Nearly-optimal associative memories based on
distributed constant weight codes

Vincent Gripon
Electronics and Computer Enginering
McGill University
Montréal, Canada
Email: vincent.gripon@ens-cachan.org

Abstract—A new family of sparse neural networks achieving
nearly optimal performance has been recently introduced. In
these networks, messages are stored as cliques in clustered
graphs. In this paper, we interpret these networks using the
formalism of error correcting codes. To achieve this, we introduce
two original codes, the thrifty code and the clique code, that
are both sub-families of binary constant weight codes. We also
provide the networks with an enhanced retrieving rule that
enables a property of answer correctness and that improves
performance.

Index Terms—associative memory, classification, constant
weight codes, clique code, thrifty code, sparse neural networks,
winner-take-all

I. INTRODUCTION

One can split the family of memories into two main
branches. The first one contains indexed memories. In an
indexed memory, data messages are stored at specific indexed
locations. Thus, messages are not overlapping, and directly
accessing a stored message requires to know its address. It is a
convenient paradigm as far as data itself is not useful a priori.
For example, a postman just needs to know your address to
bring you mails, and does not care about the content of the
mail nor the color of your front door.

The second branch is that of associative memories. An
associative memory is such that a previously learned message
can be retrieved from part of its content. It is tricky to define
how large is the “part” of the content that is necessary to
retrieve the data. A reasonable definition is to consider this
“part” to be close to the minimum amount of data required to
unambiguously address a unique previously learned message.
Contrary to indexed memories, it is likely that messages
overlap one another in associative memories. This paradigm
is convenient when trying to find data from other data. For
example, a detective might be interested in remembering the
name of that woman he questioned who owns a car of the
same brand as that of the murderer.

It is obviously possible to simulate one memory using
the other if given unlimited computational power. Indeed, to
obtain an associative memory, one can read all the stored
messages in an indexed memory and compare them with the
part of messages it is given as input. It then selects the one
that matches the best the input. Conversely, one can learn
simultaneously a message and its associated index into an

Claude Berrou
Electronics Department
Télécom Bretagne
Brest, France
Email: claude.berrou@telecom-bretagne.eu

associative memory so that messages can be retrieved from
indexes. Yet emulating one memory using the other may prove
to be inefficient in practice.

Actually, associative memories previously were not scal-
able: algorithm based techniques are too computationally
greedy, while specifically designed architectures provided a
poor efficiency - the ratio of the amount of memory learned
to the amount of memory required by the implementation
of the architecture. As a matter of fact, the state-of-the-art
architecture, in terms of efficiency, used to be the Hopfield
neural network [1] which efficiency tends to zero as the
amount of learned messages tends to infinity [2]. Recently
Gripon and Berrou have introduced a new model of sparse
neural networks (called GBNNs in [3]) that addresses the
previous limitations in terms of efficiency and provides nearly-
optimal associative memories [4], [5]. The way these memo-
ries function is inspired by that of error correcting decoders
[6]. Indeed, in the case of an erasure transmission channel,
both systems aim at retrieving data from part of it. Yet the
analogy is not that simple as a decoder does not have the
ability to learn new codewords whereas memories are precisely
designed to learn messages.

The architecture of these memories mimics that of dis-
tributed codes, like turbo codes [7] and LDPC codes [8], [9].
As a matter of fact, the codes they use locally are weak but
are associated together to provide a globally efficient one.

In this document, we interpret these new associative mem-
ories under the formalism of error correcting codes. Then, we
propose a new retrieving rule that enhances performance and
ensures answers correctness.

In section II we introduce two original sub-families of
binary constant weight codes: the thrifty code and the clique
code. In section III, we present the GBNN functioning. Section
IV is dedicated to introducing the new retrieving rule and
finally we discuss performance in section V.

II. BINARY CONSTANT WEIGHT CODES

Binary constant weight codes [10] are a family of error
correcting codes such that all their codewords have the same
weight, the weight of a binary ({0; 1}) word being the number
of 1s it contains.

el tloe—___ o

winner-take-all

Figure 1. Illustration of the decoding of thrifty code using the winner-take-all
rule.

Such a code is determined by a tuple < n,r,w > where
n is the length of the codewords, r is the overlapping value
and w the weight of the codewords. The overlapping value r
is the maximum number of 1s two distinct codewords can
have in common. It is directly connected to the minimum
Hamming distance d,, (the minimum number of distinct
symbols between two distinct codewords) of the code. This
relation is given by the formula:

dm > 2(w —71)

For example, a degenerated binary constant weight code
with » = 0 has minimum Hamming distance at least 2w,
which is exactly the Hamming distance between any distinct
codewords in this code. The minimum Hamming distance of
a code is a very important parameter to assess performance,
as the maximum number of erasures e,,,, an error correcting
code can retrieve is:

Emazr = dm

A. The thrifty code

We call thrifty codes the sub-family of binary constant
weight codes with weight w = 1. The term “thrifty” comes
from the fact the codewords contain a single 1 each. Due to this
restricted weight, the overlapping parameter has no influence
on the code.

