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Abstract— Associative memories are widely used devices
which can be viewed as universal error-correcting decoders.
Employing error-correcting code principles in these devices has
allowed to greatly enhance their performance. In this paper we
reintroduce a neural-based model using the formalism of linear
algebra and extend its functionality, originally limited to erasure
retrieval, to handle approximate inputs. In order to perform the
retrieval, we use an iterative algorithm that provably converges.
We then analyze the performance of the associative memory
under the assumption of connection independence. We support
our theoretical results with numerical simulations.

I. INTRODUCTION

Associative memories can serve as an alternative to in-
dexed memories, where the content is retrieved from a part
of it. The associative memories behave similarly to error-
correcting decoders. They are used in many domains, in-
cluding network routers [1], intrusion detection systems [2],
database engines [3], and CPU caches [4].

Recently, Gripon and Berrou [5], [6] introduced a novel
architecture of associative memories based on the principles
of modern error-correcting codes such as LDPC codes [7].
They proposed to store pieces of information in a multipartite
binary graph by using cliques (a subset of fully intercon-
nected nodes). The retrieving procedure instantiates a simple
message-passing algorithm in two phases. First, the nodes
sum their inputs. After that, an adaptive threshold is applied
such that only those nodes which obtain the maximum score
in their part remain activated. This is referred to as the
“winner-takes-all” principle in the neuroscience literature.

Gripon and Berrou [5], [6] claim to provide near-optimal
efficiency, along with limited computational complexity and
low error probability. The recent extension [8] proposes novel
decoding rules that both enhance performance and yield
convergence guarantees. However, the model of [8] has only
been studied for the case of erasure channels so far, where
input messages have some missing symbols. In order to adapt
these devices to other application domains, such as machine
learning and noise cancellation, it is of interest to study
the ability of these memories to recover a message from
an approximate input.

While implementing these associative memories, it was
shown in [9] that the original rule is a hard-thresholding
instantiation, which uses a matrix product followed by a non-
linear thresholding. In [10], the authors propose to use only
binary operations to perform the retrieval process, using a
smart rewriting of what was originally proposed in [8].

In this paper we introduce a linear-algebraic formalization
of these associative memories and their functionality over

the binary field F2. We extend their analysis to the case
of blurred channels, where input symbols are transformed
into a set of possible characters (including themselves). We
derive error probabilities for this case which agree well with
simulation results.

The paper is organized as follows. Section II presents
related previous work. Section III introduces notation and
operators. In Section IV we present the principles of these
devices for storing and retrieving pieces of information. We
also introduce the different problems we analyze in this
paper. Section V introduces the main parameter to assess
performance: density. Section VI presents the analytical
developments to obtain messages retrieval error probabilities
and finally Section VII concludes our work.

II. PREVIOUS WORK

The model that we study in this paper is close to the
celebrated Willshaw model [11], [12], which appears in the
neuroscience literature. In that model, pieces of information
are stored as cliques in a neural network. The main difference
between the Willshaw model and the one considered in this
work is that the neurons are partitioned in the former model,
thus allowing for more efficient decoding rules.

The celebrated Hopfield [13] model allows storing pieces
of information and retrieving them using complete graphs
with weighted connections. Contrary to the model considered
in this paper, Hopfield’s model provides zero efficiency [14]
asymptotically, thus making it unsuitable for practical appli-
cations.

In [15], an associative memory that uses principles of
error-correcting codes is proposed. However the devices
of [15] require the use of the real-valued scalars to store
the input messages, thus making it difficult to analyze their
efficiency.

III. NOTATION AND OPERATORS

Let Σ be the binary alphabet {0, 1}, equipped with the
Boolean operations OR and AND, denoted by ∨ and ∧,
respectively. For any m,n ∈ N, denote by Mm,n(Σ) the
set of m × n matrices over Σ, and by Mm(Σ) the set of
m×m matrices over Σ.

