XXIV^{ème} Colloque Gretsi 4 septembre 2013

Codes sur graphes et mémoire cérébrale

Claude Berrou,

Vincent Gripon, Olivier Dufor, Xiaoran Jiang et Behrooz Kamary Aliabadi

Established by the European Commission

Jim Massey (1934-2013)

Communication model

Source \rightarrow Source coding \rightarrow Channel coding \rightarrow destination

ParsimonyRobustness(remove useless redundancy)(add smart redundancy)

relevant to:

- telecommunication systems
- storage devices
- ? cerebral memory

Communication model

Mental information is robust and durable, therefore must be redundantly memorized.

We are interested in « Pure mental information »

02 29 00 13 06

9**x**8 = 72

« It so happens I am sick of being a man... »

$$H = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Invaluable redundancy!

Intelligence brain

Contrary to ancestral sensory and motor feedforward circuits, the neocortex can be essentially regarded as a very recurrent organized graph

The self-repeating unit (node) in the graph is the so-called microcolumn (~ 100 neurons) Functional area of the cerebral cortex

So, distribution, quasi-random graph, redundancy, message passing, etc.

 \rightarrow the neocortex behaves like a distributed decoder!

Binary signalization: (0 or 1) $\leftarrow \rightarrow$ (Neuron inactive or firing)

(inhibitory signals are only for control)

Astronomic number of combinations

Fixed point decoding \longleftrightarrow Non confused, single thought

Large minimum distances \longleftrightarrow Easily separable thoughts

Resilience

Linearity

Importance of cycles

Importance of correlation

The neocortex behaves like a distributed decoder! Which one?

LDPC decoder

Cortical decoder

- + : parity processor
- $\boldsymbol{\Sigma}$: variable processor

What is the code?

A redundant, distributed, graphical code !

What is the code?

The fundamental brick: the clique

V. Gripon and C. Berrou, "Sparse neural networks with large learning diversity", *IEEE trans. on Neural Networks*, vol. 22, n° 7, pp. 1087-1096, July 2011
V. Gripon, V. Skachek, W. J. Gross and M. Rabbat, "Random clique codes", *ISTC'12*, Gothenburg, Sweden, 2012

Concatenation of simple and thrifty codes

Decoding: relying on correlation!!!

If A and B are both connected to C and D, then A and B are very likely to be connected.

Iterate:

 message passing through established connections

local winner-take-all

Application to associative memory

c = 8 clusters, l = 256 fanals

Messages of $8 \times \log_2(256) = 64$ bits

Targeted error rate

Analog versus digital

Telecommunications

Neural networks

Substituting digital for analog: considerable gains in capacity

So, this natural question arises:

Isn't our long term memory digital?

(compare with DNA)

Associative memory with blurred stimuli

c = 8 clusters, l = 256 fanals Messages of $8 \times \log_2(256) = 64$ bits

Fanals are approximately known, in a certain vicinity [-s,+s].

Associative memory with blurred stimuli

c = 8 clusters, l = 256 fanals Messages of $8 \times \log_2(256) = 64$ bits

s = 5

M proportional to n^2

B. Kamary Aliabadi, C. Berrou, V. Gripon and X. Jiang, "Storing sparse messages in networks of neural cliques", to appear in *IEEE trans. on Neural Networks*

Sparse messages

100 clusters of 64 fanals (microcolums) each : about 10⁻⁵ x human cortex

Cliques with c = 12 vertices

100 clusters of 64 fanals (microcolums) each : about 10⁻⁵ x human cortex Cliques with c = 12 vertices, $c_e = 3$ vertices are not known

To store sequences instead of atemporal messages: replace cliques with tournaments

X. Jiang, V. Gripon and C. Berrou, "Learning long sequences in binary neural networks," *Proc. of Cognitive 2012*, Nice, France, July 2012

Conclusion