Let us define a maximum thrifty code as a thrifty code that
cannot be completed by any codeword without breaking the
constant weight rule. In other words, the unique maximum
thrifty code of length n is {0’“10"’1*’“,0 <k <n-1}
whereas all its subsets are thrifty codes. The maximum thrifty
code is not a powerful one. Indeed, its minimum Hamming
distance is 2. On the other hand, it can be very easily decoded.

As an example, let us consider that a codeword has been
transmitted through a transmission channel that affects every
symbol according to the function:

{0;1} = R
r—x+0

f:

where 6 is an independent random variable. Then the most
likely transmitted codeword is the one with a 1 where the
received value is maximum. Figure 1 illustrates this decoding
rule that corresponds to what biologists call the winner-take-all
rule.

Moreover, the fact a code has a small minimum Hamming
distance does not make it useless. LDPC codes, for example,

Figure 2. Example of a clique in a graph with no loop. Circles represent ver-
tices and squares contain the labels of connections. The clique is represented
by the straight lines.

are based on parity codes, which minimum Hamming distance
is also 2.

In order to aggregate thrifty codes, we will now introduce
a more powerful one: the clique code.

B. The clique code

A code is basically a constraint on words. Based on this
idea, one can associate cliques of constant size in a graph
with codewords.

Let us first recall that a clique in a graph with no loop is a set
of vertices that are fully interconnected. Such a clique can be
represented by the set of its connections. Consider Figure 2 for
example, where a clique is represented with straight lines. This
clique corresponds to the set of connections {3;4;5; 6;7; 8}.
Conversely, some subsets of connections do not correspond
to a clique in the graph. For example the set {1;2;3;4;5;6}
does not represent a clique. This emphasizes the fact cliques
form a constraint on the subsets of connections, that is to say
a code.

To make a connection with the binary constant weight
codes, such a clique can be represented by a binary vector
containing 1s at the coordinates of the connections of the
clique. The previous example would thus give the binary
codeword 0011111100. Based on this representation, to each
clique containing c vertices in the graph corresponds a binary
vector containing (3) 1s. Moreover, the Hamming distance
between the binary representations of two distinct cliques
of the same size c is at least 2(051), corresponding to the
case where the two cliques have ¢ — 1 vertices in common.
Hence, contrary to the thrifty code, non trivial clique codes
can have an arbitrarily large minimum Hamming distance. In
conclusion, the binary representation of cliques of constant
size ¢ in a graph with no loop and with n vertices are
codewords of a binary constant weight code with parameters

< (), () = (%1, () >
I1I. GBNNs

In [4], [5], Gripon and Berrou introduced a new architecture
for neural networks that addresses the previous limitations of
associative memories in terms of efficiency (GBNNs). The
following subsections introduce the learning and retrieving
rules.

Figure 3. Representation of the learning of a new message into the network.
The network is split into 4 clusters (empty circles, empty squares, filled circles
and filled squares) made of 16 neurons each. The thick connections represent
the clique associated with the message to learn that is being added to the
network.

A. Learning

GBNNs main idea is to aggregate thrifty codes together
using a powerful clique code. To describe this neural network,
let us introduce some parameters first: the network contains n
neurons divided into ¢ clusters made of [= % neurons each.

Such a network can learn [-ary messages of length c. A mes-
sage m to learn is thus made of ¢ symbols m1,mo, ..., me,
associated one to one with the clusters of the network. Let us
fix such a message.

At the scale of cluster, the symbol the message corresponds
to is represented by a unique neuron. This representation
corresponds to that of the thrifty code. At the scale of the
network, it means that a message m is represented by a single
neuron in each cluster. To learn such a message, every possible
connection between those selected neurons are added to the
network, printing a clique into it - with the exception of
loops. An already existing connection is not reinforced, which
means that the network is binary (either a connection exists
or not). Figure 3 depicts the learning of a message. In this
representation, the thick connections are forming a clique that
corresponds to the message to learn and are being printed into
the network.

The amount of messages the network can learn before
being overloaded is directly connected to its density, that is
the ratio of the number of created connections to that of
possible ones. In case of learning messages independently and
identically distributed, the density can be fairly estimated using
the formula:

Lwm
where M is the number of learned messages. Let us insist
that in this case the density d does not depend on the number
of clusters c. As a direct consequence, the network will give
better results having a few large clusters rather than a lot of

small ones.
After the learning of all the messages, the network can be
used to retrieve any of them from part of its content.

