
Sparse Structured Associative Memories as Efficient Set-Membership Data
Structures

Vincent Gripon
Electronics Department

Télécom Bretagne, Brest, France
vincent.gripon@ens-cachan.org

Vitaly Skachek
Institute of Computer Science
University of Tartu, Estonia

vitaly.skachek@ut.ee

Michael Rabbat
Electrical and Computer Engineering
McGill University, Montréal, Canada

michael.rabbat@mcgill.ca

Abstract— We study the use of sparse structured associative
memories as a memory-efficient and computationally-efficient
data structure for representing a set of elements when one
wishes to perform set-membership queries and some errors
(false positives) are tolerable. Associative memories, when
viewed as representing a set, enjoy a number of interesting
properties, including that set membership queries can be
carried out even when the input (query element) is only partially
known or is partially corrupted. The associative memories
considered here (initially proposed in [Gripon and Berrou,
2011]) encode the set in the edge structure of a graph. In
this paper we generalize this construction to encode the set
in the edge structure of a hypergraph. We derive bounds on
the false positive rates (the probability that the associative
memory erroneously declares that an element is in the stored
set when it, in fact, was not). Interestingly, the proposed
structures enjoy many of the same properties as Bloom filters
(e.g., they have zero false negative rate, the time to perform
an insert and lookup does not depend on the number of
elements stored, and the false positive rate can be reduced
by using additional memory for storage), while also offering
the properties of associative memories (allowing for queries on
partial or corrupted inputs).

I. INTRODUCTION

A wide variety of applications require the ability to
quickly determine whether a given element is a member of
a pre-specified subset of possible elements. For example, in
network security and intrusion detection, a packet must be
quickly tested to see if it matches patterns of malware or
known attacks [1]. Similarly, queries in database systems
can be resolved or approximated set representations and
operations (e.g., counting) [2], [3].

In general, we consider the problem of representing a
subset S of a finite universe of elements U with |U| = n
and |S| = m < n. The aim is to represent S using a data
structure which can quickly test whether a particular element
u ∈ U is a member of S (i.e., in Θ(log2(n)) time), while
not requiring substantial memory. Observe that storing S as a
sorted array would require Θ(m log2(n)) bits of memory and
each query would have a complexity of Θ(log2(m) log2(n))
time.

Bloom filters [4], and their variations [5], are a popular
randomized data structure for representing sets in order to
efficiently perform set membership queries when some errors
are tolerable. They store the subset S in such a way that
set membership queries have no false negatives (i.e., if u ∈
S, then the filter always recognizes u as being in S), but

false positives may occur (i.e., an element u ∈ U , u /∈ S
may be falsely declared to be a member of S). Specifically,
Bloom filters represent S using an array of b bits and k hash
functions h1, . . . , hk, with each hj mapping elements of U
to [b]

def
= {1, . . . , b}. The empty set S = ∅ is represented

by setting all bits to 0. To add an element x ∈ S, the bits
indexed by {hj(x)}kj=1 are set to 1. Once a bit is set to 1,
it remains set at 1 regardless of whether other elements of
S also hash to the same bit. After all elements x ∈ S have
been inserted, to test whether an element x′ is in S, one
checks the status of the bits indexed by {hj(x′)}kj=1; if all
bits are set to one, then we declare x′ ∈ S, and otherwise
we declare x′ /∈ S. Clearly, as more elements are inserted in
the data structure, more bits will be set to 1, leading to more
false positives. The false positive rate can be controlled by
appropriate choice of the number of bits b and the number
of hash functions k. In particular, the false positive rate is
guaranteed to be no more than ε > 0 if

b ≥ m · log2(e) · log2(1/ε) bits (1)

and k = d(b/m) log2(e)e hash functions are used, regardless
of the size of the universe. Insertions and queries both have
complexity of Θ(k log2(n)) time if the hash functions are
evaluated one after the other, or Θ(log2(n)) if the hash
functions can be evaluated in parallel.

