} \cdot \ell^{\mathrm{n}}$ Our choice: p fixed, $(\mathrm{n},\mathrm{l}) = \mathrm{f}(\mathrm{p})$

Remarks

• For a fixed \mathbf{p}_i an exponential number of codewords. .

- A polynomial number of connections in the graph $(p\binom{n}{2})l^2$,
- The codes are non-linear.

Parameters

	In the graph	In the codes
n	Number of clusters	Length of codewords
l	Vertices per cluster	Alphabet size
р	Density of edges	

Distance between cliques \Leftrightarrow Hamming distance between codewords.

Number of codewords/cliques

$$E(\#C) = p^{\binom{n}{2}} \cdot \ell^n$$
 Our choice: p fixed, $(n, l) = f(p)$

Remarks

• For a fixed p, an exponential number of codewords..

• A polynomial number of connections in the graph $(p\binom{n}{2})l^2$),

The codes are non-linear

Parameters

	In the graph	In the codes
n	Number of clusters	Length of codewords
l	Vertices per cluster	Alphabet size
р	Density of edges	

Distance between cliques \Leftrightarrow Hamming distance between codewords.

Number of codewords/cliques

$$E(\#C) = p^{\binom{n}{2}} \cdot \ell^n$$
 Our choice: p fixed, $(n, l) = f(p)$

Remarks

- For a fixed p, an exponential number of codewords...
- A polynomial number of connections in the graph $(p\binom{n}{2}l^2)$,
- The codes are non-linear.

Gripon Skachek Gross Rabbat (McGill)

Random clique codes

Parameters

	In the graph	In the codes
n	Number of clusters	Length of codewords
l	Vertices per cluster	Alphabet size
р	Density of edges	

Distance between cliques \Leftrightarrow Hamming distance between codewords.

Number of codewords/cliques

$$E(\#C) = p^{\binom{n}{2}} \cdot \ell^n$$
 Our choice: p fixed, $(n, l) = f(p)$

Remarks

- For a fixed p, an exponential number of codewords...
- A polynomial number of connections in the graph $(p\binom{n}{2}l^2)$,
- The codes are non-linear.

Parameters

	In the graph	In the codes
n	Number of clusters	Length of codewords
l	Vertices per cluster	Alphabet size
р	Density of edges	

Distance between cliques \Leftrightarrow Hamming distance between codewords.

Number of codewords/cliques

$$E(\#C) = p^{\binom{n}{2}} \cdot \ell^n$$
 Our choice: p fixed, $(n, l) = f(p)$

Remarks

- For a fixed p, an exponential number of codewords...
- A polynomial number of connections in the graph $(p\binom{n}{2}l^2)$,
- The codes are non-linear.

Theorem

For p, $0 , fixed, <math>\exists C$ with relative minimum Hamming distance at least $\alpha = \frac{d_{\min}}{n}$ and rate R (R $\triangleq \frac{\log_{\ell}(|C|)}{n}$) such that

$$\mathbf{R} \ge \frac{\alpha(1-\alpha)}{1+2\alpha-\alpha^2} - \epsilon \; ,$$

for any given small $\epsilon > 0$.

- Look at the probability to have two codewords at distance $\leq d_0$,
- To avoid dependence issues, look at large family of large random clique codes.
- Prove the result to be true in average over such a family,
- Use convexity arguments to extend the result to a particular code.

Theorem

For p, $0 , fixed, <math>\exists C$ with relative minimum Hamming distance at least $\alpha = \frac{d_{\min}}{n}$ and rate R (R $\triangleq \frac{\log_{\ell}(|C|)}{n}$) such that

$$\mathbf{R} \ge \frac{\alpha(1-\alpha)}{1+2\alpha-\alpha^2} - \epsilon \; ,$$

for any given small $\epsilon > 0$.

- Look at the probability to have two codewords at distance $\leq d_0$,
- To avoid dependence issues, look at large family of large random clique codes,
- Prove the result to be true in average over such a family,
- Use convexity arguments to extend the result to a particular code.

Theorem

For p, $0 , fixed, <math>\exists C$ with relative minimum Hamming distance at least $\alpha = \frac{d_{\min}}{n}$ and rate R (R $\triangleq \frac{\log_{\ell}(|C|)}{n}$) such that

$$\mathbf{R} \ge \frac{\alpha(1-\alpha)}{1+2\alpha-\alpha^2} - \epsilon \; ,$$

for any given small $\epsilon > 0$.

- Look at the probability to have two codewords at distance $\leq d_0$,
- To avoid dependence issues, look at large family of large random clique codes,
- Prove the result to be true in average over such a family,
- Use convexity arguments to extend the result to a particular code.