B. Retrieving

Let us consider that a previously learned message m is pre-
sented as input to such a network, but with missing symbols.
After selecting the correct neurons in the clusters where the
symbols of the message are not missing (no one elsewhere),
the retrieving process begins. This process iterates two phases.

The first phase corresponds to the decoding of the global
clique code. During this phase, the selected neurons send
signals through the connections they are connected to. Thus,
conversely, each neuron of the network receives a number of
incoming signals, possibly zero.

The second phase corresponds to the local thrifty code.
During this phase, in each cluster is selected the neuron or
the group of neurons that achieves the maximum number of
incoming signals. In other terms, in each cluster is applied the
winner-take-all rule. To obtain good performance, a memory
effect denoted ~ is added to the number of incoming signals
before the winner-take-all rule, increasing the scores of pre-
viously selected neurons. In associative memory applications,
the success of retrieving rate of the network increases with the
memory effect value.

The network converges in a few iterations. At the end of the
process, the clusters which originally did not have any selected
neuron are provided with the selection of a neuron or a group
of neurons. Those neurons are the answer of the network.

Let us introduce vfci’lj such that UZCMJ) = 1 if the
l;th neuron of the c;th cluster is selected at iteration ¢ and
vfci7lj) = 0 otherwise. Let us extend v such that iteration
0 corresponds to the neurons selected from the non-missing
symbols in the input. Let us introduce the adjacency matrix
coefficient of the network W(Chlj)7(ci,7lj,) which equals 1 if
the connection between the [;th neuron of the c¢;th cluster
is connected to the [;/th neuron of the c;/th cluster and O
otherwise. Then the retrieving process can be formalized as:

t _ t
Slealy) = VVeily) +
c l
t
> Vi) Wiep ety (D
Ci/zllj/:l
t t
s = max|[s;. ;.
A
oot ot
UtJrl — Lif S(ci,lj) = Smaz,c;
(ea.ls) 0 otherwise

IV. IMPROVING THE RETRIEVING PROCESS
A. Improving performance

The previously described retrieving process suffers from a
major drawback. Indeed, a cluster with an ambiguous selection
- that is several neurons selected - has potentially a more
important impact on the decoding in the other clusters than
that of an unambiguous cluster.

For example, let us consider that cluster c¢; has two of its
selected neurons connected to neuron !; in cluster cy. Thus 3
will receive at least two signals from cluster c¢;, reinforcing
the probability to be selected. Cluster c, contains another
neuron [y which is receiving all its signals from distinct
clusters and that achieves the same score as [;. Thus, if [y is
selected then so will be ;. However, 5 receives signals from
connections that may belong to the same clique, that is to say
representing a previously learned message. On the other hand,
l; is adding signals from connections that cannot belong to
the same clique. Therefore, [should be favored with respect
to I;.

Let us modify the retrieving process to take this remark into
account: first, let us modify Equation (1) such that:

c
Sfcz‘,lj) = 7[}?%1]‘) T Zl 12%?211}7(561'711’) TWeew ety
Ci1 =

which means that the score of a neuron will not be larger
if it receives two or more signals from the same cluster.

With this new equation, an ambiguous cluster will no longer
have more impact on the decision of others. To take full
advantage of this new technique, one can also decide to
select all neurons in clusters corresponding to missing symbols
(instead of no one). Consequently, the score of the correct
neurons in each cluster is now known a priori. Indeed, as
they will receive connections from all the other neurons that
correspond to the message to retrieve, they will achieve exactly
score v+ ¢ — 1.

Taking these two modifications into account, the overall
retrieving process can be synthesized as follows:

1 if ’chi,lj)jL

t+1

t _
U(Ci,lj) = maXlU(ci/,lj/)W(ci/7l_7»/)(cz»lj) =v+c—

1 1§lj/§

cyr=

0 otherwise

B. Answers correctness

GBNNs have two ways to fail in retrieving a message. The
first one is giving a wrong answer, the second one is giving
an ambiguous answer. Thanks to the new retrieving rule, the
network can no longer give a wrong answer. In other words, an
unambiguous answer will always be correct. Let us first show
how the old retrieving rule can result in a wrong decision.

Let us consider the following example: the network is split
into 3 clusters made of 3 neurons each. The messages it
learns are therefore made of three ternary symbols, {1;2;3}
for instance. Let us consider that the network has learned the
three following messages and no other: 111, 112 and 123.
Figure 4 depicts the connections of this network.

If the partial message 1** is presented to the network, where
* denotes a missing symbol, then the network should not take
any decision. As a matter of fact, the problem is intrinsically
ambiguous. Yet, the retrieving process described in [4], [5]
will lead to a wrong answer.