In this paper we consider an alternative to Bloom filters
for representing sets. Our approach builds on an associative
memory construction proposed by Gripon and Berrou [6]
which can be viewed as sparse, structured binary graphi-
cal models with binary-valued edge-potentials. We refer to
these as sparse, structured associative memories (SSAMs).
SSAMs enjoy many of the same properties as Bloom filters.
Insertions and queries can be performed in Θ(log2(n)) time.
They never produce false negatives, and their false positive
rate can be reduced through the use of additional bits
of memory. In addition, SSAMs enjoy the error-correcting
properties of associative memories; that is, they can be used
to test if an element x′ is in the stored set, even if a portion of
the binary representation of x′ has been erased or corrupted.
On the other hand, the analysis of SSAMs assumes that the
set S being represented is drawn uniformly from all subsets
of m elements from U .

The contributions of this article are as follows. First, we
present detailed error bounds on the false positive rate for

500978-1-4799-3410-2/13/$31.00 ©2013 IEEE

Fifty-first Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 2 - 3, 2013

cluster 1
1

2
3

cluster 2

1
2

3

cluster 3

1
2

3
cluster 4

1
2

3

Fig. 1. Illustration of the storing process of the message 1231 in a graph
using the principles described in [6].

SSAMs. The SSAM model described in [6] represents the set
S in terms of the edges of a graph (see Section II for details).
In this paper we present an extension of the SSAM model
to hypergraphs and demonstrate how this leads to improved
error rates, at the cost of higher storage. We show that using
a q-regular hypergraph is more efficient (in terms of the
amount of memory required) when the number of messages
m to be stored is in the regime Θ(n

q

log2(n)1/q).

II. GRAPH-BASED SPARSE STRUCTURED ASSOCIATIVE
MEMORIES

This section describes the construction of SSAMs follow-
ing the description in [6]. Recall that each element x ∈ U can
be represented using log2(n) bits. Equivalently, each element
can be represented as a string of c symbols from an alphabet
A = [l] as long as c log2(l) ≥ log2(n). For an element
x ∈ U , let wi(x) ∈ A, i ∈ [c], denote the ith symbol in its
representation as a string of c symbols in A.

An SSAM is represented as a simple undirected graph
G = (V, E), and in particular, the set S = {x1, . . . , xm} ⊂ U
of elements to be stored is encoded in the edge set of the
graph. Let c and l be positive integers such that c log2(l) ≥
log2(n). The graph G has |V | = cl vertices; more precisely,
G is c-partite with each partition containing l vertices. Let
vi,j , i ∈ [c], j ∈ [l], denote the jth vertex in the ith partition.
Initially the graph is empty; i.e., E = ∅. Then, for each
element x ∈ S, we add edges between all distinct pairs
of vertices (vi,wi(x), vi′,wi′ (x)), where i, i′ ∈ [c], i 6= i′.
Once an edge has been added to the graph for one element
x ∈ S, it remains in the graph (i.e., nothing changes if
another element x′ ∈ S also includes this edge). Observe
that, after all elements have been added, each element x ∈ S
corresponds to a clique in G. Let

C(x) =
{

(vi,wi(x), vi′,wi′ (x)) ∈ V×V : 1 ≤ i, i′ ≤ c, i 6= i′
}

denote the edges comprising the clique corresponding to x ∈
U . Then, after adding all elements in S to the SSAM we have
that E =

⋃m
i=1 C(xi). See Figure 1 for an illustration.

Now, given the graph G representing the set S, the
SSAM declares that a given element x′ is in S if all edges
(vi,wi(x′), vi′,wi′ (x′)), 1 ≤ i, i′ ≤ c, i 6= i′, are in E ; i.e.,
if C(x′) ⊆ E . Clearly, there are no false negatives, since

x ∈ S implies that C(x) ⊆ E . However, there may be false
positives. In particular, as |S| grows, more edges are added
to E and the false positive rate will increase. We provide
bounds on the false positive rate in the following section.

Before proceeding, we note that representing G requires(
c
2

)
l2 bits since G is c-partite and each partition contains l

vertices. The operations of adding an element to the SSAM
and querying an element for set membership both have
complexity of Θ(

(
c
2

)
) time since they involve setting or

checking the status of
(
c
2

)
bits.

