```
XXIVème Colloque Gretsi
4 septembre 2013
```


Codes sur graphes et mémoire cérébrale

Claude Berrou,
Vincent Gripon, Olivier Dufor, Xiaoran Jiang et Behrooz Kamary Aliabadi

Jim Massey (1934-2013)

Communication model

Source \rightarrow Source coding \rightarrow Channel coding \longrightarrow destination

Parsimony

(remove useless redundancy) (add smart redundancy)
relevant to:

- telecommunication systems
- storage devices
? cerebral memory

Communication model

Mental information is robust and durable, therefore must be redundantly memorized.

We are interested in «Pure mental information»

$$
0229001306
$$

$$
9 \times 8=72
$$

« It so happens I am sick of being a man... »

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2}\left(p_{i}\right)
$$

Invaluable redundancy!

Contrary to ancestral sensory and motor feedforward circuits, the neocortex can be essentially regarded as a very recurrent organized graph

The self-repeating unit (node) in the graph is the so-called microcolumn (~ 100 neurons)

Functional area of the cerebral cortex

So, distribution, quasi-random graph, redundancy, message passing, etc.
\rightarrow the neocortex behaves like a distributed decoder!
Binary signalization: (0 or 1) \longleftrightarrow (Neuron inactive or firing)
(inhibitory signals are only for control)
Astronomic number of combinations
Fixed point decoding \longleftrightarrow Non confused, single thought
Large minimum distances \longleftrightarrow Easily separable thoughts
Resilience
Linearity \longleftrightarrow Nonlinearity

Importance of cycles

Importance of correlation

The neocortex behaves like a distributed decoder!
Which one?

What is the code?

A redundant, distributed, graphical code!

What is the code?

The fundamental brick: the clique

(a)

(b)

$$
d_{\min }=2(c-1) \quad R=\frac{\left\lfloor\frac{c+1}{2}\right\rfloor}{\frac{c(c-1)}{2}}=\frac{1}{c-1} \quad(\text { for } c \text { even })
$$

$$
F=R d_{\min }=2
$$

V. Gripon and C. Berrou, "Sparse neural networks with large learning diversity", IEEE trans. on Neural Networks, vol. 22, n ${ }^{\circ} 7$, pp. 1087-1096, July 2011
V. Gripon, V. Skachek, W. J. Gross and M. Rabbat, "Random clique codes", ISTC'12,

In order to control the cliques, the graph is structured according to the neocortical architecture
network = macrocolumn

Concatenation of simple and thrifty codes

a constant-weight code ${ }^{(*)}$ with length l and weight $w=1$
$k=\log _{2}(l)$ bits \Rightarrow
$R=\log _{2}(l) / l$
$d_{\text {min }}=2$ only but easy to decode according to the winner-take-all (WTA) rule (max function)
(*) F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, pp. 526-527, North-Holland, 1979.

Decoding: relying on correlation!!!

Application to associative memory

$$
c=8 \text { clusters, } l=256 \text { fanals }
$$

Messages of $8 \times \log _{2}(256)=64$ bits

Gains compared to Hopfield networks (with the same amount of memory used):
diversity: 250
capacity: 20
efficiency: 20
(52\% instead of 2.6\%)

Targeted error rate

Analog versus digital

Substituting digital for analog: considerable gains in capacity
So, this natural question arises:

Isn't our long term memory digital?
(compare with DNA)

Associative memory with blurred stimuli

Associative memory with blurred stimuli

$$
c=8 \text { clusters, } l=256 \text { fanals }
$$

Messages of $8 x \log _{2}(256)=64$ bits

$$
s=5
$$

4 iterations

Sparse messages

M proportional to n^{2}

B. Kamary Aliabadi, C. Berrou, V. Gripon and X. Jiang, "Storing sparse messages in networks of neural cliques", to appear in IEEE trans. on Neural Networks

Sparse messages

100 clusters of 64 fanals (microcolums) each : about $10^{-5} \mathrm{x}$ human cortex
Cliques with $c=12$ vertices

100 clusters of 64 fanals (microcolums) each : about $10^{-5} \mathrm{x}$ human cortex Cliques with $c=12$ vertices, $c_{e}=3$ vertices are not known

To store sequences instead of atemporal messages: replace cliques with tournaments

(a)

(b)

Conclusion