First symbol

Second symbol Third symbol

Figure 4. Representation of the connections in the network after the learning
of messages 111, 112 and 123.

To understand this phenomenon, let us follow this process
step by step.

At the end of the first iteration, neuron 1 in cluster 1,
neurons 1 and 2 in cluster 2 and all three neurons of cluster
3 will be selected for the next iteration, considering ~y # 0.

At iteration 2, neuron 1 in cluster 2 will receive 3 incoming
signals (respectively from neuron 1 in cluster 1 and neurons 1
and 2 in cluster 3) whereas neuron 2 in the same cluster will
only receive 2 incoming signals. Therefore, neuron 1 will be
the only one selected in cluster 2 at the end of iteration 2.

Actually, this selection will not evolve during the next
iterations, such that the network will give 1 as the answers
for the second symbol of the message to retrieve. This choice
is arbitrary and may lead to a wrong global answer.

This cannot happen with the rule we introduce in this paper.
Indeed, all the possible learned messages - according to the
given partial input - will be such that their corresponding
neurons will achieve the maximum score. Therefore, the
winner-take-all rule will select all of them and the network
will not give a wrong answer.

V. PERFORMANCE

Figure 5 depicts the retrieval error rate of networks made of
8 clusters of 256 neurons each when 4 symbols are missing in
inputs and as a function of the number of learned messages.
This figure emphasizes the gain in performance obtained with
the new retrieving rule.

Figure 6 depicts the ratio of wrong answers given by
networks with the same architectures as in Figure 5 and with
the old retrieving rule (this ratio is always 0 with the new
rule).

VI. CONCLUSION

In this paper we introduced GBNNSs using error correcting
codes formalism. By doing this, we showed how the principles
of distributive codes can be enlarged to other domains, such as
associative memories. This extension required the introduction
of two original codes: the thrifty code and the clique code,
which are two sub-families of binary constant weight codes.

1 ¥ X ¥
0.8 B
>
Z 06 4
2
o
]
g
s
s
o 04 1
02 —
X Old retrieving rule (4-iterations)
> New retrieving rule (4-iterations) «--=+--
R . 3)))) Nelwork depswly v
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of learned messages (M)

Figure 5. Evolution of the message retrieval error rate in a network made of
8 clusters of 256 neurons each when input messages are missing 4 symbols
and as a function of the number of learned messages.

Wrong answers rate, density

0ld decoding rule (4-iterations)
Nelwork deps\ly R

L
35000 40000 45000

1 1 1
15000 20000 25000 30000
Number of learned messages (M)

0 \

L
0 5000 10000

Figure 6. Evolution of the wrong answers rate in a network made of 8
clusters of 256 neurons each when input messages are missing 4 symbols and
as a function of the number of learned messages.

We introduced a new retrieving rule that significantly im-
proves performance with regards to the previous one. This rule
also provides the network with an answer correctness property.
Along with this new rule, GBNNs make a supplementary step
towards optimality.

One possible immediate application of this new rule would
be to reduce the area consumption in the implementation of
GBNNs [3].

Future work will also include addressing the limitation on
the network density that does not depend on the number
of clusters, making it unsuitable for the learning of long
messages.

REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational properties,” Proc. Natl Acad. Sci., Biophysics,
vol. 79, pp. 25542558, USA, 1982.

[2] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh,
“The capacity of the Hopfield associative memory,” IEEE Trans. Inf.
Theor., vol. 33, no. 4, pp. 461482, 1987.

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Architecture
and implementation of an associative memory using sparse clustered
networks,” to appear in IEEE International Symposium on Circuits and
Systems, 2012.

V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE transactions on neural networks, vol. 22, pp. 1087 —
1096, Jul. 2011.

V. Gripon and C. Berrou, “A simple and efficient way to store many
messages using neural cliques,” Proc. of IEEE Symposium on Compu-
tational Intelligence, Cognitive Algorithms, Mind, and Brain, pp. 54 —
58, Apr. 2011.

V. Gripon, Networks of neural cliques. PhD thesis, Télécom Bretagne,
July 2011.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” Proc. of IEEE ICC
’93, vol. 2, pp. 1064-1070, Geneva, May 1993.

R. Gallager, “Low-density parity-check codes,” IEEE Trans. on Inf.
Theory, vol. 8, pp. 21-28, Jan. 1962.

D. J. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” Cryptography and Coding. 5th IMA Conference, number 1025
in Lecture Notes in Computer Science, pp. 100111, Berlin, 1995.

F. J. MacWilliams and N. J. A. Sloane, “The theory of error-correcting
codes,” pp. 526-527, North-Holland, 1979.