Given two matrices A ∈ Mm,n(Σ) and B ∈ Mn,p(Σ),
we define the matrix product ⊗ as:

(A⊗B)i,j =

n∨
k=1

Ai,k ∧Bk,j ,
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where Ci,j denotes the entry at row i and column j in the
matrix C.

We also define operations ⊕ and � over Mm,n(Σ) as

(A⊕B)i,j = Ai,j ∧Bi,j ,

and
(A�B)i,j = Ai,j ∨Bi,j .

Note that � is distributive over ⊗: for all A, B, and C of
appropriate dimensions, (A�B)⊗C = (A⊗C)� (B⊗C).

We use the notation K` to denote the triple
〈M`(Σ),⊕,⊗〉, where ` ∈ N. Note that K` is not a
field since ⊗ is not commutative, as shown in the following
example.

Example 1. Consider the following matrices in K2:

A =

[
1 1
0 1

]
and B =

[
0 0
1 0

]
.

It holds that

A⊗B =

[
1 0
1 0

]
and B ⊗A =

[
0 0
1 1

]
.

Now consider the space Mc(K`) of c` × c` matrices;
we adopt this specific notation explicitly to indicate that
elements ofMc(K`) are treated as block matrices with each
block being a ` × ` matrix. Let W,W ′ ∈ Mc(K`). We
introduce the operation W ·W ′ as: ∀i, j = 1, . . . , c,

(W ·W ′)i,j =

c⊕
k=1

Wi,k ⊗W ′k,j ,

where Wi,k is the `× ` block of W in position (i, k).
As a consequence of ⊗ being non-commutative, the oper-

ation · is non-associative.

Example 2. To illustrate this property, consider, in addition
to the matrices A and B defined in Example 1, two other
matrices over K2:

C =

[
1 1
1 1

]
and D =

[
0 1
0 1

]
.

Then([
A A
A A

]
·
[
A B
A B

])
·
[
A A
A A

]
=

[
C D
C D

]
[
A A
A A

]
·
([

A B
A B

]
·
[
A A
A A

])
=

[
D D
D D

]
.

To avoid the above ambiguity, we adopt the convention
that the operation ⊗ is ordered from right to left:

W ⊗W ′ ⊗W ′′ ,W ⊗ (W ′ ⊗W ′′) .

Note that this also removes ambiguity for the operation W ·
W .

We also extend the transpose operator to Mc(K`) in the
natural manner: (

WT
)
i,j

= (Wj,i)
T
.

IV. PROPOSED REPRESENTATION

Consider a set of messages, which is to be stored. These
messages are assumed to be vectors in Z (`)

c, where Z (`)
denotes the set of integers {1, 2, · · · , `}, and c ≥ 1 is an
integer. Denote by P(Z (`)) the set of all subsets of Z (`).
We use the mapping π from the set of vectors with entries in
Z (`) to the set of vectors with entries in P(Z (`)), defined
as follows:

π : Z (`)
c → (P(Z (`)))

c

m 7→ π(m) where π(m)i = {mi}
.

Let ⊥ 6∈ Z (`) be a special character that represents the
ambiguity in the decoder, i.e., where more than one decoding
result is possible. Note that any π(m) can be associated
with its preimage m. We denote by ρ the corresponding
operator that acts as an inverse of π when applied to a vector
containing sets of cardinality 1 as its entries and extend it
otherwise. More specifically,

ρ : (P(Z (`)))
c −→ (Z (`) ∪ {⊥})c ,

where for any µ = (µ1, µ2, · · · , µc)
T ∈ (P(Z (`)))

c,

ρ(µ)i =

{
j if |µi| = 1 and µi = {j}
⊥ otherwise .