III. FALSE POSITIVE RATE

Next we derive bounds on the false positive rate of the
SSAMs described in the previous section. We assume that the
set S = {x1, . . . , xm} is comprised of m random elements
xi ∈ U (equivalently, m words in [l]c) drawn uniformly and
independently. Let P denote the corresponding probability
measure. To avoid trivialities, we assume that m > 1.

Recall that there are
(
c
2

)
l2 possible edges that may be

in the graph. Each time a word is inserted, one edge is
added (if it isn’t already present) between each partition of
G. Therefore, after inserting m elements, the probability that
a particular edge has not been added is(

1− 1

l2

)m
. (2)

The expected density (the proportion of edges present in G
after all m elements are inserted) is thus

ρ = 1−
(

1− 1

l2

)m
. (3)

Our main result characterizes the error rate when, for a fixed
density, we let the size of the network grow as the number
of elements inserted increases.

Theorem 1: Let ρ and K be fixed constants satisfying 0 <
ρ < 1 and 0 < K < 2

3 , and let l and c be positive integers
satisfying c log2(l) ≥ log2(n) and chosen such that

l ∼ ρ−K(c−1)/2 (4)

as c→∞. Then

P
(
C(x) ⊂ E

∣∣x /∈ S) ≤ exp{−Θ(c)}. (5)
Remark 2: Note that the condition (4) states that binary

messages are split into submessages whose number, c, and
length, log2(l), are of the same order of magnitude. The
constant K is a scaling factor, the role of which will become
clear in the sequel. It also follows from (3) that the number
of messages m to be stored is of the order of ρ−K(c−1).

Theorem 1 states that the false positive rate decays ex-
ponentially in c, the number of partitions in G, as long as
c and l are chosen to satisfy (4), which dictates the rate at
which the size of the network should grow as a function of
the number of elements which have been added. To prove
Theorem 1 we need to bound the probability that G contains
a clique C(x) for some element x /∈ S. For two elements,
x, x′ ∈ U , let d(x, x′) denote the Hamming distance between
w(x) and w(x′), where w(x) = (w1(x), w2(x), . . . , wc(x))
is the representation of the element using c symbols from

501

the alphabet A = [l]. Hence d(x, x′) is a non-negative
integer between 0 and c. With slight abuse of notation, for
a set S ⊂ U , let d(x, S) = minx′∈S d(x, x′). The proof of
Theorem 1 hinges on the following lemma.

Lemma 1: Let ρ and K be fixed constants satisfying 0 <
ρ < 1 and 0 < K < 2

3 , and let l and c be positive integers
satisfying c log2(l) ≥ log2(n) and chosen such that

l ∼ ρ−K(c−1)/2 (6)

as c→∞. Let δ ∈ [c] be an integer. Then, for x0 such that
d(x0, S) = δ,

P
(
C(x0) ⊂ E

∣∣x0 /∈ S) ≤ exp{−Θ(c)}. (7)
Proof: [Sketch of proof] For the elements {x1, . . . , xm}

comprising the set S, let Ci = C(xi) denote the corre-
sponding clique. Let us also write C0 = C(x0) for the
element x0 /∈ S. Without loss of generality, suppose that
d(x0, x1) = δ, and suppose that w(x0) and w(x1) differ
in the last δ symbols, where w(x) =

(
w1(x), . . . , wc(x)

)
.

To simplify notation, let us further assume (without loss of
generality) that C1 is the set of all edges between pairs of
vertices in the set

{v1,1, v2,1, . . . , vc,1},

and C0 is the set of all edges between pairs of vertices in
the set

{v1,1, v2,1, . . . , vc−δ,1, vc−δ+1,2, . . . , vc,2}.

In other words, C0 differs from C1 in edges involving the
last δ vertices. Let E∆ = C0 \ C1.

Since the expected probability that a specific edge is
present in G is ρ, and since (v1,1, vc−δ+1,2) /∈ C1, we have

P
(
(v1,1, vc−δ+1,2) ∈ E

∣∣C1

)
≤ ρ.

