Nearly-optimal associative memories based on distributed constant weight codes

Goals

- Design a nearly-optimal associative memory in terms of efficiency, - Associative memory: device able to retrieve previously learned messages from part of their content,
-Efficiency: ratio of the amount of bits learned to the amount of bits used,
- Use for that an architecture based on distributed constant weight codes.

Binary constant weight codes

Idea
Associative memory \approx erasure channel associated decoder.
Learning

Static parameters

- n neurons,
- c clusters,
$-I=\frac{n}{c}$ neurons per cluster,
- Memory effect γ,
- W the binary adjacency matrix.

Retrieving equations

Retrieving ($c, I=8,256$)

Direction I: Sparse messages

Learn sparse messages

- Idea: use limited number of clusters,
- Retrieving: add a global winner-take-all rule. Illustration

Direction II: Learning sequences

Performance

- c = 50 clusters
- $I=256$
neurons/cluster,
- $L=1000$ symbols in sequences,
- $m=1823$ learned sequences,
- $P_{e} \leq 0.01$.

Direction III: Soft decoding

Noise model

Soft decoding

References

[^0]
[^0]: - V . Giripon and C .

 - v. Giripon, Newworks of ineural cliqueves. PhD Ihesess, Telecocom Bretagne, July 2011 .