Let µ = (µ1, µ2, · · · , µc)
T ∈ (P(Z (`)))

c. The one-to-one
mapping φ : (P(Z (`)))

c −→ Mc,1(M`,1(Σ)) is defined
as follows:

φ(µ) =


φ(µ1)
φ(µ2)

...
φ(µc)

 ,

where for all i = 1, 2, · · · , c, and for all j = 1, 2, · · · , `,

(φ(µi))j =

{
1 if j ∈ µi

0 otherwise .

Example 3. Let c = 2 and ` = 3. Then, the following holds:



 0
0
1


 0

1
0



 = φ

([
{3}
{2}

])
= φ

(
π

([
3
2

]))
.

The crux of our approach is as follows. Rather than storing
a message m ∈ Z (`)

c in the memory directly, we propose to
store φ(π(m)) instead. Observe that m = ρ(φ−1(φ(π(m)))).

To store a set of M messages M in Z (`)
c, we use the

following representation:

W (M) =
⊙

m∈M

φ(π(m)) · φ(π(m))T ,

where � is extended to M` (F2).
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Definition 4. A blurred version of m ∈M is a vector χ(m) ∈
(P(Z (`)))

c, where χ : Z (`)
c → (P(Z (`)))

c is a random
function such that for all i = 1, 2, · · · , c : mi ∈ (χ(m))i.

The intuition behind this definition is that typically a
blurred version of an input could be obtained by using a
convolution of its symbols with a low-pass filter. As a result,
the input symbols are replaced by their support sets. In this
way, the system aims to retrieve a previously stored message
that matches the provided support.

In terms of associations, this allows the system to perform
a query given an imprecise probe of some of its symbols.
For example consider an associative memory that stores
information about papers in the proceedings of a conference,
and that can then be addressed given keywords, authors or
dates. In this context a blurred input can be “retrieve some
paper containing keywords k1 or k2 than has been written
by author a1 or a2 in year y1 or y2”.

Sometimes W (M) contains sufficient information for re-
trieval of a message m ∈ M from the blurred version of
m. We usually take the set M to be fixed in advance. To
simplify the notation we write W instead of W (M).

We denote by ψ the operation of retrieving m given χ(m)
when using W (M). To perform this operation, we first define
the recurrent sequence {χt}∞t=0 as follows:

1) Initialization: χ0 = χ(m).
2) Step: for t = 1, 2, · · · , let χt+1 = W · χt.
While having in mind the preceding observation on non-

associativity of operation (·), we write χt = W t · χ0.

Theorem 5. The sequence {χt}∞t=0 converges.

The proof of this result is straightforward. First, for all i,
1 ≤ i ≤ c, W (M)i,i = I`, where I` denotes ` × ` identity
matrix over Σ.

It follows from the definition of the operation ⊗ that:

∀i, j :
[
(χt

i)j = 0⇒ (χt+1
i )j = 0

]
. (1)

Note that the number of distinct possible vectors in
Mc,1(M`,1(Σ)) is finite, and therefore the sequence (χt)

∞
t=1

is periodic. Since, from (1), the entries of χt can only change
from 1 to 0 (when t grows), for sufficiently large values of
t all entries in χt do not change.

We thus define:

χ∞ = lim
t→∞

χt ,

and apply ρ ◦ φ−1 to χ∞ to obtain ψ(χ(m)).
Therefore, the process to retrieve (i.e., decode) a message

m given a blurred version χ(m) as input can be represented
algebraically as

ψ(χ(m)) = ρ(φ−1(W ·W · . . . ·W · χ(m))) .

We now define three problems which use the proposed
data structure. We analyze the error probability for each of
the proposed problems. In all three problems, the network
W (M) is known, and it represents M.

Problem 1. For a given encoded message χ(m) ∈
Mc,1(M`,1(Σ)), we are interested in checking whether m ∈
M by using the test ψ(χ(π(m))) = m. We denote this test
T (M,m), and assume that it takes boolean values TRUE and
FALSE. This use of W (M) essentially makes it a particular
Bloom filter.