Next, consider the event that the edge (v1,1, vc−δ+1,2) ∈
E , and let C2 be a clique that contains it. Then the edge
(v1,1, vc−δ+2,2) is in E if it either belongs to C2 or if it
belongs to a clique different from C1 and C2. For the first
case, we have

P
(
(v1,1, vc−δ+2,2) ∈ C2

∣∣C1, (v1,1, vc−δ+1,2) ∈ C2

)
=

1

l
.

For the second case, similar to above, we obtain

P
(
(v1,1, vc−δ+2,2) ∈ E

∣∣C1, (v1,1, vc−δ+1,2) ∈ C2,

(v1,1, vc−δ+2,2) /∈ C2

)
≤ ρ.

Continuing along this line of reasoning, we can bound the
probability that each of the edges in E∆ are in E . Let

Vboth = {v1,1, v2,1. . . . , vc−δ,1},

and let

Vdiff = {vc−δ+1,2, vc−δ+2,2, . . . , vc,2}.

Observe that E∆ is exactly

E∆ = (Vboth×Vdiff)
⋃

(Vdiff×Vdiff\{(vi,j , vi,j) : vi,j ∈ Vdiff}).

Therefore, there are

|E∆| = (c− δ)δ +
δ(δ − 1)

2
= δ

(
c− δ + 1

2

)
edges in E∆, and we obtain that

P
(
E∆ ⊂ E

∣∣C1

)
≤

(
ρ+

δ(c− δ+1
2)− 1

l

)
︸ ︷︷ ︸

ρ′

δ(c− δ+1
2)

.

Recall that, by assumption, ρ is a fixed constant and l =
exp{Θ(c)}. Thus, for sufficiently large c, we have

P
(
C0 ⊂ E

∣∣C1

)
≤ (ρ′)

δ(c− δ+1
2) ∼ ρδ(c−

δ+1
2),

where ρ′ approaches ρ as c → ∞ since, from (6), l grows
exponentially as c→∞.

Now, fix x0 ∈ U (equivalently, fix the clique C0 or the
word w0 = w(x) ∈ [l]c). For a random element x1 ∈ U ,

P
(
d(x, x1) = δ > 0

)
≤
(
c

δ

)
·
(

1

l

)c−δ (
l − 1

l

)δ
.

Since l−1
l < 1, it follows that the joint probability that C1 ⊂

E , C0 ⊂ E , and d(C0, C1) = δ is at most(
c

δ

)
·
(

1

l

)c−δ
ρδ(c−

δ+1
2).

There are m elements x1, . . . , xm in S, and we assume each
is drawn independently and uniformly from U . Therefore,
applying the union bound, the probability that at least one
xi is at Hamming distance δ from x0 is at most

m ·
(
c

δ

)
·
(

1

l

)c−δ
ρδ(c−

δ+1
2).

Since
l ∼ ρ−K(c−1)/2,

and since m ∼ log(1
1−ρ)l2 (cf. Equation (3)), we conclude

that the probability that there is an element xi in S at distance
δ from x0 and that C0 ⊂ E is bounded from above by

m ·
(
c

δ

)
·
(

1

l

)c−δ
ρδ(c−

δ+1
2)

< log

(
1

1− ρ

)
·
(
c

δ

)
ρK

(c−1)(c−δ−2)
2 +δc− δ(1+δ)2 .

There are lc possible ways to choose x0. By the union
bound, we obtain that the probability of creating a false
positive clique C0 ∈ E at distance δ from one of the cliques
C1, . . . , Cm corresponding to the set S is upper bounded by

lc· log

(
1

1− ρ

)
·
(
c

δ

)
ρK

(c−1)(c−δ−2)
2 +δc− δ(1+δ)2

= log

(
1

1− ρ

)
·
(
c

δ

)
ρK

(−δ−2)(c−1)
2 +δc− δ(1+δ)2

= log

(
1

1− ρ

)
· ρlogρ 2·h2(δ/c)·c−K (δ+2)(c−1)

2 +δc− δ(1+δ)2 ,

where h2(·) denotes the binary entropy function.

