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ABSTRACT
We consider associative memories based on clustered graphs

that were recently introduced. These memories are almost

optimal in terms of the amount of storage they require (effi-

ciency), and allow retrieving messages with low complexity.

We study an unreliable implementation of the memory and

compare its error rate and storage efficiency with that of a re-

liable implementation. We present analytical and simulation

results that indicate that the proposed memory structure can

tolerate a large number of faults at a reasonable cost, thereby

making it a good candidate for achieving highly efficient cir-

cuit implementations of associative memories.

1. INTRODUCTION

Associative memories are devices that are able to retrieve pre-

viously stored messages given part of their content. They are

used in a variety of applications ranging from CPU caches [1]

to database engines [2], and intrusion detection systems [3].

Recently, Gripon and Berrou [4, 5] proposed a novel architec-

ture for associative memories that is almost optimal in terms

of storage efficiency [6]. The number of messages it is pos-

sible to store and then retrieve with high probability grows

quadratically with the number of vertices in the underlying

graph. Moreover, the retrieval complexity is limited, even

when the number of stored messages is large.

Several applications require dedicated hardware, and

some circuit implementations of cluster-based associative

memories have been proposed, e.g. [7]. In this paper, we

consider the performance of this associative memory when

implemented on unreliable hardware. Considering unreliable

hardware is motivated by the fact that, as the feature size of

integrated circuits decreases, it is becoming increasingly hard

to control the variability associated both with the fabrication

process and with the circuit’s operating conditions [8, 9]. As

a result, larger safety margins must be used to maintain yield

and performance guarantees. Fault tolerance provided by

the algorithm allows reducing these safety margins, thereby

increasing the implementation’s efficiency. However, it is

important to characterize the cost of providing fault toler-

ance at the algorithm level in order to assess whether such

an approach is more efficient than maintaining large safety

margins.

An important performance metric for associative memo-

ries is their storage efficiency, which measures the amount of

storage redundancy that is required to implement the associa-

tive retrieval mechanism. We first present analytical results

for the retrieval performance, that is the probability of retriev-

ing a message in terms of the number of messages stored in

the memory. We then discuss the fault tolerance of the mem-

ory in terms of its storage efficiency, and show that it can be

implemented with very faulty storage with only a small loss

in efficiency.

2. CLUSTER-BASED ASSOCIATIVE MEMORIES

2.1. Message storage

Consider that we want to store a set M of messages, each

composed of c symbols in the alphabet A = {1, 2, 3, . . . , �}.

We are interested in retrieving a message m ∈ M given a

partial version of it, that is a copy of m where some of the

symbols have been replaced by an erasure symbol ⊥, ⊥ �∈ A.

To represent the structure of the memory, let us consider an

undirected unweighted graph made of c ·� vertices. The graph

is partitioned into c clusters, each containing the same number

� of vertices. Any vertex in the graph is uniquely identified

given a pair (i, j), where 1 ≤ i ≤ c and 1 ≤ j ≤ �.

To represent messages to store in the graph, we define a

function f that projects a message or a partial message m
onto a subset of vertices in the graph. We have f(m) =
{vi,j |mi = j}, where vi,j is the vertex associated with (i, j)
and mi represents the i-th symbol of m. To store a message

m ∈ Ac in the graph, we add all the edges between vertices

in f(m), with the exception of self-loops. Therefore, f(m)
becomes a clique in the graph. The graph being unweighted,

edges that are already in the graph remain unchanged.

2.2. Message retrieval

A stored message can be retrieved when only a part of its

symbols are projected onto the graph. The retrieval algorithm

takes as input a partially erased message m̃ that is obtained

from a message m ∈ M by replacing any ce < c symbols

with ⊥. We call “erased cluster” a cluster corresponding to

an erased symbol in m̃. Note that f(m̃) does not contain any
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vertex in erased clusters. The algorithm is iterative, and its

state at iteration t ∈ N can be fully described by a set V
(t)
m̃ ,

whose initial value is given by V
(0)
m̃ = f(m̃). A vertex v ∈

V
(t)
m̃ will be referred to as an active vertex at iteration t.