Theorem

For p, $0 , fixed, <math>\exists C$ with relative minimum Hamming distance at least $\alpha = \frac{d_{\min}}{n}$ and rate R (R $\triangleq \frac{\log_{\ell}(|C|)}{n}$) such that

$$\mathbf{R} \ge \frac{\alpha(1-\alpha)}{1+2\alpha-\alpha^2} - \epsilon \; ,$$

for any given small $\epsilon > 0$.

- Look at the probability to have two codewords at distance $\leq d_0$,
- To avoid dependence issues, look at large family of large random clique codes,
- Prove the result to be true in average over such a family,
- Use convexity arguments to extend the result to a particular code.

Theorem

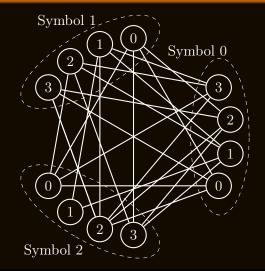
For p, $0 , fixed, <math>\exists C$ with relative minimum Hamming distance at least $\alpha = \frac{d_{\min}}{n}$ and rate R (R $\triangleq \frac{\log_{\ell}(|C|)}{n}$) such that

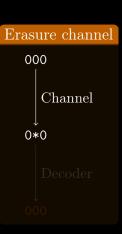
$$\mathbf{R} \ge \frac{\alpha(1-\alpha)}{1+2\alpha-\alpha^2} - \epsilon \; ,$$

for any given small $\epsilon > 0$.

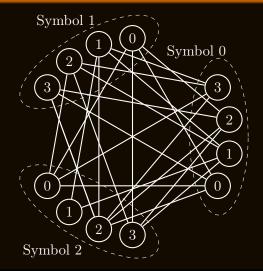
- Look at the probability to have two codewords at distance $\leq d_0$,
- To avoid dependence issues, look at large family of large random clique codes,
- Prove the result to be true in average over such a family,
- Use convexity arguments to extend the result to a particular code.

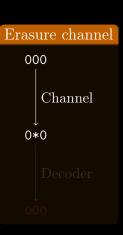
Algorithm



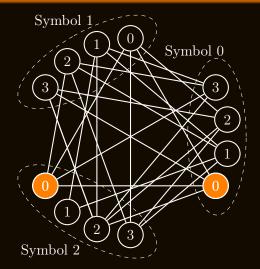


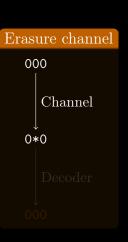
Algorithm



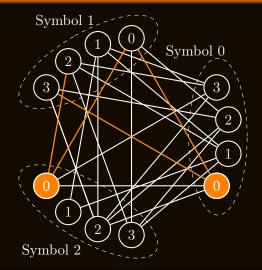


Algorithm





Algorithm

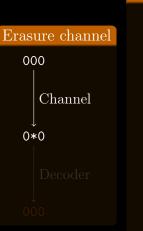


Gripon Skachek Gross Rabbat (McGill)

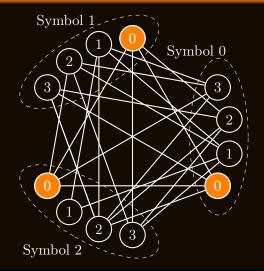
Random clique code

August 28th, 2012

0 / 12



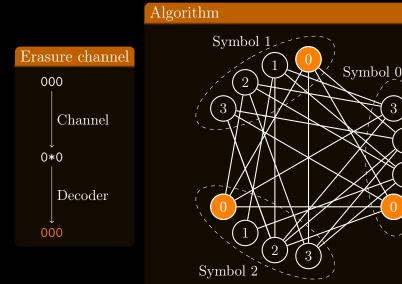
Algorithm



Gripon Skachek Gross Rabbat (McGill)

Random clique codes

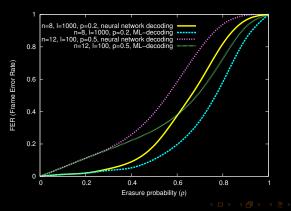
) / 12



Complexity and decoding

Complexities

Computational complexity	$O(n^2 \ell^2)$
Memory (bits)	$\binom{n}{2}\ell^2$



Gripon Skachek Gross Rabbat (McGill)

Conclusions & open questions

Conclusions

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme,
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

Conclusions & open questions

Conclusions

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme.
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

Conclusions & open questions

Conclusions

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme.
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme,
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme,
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme,
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...

- Introduced a new family of random codes...
- Asymptotically good, non-linear and polynomially represented,
- They can be decoded using a small and fast neural networks based algorithm.

- Find an efficient encoding scheme,
- Investigate other sets of parameters $(p = f(n, \ell))$,
- Consider other types of random graphs,
- Adapt the decoding algorithm to other channels...