502

Since 0 < ρ < 1, to show that this last expression goes
to zero exponentially quickly as c→∞, it suffices to show
that the following holds:

logρ 2 ·h2(δ/c) ·c−K (δ + 2)(c− 1)

2
+δc− δ(1 + δ)

2
≥ δc

12
.

(8)
[Note that the right hand side of (8) approaches infinity for
any δ > 0 as c→∞.]

It remains to show that (8) holds. Since K < 2
3 and since

1 ≤ δ ≤ c, we have

−K (δ + 2)(c− 1)

2
+

11

12
δc− δ(1 + δ)

2

> −(
(δ + 2)c

3
+

11

12
δc− δ(δ + 1)

2

≥ 7

12
δc− 2

3
c− δ2

2
− δ

2

≥ δc

12
,

where the last inequality holds based on the following
reasoning: if δ = Ω(c) (and δ ≤ c by definition), then the two
dominating terms are 7

12δc > δ2/2, and the other two terms
are small; if δ = o(c), then 6

12δc >
2
3c (since δ ≥ 2) and the

two other terms are small compared with 1
12δc. Moreover,

for any δ,

logρ 2 · h2(δ/c) · c+
cδ

12

approaches infinity as c → ∞. Therefore, (8) holds, and so
we have shown that

P
(
C(x0) ⊂ E

∣∣x0 /∈ S) ≤ exp{−Θ(c)}

as c→∞.
The proof of Theorem 1 now follows by bounding the

false positive rate over all possible Hamming distances.
Proof: [Proof of Theorem 1] Lemma 1 gives that the

probability of introducing a clique corresponding to an
element x0 at a distance d(x0, S) = δ from S decays
exponentially quickly as c → ∞. Taking the union bound
over all distances δ = 1, 2, . . . , c gives that the probability
of introducing a false positive clique into the graph is upper
bounded by

c∑
i=1

exp{−Θ(c)} = exp{−Θ(c)}.

IV. EXTENSION TO HYPERGRAPHS

The SSAMs introduced in Section II are based on a graph
construction. Specifically, each element xi inserted into the
memory is represented as a clique in a c-partite graph. In
this section we generalize this construction so that the set
S is represented by the edge structure of a hypergraph.
Specifically, let us consider a q-regular hypergraph H with
the same set of vertices V as above, and with each hyperedge
being a set of q vertices for some positive integer q between
2 and c. Let

V (x) = {v1,w1(x), v2,w2(x), . . . , vc,wc(x)}

cluster 1
1

2
3

cluster 2

1
2

3

cluster 3

1
2

3
cluster 4

1
2

3

Fig. 2. Illustration of the storing process of the message 1231 in a
tridimensional hypergraph (q = 3).

denote the vertices implicated by the element x ∈ U . For
q > 2, when inserting x into the associative memory, we
add all hyperedges corresponding to subsets of q vertices in
V (x). In general this corresponds to a hyperclique containing(
c
q

)
hyperedges. The case q = 2 is equivalent to the graph

construction described in Section II. Another interesting case
is q = c, for which there is a bijection between the sets of
input messages and the possible networks. Figure 2 shows
an example for c = 4, l = 3, and q = 3.

Since H is still c-partite, and there are l vertices in each
partition, and since H is also q-regular, the memory required
to store such a hypergraph is

(
c
q

)
lq bits. Similar to the graph-

based SSAM, it is clear that the hypergraph SSAM (H-
SSAM) will not produce false negatives. As more elements
are inserted, there will be more hyperedges in the network,
and so the false positive rate increases.

The false positive rate for H-SSAMs can be computed
using similar arguments to those as in Section III. Here we
sketch the main ideas. The probability that a given hyperedge
is in H after inserting m elements is now

ρ = 1−
(

1− 1

lq

)m
.

Thus, for a fixed density ρ, the number of messages stored
should grow like

m ≈ log

(
1

1− ρ

)
lq.

