
Nearly-optimal associative memories based on distributed constant
weight codes

Goals
Design a nearly-optimal associative memory in terms of efficiency,

Associative memory: device able to retrieve previously learned messages from
part of their content,
Efficiency: ratio of the amount of bits learned to the amount of bits used,

Use for that an architecture based on distributed constant weight
codes.

Binary constant weight codes

Three parameters
Length n,
Weight w ,
Overlapping r .

Binary
code = {m} ⊂ {0; 1}n

Constant weight

∀m,
n∑

i=1

mi = w

Code

∀m 6= m′,
n∑

i=1

mim′i ≤ r

Thrifty code

A particular constant weight code with weight 1
Code containing only binary words with a single “1”:

Drawback

dmin = 2:
?

Pros
Easy to decode and minimise the energy:

winner-take-all

Clique code
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Another binary constant weight code: the clique code
Cliques of constant size,
Idea = use connections instead of vertices,

Example: {3; 4; 5; 6; 7; 8} caracterizes a clique,

Other representation:
0 0 1 1 1 1 1 1 0 0

3 4 5 6 7 8 → constant weight code.

Idea
Associative memory ≈ erasure channel associated decoder.

Learning
Learning the l = 16-ary message 8︸︷︷︸

j1 in c1

3︸︷︷︸
j2 in c2

2︸︷︷︸
j3 in c3

9︸︷︷︸
j4 in c4

,

j1

j2

j3

j4

Locally:
thrifty code

Globally:
clique code

Static parameters
n neurons,
c clusters,
l = n

c neurons per cluster,
Memory effect γ,
W the binary adjacency matrix.

Dynamic parameters

v t
(ci,lj)

the value of neuron lj of
cluster ci at iteration t .

Retrieving equations

v t+1
(ci,lj)

=


1 if γv t

(ci,lj)
+

c∑
ci′=1

max
1≤lj′≤l

v t
(ci′,lj′)

·W(ci′,lj′)(ci,lj) = γ + c − 1

0 otherwise
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Direction I: Sparse messages
Learn sparse messages

Idea: use limited number of clusters,
Retrieving: add a global winner-take-all rule.

Illustration

Direction II: Learning sequences
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Performance
c = 50 clusters,
l = 256
neurons/cluster,
L = 1000 symbols in
sequences,
m = 1823 learned
sequences,
Pe ≤ 0.01.

Direction III: Soft decoding
Noise model

Soft decoding

b

Performance (b=5)
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