Two data objects are needed to describe the retrieval al-

gorithm: first the set Vm̃ of active vertices, and second a rep-

resentation of the graph edges. The edges can be represented

using a set of � × � bi-adjacency matrices, each representing

the edges between a given pair of clusters. We will denote the

matrix representing the edges from cluster i to cluster j by

Wi,j . We have that Wi,j = Wj,i
T. Since the graph edges are

unweighted, the elements of Wi,j are binary. The number of

memory bits required for storing {Wi,j} is at most

Q = �2
(
c

2

)
=

�2

2
(c2 − c). (1)

To match the organization of the adjacency data, we

choose to represent the vertex states separately for each clus-

ter. We use a set of vectors {a1, a2, . . . , ac}, where each

ai ∈ {0, 1}� represents the state (active or not) of the vertices

in cluster i. An element of ai is denoted ai[j] and defined as

ai[j] =

{
1 if vi,j ∈ Vm̃

0 otherwise.
(2)

The retrieval process is described by Algorithm 1. The

initial state vectors are obtained by using (2) with Vm̃ =
f(m̃), and upon completion, the algorithm outputs the up-

dated state vectors. The pseudo-code uses the following no-

tation: the zero vector is denoted 0, w(x) denotes the Ham-

ming weight of a binary vector x, and the operator ⊗ denotes

a matrix product where addition is replaced by logical or, and

multiplication by logical and.

In each iteration of the algorithm, we select the vertices

that will remain active based on their score. We express the

score achieved by all vertices in a cluster i as a vector si of

length �. As described on line 9, the score of a given vertex is

incremented once for every cluster in which it has at least one

neighboring active vertex. We then find the maximum score

nmax achieved in a given cluster. A vertex remains activated

if it achieves the maximum score in its cluster.

Algorithm 1 is guaranteed to converge to a fixed point [6],

but the fixed point may be such that some clusters have more

than one active vertex. Since, by definition, each message

stored involves exactly one active vertex per cluster, this

needs to be resolved. In most applications, we will be in-

terested in a decoder that generates an estimate m̂ ∈ Ac, as

opposed to {A ∪ {⊥}}c. If we assume that the messages are

independent and identically distributed (i.i.d.) with a uniform

distribution, it is optimal to select, for each cluster, an arbi-

trary symbol value from the set of active vertices. Therefore,

we define an estimator m̂ = h({a(t)1 , . . . , a
(t)
c }) such that for

each i, m̂i = j, where j is an arbitrary index that satisfies

a
(t)
i [j] = 1.

input : {a(0)1 , a
(0)
2 , . . . , a

(0)
c }

1 begin
2 E ← {i |w(a(0)i ) �= 1}
3 t ← 0
4 VALID ← E = ∅
5 while t < L and not VALID do
6 for each i ∈ E do
7 si ← 0
8 for each k ∈ [1, c], k �= i do
9 si ← si + a

(t)
k ⊗ W̃k,i

10 define nmax = maxj si[j]
11 for j from 1 to � do
12 if si[j] = nmax then a

(t+1)
i [j] ← 1

13 else a
(t+1)
i [j] ← 0

14 t ← t+ 1

15 if ∀i, w(a(t)i ) = 1 then VALID ← true

16 return {a(t)1 , a
(t)
2 , . . . , a

(t)
c }

Algorithm 1: Message retrieval algorithm

3. DEVIATION MODEL

We now describe how we model the effect of circuit faults on

the algorithm. A fault refers to the incorrect operation of a

physical component, while deviation refers to a change in the

algorithm’s behavior as a result of a fault.

The matrices {Wi,j} must be stored in a memory. In a

hardware implementation, we should expect the storage asso-

ciated with {Wi,j} to represent a large part of the complexity.

Indeed, it is straightforward to show that the amount of data

that must be accessed from {Wi,j} in order to perform one it-

eration of Alg. 1 is much less than the amount of stored data.

Furthermore, very few operations must be performed on each

bit of data, and we can therefore expect the processing cir-

cuit to be small compared to the memory. For this reason, in

this short version of the paper, we only consider deviations

occurring in the storage of {Wi,j}. The matrices with devi-

ations are denoted by W̃i,j . For a reliable implementation of

the algorithm, we define W̃i,j = Wi,j .

Integrated circuit memories such as SRAMs can suffer

from both permanent and transient faults that cause incorrect

values to appear at the output [10, 11]. In this short version

of the paper, we only consider that the storage of {Wi,j} is

affected by permanent faults. The associative memory is used

in two phases. First, we store the message set M, which

fixes {Wi,j}. We model the deviations by saying that {Wi,j}
is transmitted through Q parallel binary deviation channels

with output {W̃i,j}, where Q is defined in (1). If we assume

that deviations occur independently on each bit, the parallel

channels are independent. Once M has been stored, and with

{W̃i,j} fixed, we perform a number of retrieval operations.