Problem 2. We restrict χ such that

∀i : χ(m)i = {mi} ∨ χ(m)i = Z (`) .

In particular, the case χ(m)i = Z (`) represents the situation,
when the value of i-th coordinate in m is erased. We refer
to such a symbol of χ(m) an erased symbol.

In this problem, for a given input χ(m) ∈Mc,1(M`,1(Σ))
with some symbols erased, we want to determine if χ(m)
could have been obtained from an m ∈ M by erasing
symbols, and if so, then which m ∈ M could correspond
to χ(m).

The specific case with no erased symbol corresponds to
Problem 1.

Problem 3. In this problem, we consider the b-regular
blur on the messages, defined as follows. Consider the
neighboorhood function ν(j) = {j

∣∣ |j −mi| mod ` ≤ b}.
Define ∀i ∈ c : χ(m)i = ν(j).

In this problem, for a given blurred input χ(m) ∈
Mc,1(M`,1(Σ)), we are interested in first determining if
there is any m ∈ M which could be transformed to χ(m)
through a b-blurring operation, and if so, then determine the
possible values of m ∈M.

Note that the case of 0-regular blurred messages corre-
sponds to Problem 1.

V. DENSITY

First, we note that the stored messages (after applying π
and φ) are fixed points of W (M). This assumption follows
from the fact that the operation � is distributive over ⊗
and from the definition of W (M). This property can also
be regarded as a zero Type I error as far as Problem 1
is concerned, meaning that stored messages will always be
recognized as such.

On the other hand, the number of possible matrices W (M)
is smaller than N = 2(c`)

2

= # (Mc(M`(K))). This
amount has to be compared to the number of possible sets of
messages to store, P = 2`

c

. When c ≥ 3 is fixed, N = o(P ),
it is immediate that W is not a uniquely decipherable code
and thus a non-zero Type II error should be expected: fixed
points of W (M) are not necessarily in φ(π(M)).

In order to assess the performance of the scheme under
consideration, we restrict our study to a simple case of
independent uniformly distributed messages. We denote by
P the associated probability measure and we introduce
a parameter d((i, j), (i′, j′)), i 6= i′, that represents the
probability that W (M)(i,j)(i′,j′) = 1 after storing a set M
of uniformly distributed messages.

Under the assumption that the messages stored are inde-
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pendent and identically distributed,

d((i, j), (i′, j′)) = P (W (M)(i,j)(i′,j′) = 1)

= P

( ∨
m∈M

(φ(π(m))i)j = 1 ∧ (φ(π(m))i′)j′ = 1

)

= P

( ∨
m∈M

mi = j ∧mi′ = j′

)

= 1− P

( ∧
m∈M

mi 6= j ∨mi′ 6= j′

)
.

Assume that the messages in M are independent and
uniformly distributed. We obtain that

d((i, j), (i′, j′)) = 1− (P (mi 6= j ∨mi′ 6= j′))
M

= 1− (1− P (mi = j)P (mi′ = j′))
M

= 1−
(

1− 1

`2

)M

.

If we consider the regime where both M and ` grow, then
in order to keep d constant, M should be proportional to
−1/ log(1− 1/`2) ≈ `2.

Since W (M) is symmetric, let us focus on its upper
triangular matrix. It is clear that d is not independently
distributed, since each stored message adds ones to multiple
coordinates. However, simulation results support the as-
sumption that each connection exists independently of other
connections with probability d. This assumption leads to
simulation performance, which is very close to the obtained
performance evaluations. For that reason, and in order to
simplify the analysis, in the next sections we assume that d
is independent from cell to cell.

VI. PERFORMANCE ANALYSIS

A. Problem 1

As it was previously pointed out, there is no Type I error.
Fix some message m. It holds that:

P (T (M,m)) = P (T (M,m)
∣∣m 6∈M)P (m 6∈M) +

P (T (M,m)
∣∣m ∈M)︸ ︷︷ ︸

=1

P (m ∈M)

≥ P (T (M,m)
∣∣m 6∈M)P (m 6∈M) +

P (T (M,m)
∣∣m /∈M)P (m ∈M)

= P (T (M,m)
∣∣m 6∈M) .