The probability that a random message x0 is accepted by the
network is

pe = ρ(cq),

which is the probability that the corresponding
(
c
q

)
hyper-

edges are in network after having inserted the m elements.
The expected number of messages accepted by the network
is

me = pel
c = exp

{(
c

q

)
log(ρ) + c log(l)

}
.

Thus, me = o(1) if and only if
(
c
q

)
log(ρ) + c log(l) → ∞.

Given c→∞ and fixed 0 < ρ < 1, a sufficient condition is
that

log(l) ∼ K

c

(
c

q

)
log

(
1

ρ

)
,

503

where K < 1 is a constant. Equivalently, it is sufficient to
have

l ∼ ρ−
K
c (cq).

Now, let us re-express the number of bits, L, used to
represent H in memory in terms of ρ and K. Since there are(
c
q

)
lq possible hyperedges, each of which is either present or

not in H, we have that

L ∼
(
c

q

)
ρ−K(c−1

q−1).

Clearly, L could be reduced by using some compression
technique, especially if ρ is far from 0.5.

Since m = log(1
1−ρ)ρ−K(c−1

q−1) and n = lc = ρ−K(cq), it
follows that m = o(n). It can be shown that the number of
bits required to represent a random set S of size |S| = m
of elements drawn from a universe of size |U| = n is lower
bounded by the entropy of such a set which scales as

H(S) ∼ n log2(n)− (n−m) log2(n−m)

∼ m log2(n)

as n→∞. Clearly, since n = lc and l ≥ 2, we have n→∞
as c→∞. Observe that the ratio of L to H(S) obeys

L

H(S)
∼

(
c
q

)
ρ−K(c−1

q−1)

K
(
c
q

)
log2(1

ρ) log(1
1−ρ)ρ−K(c−1

q−1)

∼ log(2)

K · log(ρ) · log(1− ρ)

as c→∞. This ratio is minimum, and hence the H-SSAMs
are most efficient, when ρ = 0.5. In this case, when K →
1, the memory required by H-SSAMs is within a factor of
1/ log(2) ≈ 1.44 of the optimal value.

Fixing ρ = 0.5 and fixing q ≥ 2, we can derive the
number of messages m that gives the best efficiency. It is
equal to log(2)2K(c−1

q−1). Recall that n = 2K(cq). Combining
these expressions gives that the corresponding H-SSAM is
most efficient (i.e., the number of bits required to represent
the H-SSAM is closest to the lower bound) when the number
of messages stored is m = log(2)n

q
c = Θ(n

q

log2(n)1/q).

V. COMPARISON WITH OTHER SET IMPLEMENTATION
TECHNIQUES

Let us fix ρ = 0.5, and recall that, in this case, m =

Θ(2(c−1
q−1)) and log2(n) = Θ(

(
c
q

)
). Table 1 compares the

complexities of various set implementation techniques ex-
pressed as a function of c. In these comparisons we have
assumed that each approach is implemented on a machine
which performs operations on up to log2(l) bits in constant
time.

Recall that a Bloom filter is guaranteed to have a false
positive rate of no more than ε if

b ≥ m · log2(e) · log2(1/ε) bits

and k = d(b/m) log2(e)e hash functions are used. For the
given density ρ = 0.5, the false positive rate of the H-SSAM

is 2−(cq). Thus, to achieve a comparable false positive rate
while storing the same number of messages, a Bloom filter
requires Θ(

(
c
q

)
2(c−1
q−1)) bits of memory, which is of the same

order as that required by H-SSAMs. Hence, Bloom filters and
H-SSAMs are equivalent from the perspective of complexity.

VI. CONCLUSION

This paper proposes the use of sparse structured associa-
tive memories (SSAMs) as a mechanism for efficient repre-
sentation for sets when one needs to perform set membership
queries and some errors are tolerable. The basic construction
represents the set of elements in terms of the edge structure
of a graph. We also propose an extension where the set is
encoded in the structure of a hypergraph (H-SSAMs), and we
show that this approach has advantages in terms of reduced
error rate in appropriately large regimes.