A simple model for permanent defects in bit cells, but
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which nonetheless covers more than 50% of SRAM defects

[10], is to treat faulty cells as stuck at 0 or stuck at 1. One

can then define a corresponding “stuck-at” deviation channel.

Since faults are permanent, consecutive uses of a given bi-

nary channel in a given fabricated device are not independent.

However, we analyze the performance for a given M, which

means that {W̃i,j} is fixed. Therefore, each of the Q binary

channels is only used once. If the stuck-at-0 and stuck-at-1

events are equiprobable and the channel is only used once,

the transmission can be equivalently modeled using a binary

symmetric channel (BSC) with cross-over probability ψ. If

the Q bits of {Wi,j} are transmitted through this BSC, we

obtain

W̃i,j =

{
Wi,j +D mod 2 if i < j

W̃T
j,i if i > j,

(3)

where D is the indicator matrix of deviation events, that we

define as a random matrix of size � × �, where each ele-

ment di,j is an independent Bernoulli random variable with

P(di,j = 1) = ψ. For each (i, j) with i < j, we only store

one of Wi,j or Wj,i. Therefore, when considering faults, the

identity W̃i,j = W̃T
j,i remains valid.

Note that {W̃i,j} is only sampled once, and we are there-

fore interested in the performance for a particular realization

of {W̃i,j} (e.g. a specific chip), rather than the average per-

formance. However, in simulations the performance of vari-

ous realizations of {W̃i,j} has been observed to remain very

close to the mean, which motivates considering the expected

performance over {W̃i,j}. This is the approach taken for the

analysis in Section 4.

4. RETRIEVAL PERFORMANCE

We are interested in retrieving a previously stored message

given a partially erased version m̃. Let P
(t)
m be the probability

that the correct message is retrieved after t iterations. The

retrieval algorithm is such that P
(t)
m is non-decreasing, and

therefore we can obtain a lower bound on P
(t)
m by deriving an

expression for P
(1)
m .

Throughout the analysis, we assume that the stored mes-

sages are i.i.d. uniform. Denote by M = |M| the number of

messages to store. Note that during the storing process, each

message to store adds – or does not modify if it already exists

– one edge between every pair of clusters. Let us fix a pair of

vertices from distinct clusters. The probability that a message

obtained using i.i.d. uniform random variables adds the edge

between them while being stored is trivially 1/�2. Thus, the

probability that this edge is added to the graph after storing

M i.i.d. uniform messages is1

d = 1−
(
1− 1

�2

)M

. (4)

1For simplicity, we assume that M may contain repeated messages.

The existence of edges is not independent since a message

adds multiple correlated edges while being stored. However,

we can show that they can be asymptotically regarded as in-

dependent [12], and make this approximation to simplify the

analysis.

Let us now fix a message m in the set of stored messages,

and erase ce > 0 symbols uniformly at random to obtain a

partial message m̃. We will consider the probability of re-

trieving m correctly when the algorithm is used for a single

iteration, and when the bi-adjacency matrices are affected by

deviations. As mentioned in Section 3, we consider a typical

realization of {W̃i,j}. Since W̃i,j = W̃T
j,i, we can equiva-

lently model the deviations in terms of the graph model. For

each pair of vertices, if an edge exists, we remove it with prob-

ability ψ, and if none exists, we add one with probability ψ.

Let us first consider the probability P
(1)
s that a single

erased symbol is successfully retrieved after one iteration.

From the definition of the estimator h at the end of Sect. 2,

we have that for a reliable implementation, P
(1)
s = E[1/A],

where A represents the number of active vertices in the clus-

ter. However, because of the deviations on the edges, the

correct vertex is not guaranteed to achieve the maximum

score. Let nv0 be the score achieved by the correct vertex v0,

and let F denote the event that at least one incorrect vertex in

the cluster achieves a score higher than nv0 . If F occurs, the

probability of identifying the correct vertex is 0. Otherwise,

an error could still occur if some incorrect vertices obtain a

score of nv0 . P
(1)
s becomes

P (1)
s = P(F ) · 0 + P(¬F ) · E

[
1

A

∣∣∣∣¬F]
(5)

where ¬F denotes the negation of event F .

Let ck = c− ce. We first consider the probability that the

correct vertex v0 achieves a score of n0, n0 ≤ ck:

P(nv0 = n0) =

(
ck
n0

)
(1− ψ)n0ψck−n0 .