We thus use P (T (M,m)) as an upper bound for Type II
error.

To estimate this probability, we use the following theorem.

Theorem 6. The following condition holds:

∀M,m : W (M) · χ(π(m)) = χ(π(m))⇐⇒
W (M)� (χ(π(m)) · χ(π(m))T ) = W (M) .

One direction follows from the distributivity of the opera-
tion � over the operation ⊗, and thus over the operation (·)
as well.
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Fig. 1. Evolution of the Type II error rate when stored messages are i.i.d.
uniform, for various values of c and ` = 256 and as a function of the
number of stored messages. Both theoretical curves and simulation points
obtained using Monte Carlo method are drawn.

For the other direction, assume by contradiction that
∃i, j,W (M)(i,mi)(j,mj) = 0. Then, it follows that
((W (M) · χ(π(m)))i)mi

= 0.
We thus obtain that:

P (T (M,m)
∣∣m 6∈M)

≤ P (∀i < j,W (M)(i,mi)(j,mj) = 1 (2)

∧ ∀i,W (M)(i,mi)(i,mi) = 1)

≤ P (∀i < j,W (M)(i,mi)(j,mj) = 1)

= d(c
2) , (3)

by using the fact that P (∀i,W (M)(i,mi)(i,mi) = 1) ≤ 1.
Figure 1 depicts the evolution of Type II error using

simulations and Equation (3) with ` = 256. Curves for
parameters c = 4, c = 6 and c = 8 are drawn. It shows
that the bound is tight.

To obtain that if W (M) is an asymptotically lossless
representation of M, then it is not sufficient to force
P (T (M,m)

∣∣m 6∈ M) → 0. Therefore, we require a
stronger condition, namely that P (∃m 6∈M, T (M,m))→ 0.
We then use P (∃m 6∈ M, T (M,m)) = 1 − P (∀m 6∈
M,¬T (M,m)). If we assume that the corresponding events
are independent, we obtain the following sufficient condition:
1− (1− P (T (M,m)

∣∣m 6∈M))`
c−M → 0.

Fix a constant value d and c → ∞, we obtain that 1 −
(1 − P (T (M,m)

∣∣m 6∈ M))2
c`−M ≤ 1 − (1 − d(c

2))`
c ≈

1 − e−`
cd(

c
2) . We thus require that `cd(c

2) → 0, which is
equivalent to d < 1/4. Let us fix such a value d < 1/4, and
take ` = 2c. We thus have M ≈ log(1/(1− d))`2.

On one hand, it is possible to encode W (M) using (c`)2

bits. On the other hand, there are
(
`c

M

)
distinct possible sets

of messages of cardinality M . Assume that these sets are
choosen uniformly at random. Denote by Z the random
variable, which takes the value of the chosen set. There are
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Fig. 2. Evolution of the message retrieval error rate when stored messages
are i.i.d. uniform and input messages contain 4 erased symbols as a function
of the number of stored messages. Both theoretical curves and simulations
are drawn when χ1 is used as estimator and simulation are drawn when
χ∞ is used as estimator.

(
`c

M

)
different values that Z can take. The binary entropy of

Z is H2(Z) = log2

(
`c

M

)
. We obtain

H2(Z) = log2

(
`c

M

)
≈ `c log2(`c)−M log2(M)− (`c −M) log2(`c −M) .

If M is small compared to `c, then we obtain

H2(Z) ≈Mc log2(`) ,

which is, in turn, is close to (c`)2. Thus, under these
conditions W (M) is an asymptotically lossless optimal rep-
resentation of M.