In comparison to Bloom filters, SSAMs and H-SSAMs
have the advantage that they can be used in situations where
error correction is required. For example, if the queried
element x is represented as a string of c symbols from an
alphabet of size l, if some symbols are erased or corrupted,
Bloom filters are no longer applicable (since the entire de-
scription of x is needed for hashing). Associative memories,
on the other hand, are designed to allow for recovery of
corrupted or missing data, and their ability to correct for
errors is studied in [6], [7].

SSAMs and H-SSAMs may be of interest for use in
distributed applications, e.g., by storing the elements of the
adjacency matrix/tensor at different agents. In this manner,
no single agent could independently determine if an element
is in the set, and they must cooperate when responding to
queries. This may be of interest in distributed databases with
sensitive content.

By using hash functions to map elements to random bit
indices, Bloom filters provide universal compression of sets
in the sense that the false positive rates hold regardless of
how the elements of S are drawn. However, the analysis in
this paper is conducted under the assumption that elements
are drawn uniformly and independently. We are currently
investigating the performance of SSAMs under more general
distributions on S. One simple way to circumvent correlation
is to append the binary representation of each element x
with additional bits which are drawn uniformly and inde-
pendently; of course, this reduces the correlation but also
increases the amount of memory required.

Finally, we note that associative memories with structures
similar to SSAMs have recently been shown to enjoy nice
fault tolerance properties [8], in the sense that the error rates
are not severely impacted if the graph structure is perturbed
(i.e., edges are randomly added or removed). Achieving this
fault tolerance requires a slightly more sophisticated, iterative
lookup procedure for performing queries.

In general there are many interesting similarities between
Bloom filters and SSAMs, and establishing more concretely
the connection between these two structures is the subject of
future work.

504

TABLE I
COMPARISON OF THE COMPLEXITIES OF VARIOUS SET IMPLEMENTATION TECHNIQUES.

Implementation Average complexity Worst case complexity Memory complexity
Insert Query Insert Query

Naive array Θ(
(c
q

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
) Θ(

(c
q

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
)

Hash table Θ(
(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
)

Trie Θ(
(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)(c−1
q−1

)
2

(
c−1
q−1

)
)

Self-balancing binary search tree Θ(
(c
q

)(c−1
q−1

)
) Θ(

(c
q

)(c−1
q−1

)
) Θ(

(c
q

)(c−1
q−1

)
) Θ(

(c
q

)(c−1
q−1

)
) Θ(

(c
q

)(c−1
q−1

)
2

(
c−1
q−1

)
)

Bloom filter Θ(
(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
)

H-SSAM Θ(
(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
) Θ(

(c
q

)
2

(
c−1
q−1

)
)

ACKNOWLEDGEMENTS

This work was funded in part by the European Research
Council (ERC AdG 2011 NEUCOD), the Natural Sciences
and Engineering Research Council of Canada (NSERC), and
the Fonds Québécoos de la recherche sur la nature et les
technologies (FQRNT).

REFERENCES

[1] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos, “Improving
the accuracy of network intrusion detection systems under load using
selective packet discarding,” in Proceedings of the Third European
Workshop on System Security, ser. EUROSEC ’10, New York, NY, USA,
2010, pp. 15–21.

[2] C. S. Lin, D. C. P. Smith, and J. M. Smith, “The design of a rotating
associative memory for relational database applications,” ACM Trans.
Database Syst., vol. 1, pp. 53–65, Mar. 1976.

[3] A. Rajaraman and J. Ullman, Mining of Massive Datasets. Cambridge
University Press, 2012.

[4] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2005.

[6] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp.
1087–1096, July 2011.

[7] ——, “Nearly-optimal associative memories based on distributed con-
stant weight codes,” in Proceedings of Information Theory and Appli-
cations Workshop, San Diego, CA, USA, February 2012, pp. 269–273.

[8] F. Leduc-Primeau, V. Gripon, M. Rabbat, and W. Gross, “Fault-tolerant
associative memories based on clustered graphs,” May 2013, submitted.

505

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