On the other hand, using the edge independence assumption,

the probability that any other vertex is connected to the active

vertex of a known cluster is P+ = ψ(1− d) + (1− ψ)d. We

can then express the probability mass function of the score of

incorrect vertices as

P(nv = x) =

(
ck
x

)
P+

x(1− P+)
ck−x, 0 ≤ x ≤ ck.

The scores of vertices are independent because of the edge

independence assumption. The probability that the correct

vertex is in the active set is then

P(¬F ) =

ck∑
n0=0

P(nv0
= n0)

[
n0∑
x=0

P(nv = x)

]�−1

.

Given ¬F , we have A = As +1, where As is the number

of vertices that are incorrect but nonetheless active. Therefore
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Fig. 1. Message error rate for 1 and 4 iterations as a func-

tion of the number M of stored messages, for c = 8, � =
256, ce =

c
2 . The solid curves represent the analytical results.

E[1/A|¬F ] = E[1/(As + 1)] is given by

E

[
1

A

∣∣∣∣¬F]
=

ck∑
n0=0

P(nv0 = n0) ·⎡⎣�−1∑
k=0

1

k + 1

(
�− 1

k

)
P(nv = n0)

k

(
n0−1∑
x=0

P(nv = x)

)�−1−k
⎤⎦

Because edges are assumed independent and subsets

of edges that target each erased symbol in the first itera-

tion are disjoint, the probability that the complete message

is retrieved successfully after the first iteration is simply

P
(1)
m =

(
P

(1)
s

)ce
.

Figure 1 shows the message retrieval performance when

messages are composed of 8 symbols of 8 bits each (i.e. � =
256), and half the symbols are erased. Simulation results for

a single iteration confirm the analytical expressions. Even

when the deviation probability is as high as 1%, the retrieval

performance remains reasonably close to that of a reliable im-

plementation. At ψ = 10−3, the difference in performance

with a reliable memory becomes negligible.

5. STORAGE EFFICIENCY

Storage efficiency compares the amount of information that

can be reliably stored in the associative memory with the

amount of storage required to represent it. For message-wise

efficiency, we propose that the amount of information stored

should be based on the expected number of messages that can

be retrieved perfectly, and on the expected number of erased

symbols that can be retrieved perfectly for symbol-wise ef-

ficiency. Message-wise reliable storage efficiency is given

by η
(t)
m = (c · log2(�) · P (t)

m · M)/Q, and similarly for the

symbol-wise efficiency η
(t)
s , replacing P

(t)
m with P

(t)
s . It is

interesting to consider the maximum efficiency that can be
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Fig. 2. η∗m (solid curves) or η∗s (dashed curves) as a function

of ψ for 1 and 4 iter. For all curves, ce =
c
2 and � = 256.

achieved by the memory. For message-wise efficiency, we

have

η∗m = max
M

(ηm) =
c · log2(�)

Q
·max

M
(PmM) , (6)

where the iteration superscript is omitted to simplify the no-

tation. The symbol-wise maximum efficiency is defined sim-

ilarly.

For a single iteration of the algorithm, we can evaluate

η∗m by combining (5) and (6) and optimizing numerically.

The efficiency can be greatly improved by using more than

one decoding iteration. In that case, we evaluate η∗m based

on simulation results. Results for c ∈ {8, 16}, � = 256,

and half the symbols erased are shown in Figure 2. As ex-

pected, the efficiency is higher if we do not require complete

messages, but only consider the probability of retrieving an

individual erased symbol. We see that large deviation rates

can be tolerated at the cost of a small reduction in the maxi-

mum efficiency. For example, when ψ goes from 0 to 0.04,

the memory with c = 16, � = 256 looses 27% of its effi-

ciency when measured symbol-wise, or 36% when measured

message-wise. On the other hand, for a 65nm CMOS process,

tolerating an error rate of 4% in an SRAM can reduce energy

consumption by close to one order of magnitude [13].

6. CONCLUSION

We studied the fault-tolerance of associative memories based

on a clustered graph model [4]. We presented a detailed

implementation strategy and a model describing how circuit

faults can introduce deviations in the representation of the

graph. We derived an analytical expression for the probabil-

ity of correctly retrieving messages from the faulty memory,

and showed that there is little degradation in the storage effi-

ciency of the memory even when 1% of the adjacency storage

is affected by faults. Our results therefore show that these

associative memories can lend themselves to efficient circuit

implementations with reduced safety margins.
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