B. Problem 2

The problem of retrieving a message in M when exactly
r of its symbols have been erased has already been studied
in [8] using a similar retrieval algorithm. Using simple prop-
erties of the binomial random vairables, the corresponding
message retrieval error rate when using χ1 as an estimate is:

Pe = 1−
(
1− dc−r

)(l−1)r
.

The actual message retrieval error rate when using χ∞ as
the estimate is expected to be lower. However, we presently
have no closed form expression for this error probability.

Figure 2 depicts the evolution of the message retrieval
error rate when 4 symbols out of c = 8 are erased in
messages with ` = 256 and as a function of the number of
stored messages. The theoretical curve is drawn when using
χ1 as the estimator and simulation points are given for χ∞.

C. Problem 3

Using similar arguments, one can derive bounds on error
probabilities in the case of b-blured messages when using χ1

as estimator. Denote by m the initial message. As a matter
of fact, we already know that “correct” 1’s will remain active
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are i.i.d. uniform and input messages are b-blurred as a function of the
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drawn when χ1 is used as estimator and simulation points are drawn when
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after application of the operator W . Thus the message will
be correctly retrieved if no spurious 1’s remain:

Pe = P (∃i, j,
(
χ0
i

)
j

= 1 ∧
(
χ1
i

)
j

= 1 ∧mi 6= j)

= P (∃i, j,
(
χ0
i

)
j

= 1 ∧mi 6= j ∧ ∀i′,(
W (M)(i,i′) ⊗ χ0

i′
)
j

= 1) .

To simplify the reasoning, let us assume that
∀i,W (M)(i,i) is the identity matrix, which is not a
very good approximation when M = ω(`). Recall that χ0

i′

contains exactly 2b+ 1 ones, such that we obtain under the
hypothesis of independence:

Pe = 1− P
(
∃i′,

(
W (M)(i,i′) ⊗ χ0

i′
)
j

= 0∣∣ (χ0
i

)
j

= 1 ∧mi 6= j
)2bc

= 1− (1− P (∀i′,
(
W (M)(i,i′) ⊗ χ0

i′
)
j

= 1∣∣ (χ0
i

)
j

= 1 ∧mi 6= j))2bc

= 1− (1− P (
(
W (M)(i,i′) ⊗ χ0

i′
)
j

= 1∣∣ (χ0
i

)
j

= 1 ∧mi 6= j)c−1)2bc

= 1− (1− P (∃j′ ∈ ν(mi),
(
W (M)(i,i′)

)
(j,j′)

= 1∣∣ (χ0
i

)
j

= 1 ∧mi 6= j)c−1)2bc

= 1− (1− (1− P (∀j′ ∈ ν(mi),
(
W (M)(i,i′)

)
(j,j′)

= 0∣∣ (χ0
i

)
j

= 1 ∧mi 6= j)c−1)2bc

= 1− (1− (1− (1− d)2b+1)c−1)2bc .

Figure 3 depicts the message retrieval error rate for the
same network as in Figure 2 (` = 256, c = 8), for
various values of b and as a function of the number of
stored messages. Both the theoretical curve when using χ1

as estimator and the simulation points when using χ∞ as
estimator are drawn.
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VII. CONCLUSION

We explored the properties of the associative memory,
which was initially proposed in [5], [6], by using a fully
linear algebraic formalism. We simplified the retrieving
algorithm by making it fully binary. We then analyzed
the error probabilities, when using χ1 as an estimator for
three problems: probabilistic data structure, erasure channel
associative memory and blur channel associative memory.

The latter associative memory is of a particular interest
as it combines interesting retrieval capacities along with
asymptotically optimal memory consumption and simple
iterative retrieving principles.

Future work includes deriving message retrieval error
rate, when using χ∞ as an estimator, as well as proposing
extensions to solve classification problems and to handle
larger cardinalities of the set of messages by using multi-
dimensional matrices. Deriving bounds for retrieval error
probability without using the independent connections hy-
pothesis is another work in progress.
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