
Information, Noise, Coding, Modulation: 

What about the Brain? 

Claude Berrou, Olivier Dufor, Vincent Gripon, and Xiaoran Jiang 

Télécom Bretagne 

CNRS Lab-STICC 

Brest, France 

firstname.surname@telecom-bretagne.eu 

 
 

 
Abstract—At the microscopic level, the brain is fundamentally 

a matter of physics and chemistry, as all the components of the 

universe are. At the macroscopic scale, behavior, psychology and 

affects are the main dimensions of its life. To convert atoms and 

molecules into intelligence, some kind of information has to be 

fixed in the grey matter of the cerebral cortex. The way this 

"mental information" is materialized and processed is still an 

enigma, probably the most puzzling problem addressed to science 

nowadays. At this mesoscopic level of the brain functioning, the 

concepts to consider are likely the same as those considered in 

communication and information theory, mainly information, 

noise, coding and modulation. This paper proposes some ideas 

that could help understand some features of the brain in an 

information-processing perspective.

Keywords—Neuroscience, information, communication, 

distributed coding, modulation, noise. 

I.  INTRODUCTION 

When trying to build bridges from information science 
towards biology, in particular neurobiology, many researchers 
may be quickly discouraged by the tremendous complexity of 
the physicochemical mechanisms brought into play in living 
organisms. The few essential principles relevant to information 
representation and processing are most often hidden under the 
biological canopy. This is particularly true when considering 
the brain, both a tremendous biological device with multiple 
concomitant processes and an outstanding "learning and 
reasoning machine" with a unique thought at any one time. 
Taking the problem from the psychological side is not easier,
as so many and often conflicting theories on human 
intelligence and aptitudes have been defended from time 
immemorial. The intermediate so-called mesoscopic level is 
perhaps the least difficult to deal with. 

A simple way to start with confidence the reverse 
engineering of the brain is to share the standpoint of Jeff 
Hawkins: "Most scientists say that because the brain is so 
complicated, it will take a very long time for us to understand 
it. I disagree. Complexity is a symptom of confusion, not a 
cause. Instead, I argue we have a few intuitive but incorrect 
assumptions that mislead us. The biggest mistake is the belief 
that intelligence is defined by intelligent behavior" [1]. In this 
spirit, why not consider that some methods or techniques that 
human intelligence has imagined to improve processing
technologies could be in return profitable to computational 

neuroscience? Some techniques that have recently emerged in 
the telecommunication field may belong to this catalogue of 
biologically acceptable solutions, especially distributed coding, 
cooperative communications and spatial modulation. 

A striking example is provided by the analogy that can be 
made between a variable-processor of a Low Density Parity 
Check (LDPC) decoder and a neuron when this is reduced to 
the McCulloch-Pitts model [2]. Both are able to aggregate 
signals, positive/excitatory or negative/inhibitory, and to 
produce an output depending on the summation result. Of
course, the analogy does not hold for the parity check-
processors since no algebraic computation seems natural in the 
brain. However, viewing neurons as variable-processor nodes 
in the cortical network may be an inspiring starting point in the 
specification of neuro-inspired message passing machines. In 
the next sections, some ideas that could help understand the 
brain at the informational level are propounded. The underlying 
rationale is that of Ockham's razor principle: always proceed 
with no more hypotheses and/or variables than needed for the 
specific problem you have to solve. 

II. THE CEREBRAL MATERIAL 

Not taking into account the metabolic components (glial 
cells, blood vessels, etc.), the brain is "simply" made of 
neurons which communicate with each other besides receiving 
and sending various physiological (sensory-motor) signals. The 
inputs of the neuron (synapses) are numerous (10,000 is a 
typical order of magnitude) and there is only one output (axon). 
There are about some tens of billions neurons in the brain, each 
one being controlled by various non trivial biological and 
genetic processes. One of them, called synaptic plasticity, is
fundamental in computational/informational neuroscience and 
says that a synapse connecting neurons A and B may be 
reinforced if the activity of A triggers systematically that of B. 
This is known as the Hebb's rule [3]. Anti-Hebbian principles 
have also been proposed to explain synapse weakening or 
disappearance [4]. 

Signals that neurons convey are of the impulse type. The 
frequency and instants of these pulses, which are called action 
potentials or spikes, is very variable. On this point, the 
informational modeling of the nervous system divides up into 
two quite distinct approaches: the spiking neuron and the 
binary neuron. 
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A. Spiking neuron 

Using an appropriate model, for instance that of Hodgkin-
Huxley [5] or simpler ones [6], spikes can be realistically 
generated. It is possible to associate binary value 1 with the 
presence of a spike, at a given time, and value 0 otherwise. 
Information being encoded both spatially and temporally and 
delays being taken into account in the circuitry, neural dynamic 
systems may be assessed with a high level of biological 
plausibility, but also with limited systemic complexity (up to 
some thousands neurons seems feasible with a standard 
computer). This model is particularly useful for the modeling 
of sensory-motor mechanisms [7] or for studying the influence 
of the various physicochemical cell parameters. 

B. Binary and multi-valued neuron 

When reducing the functionality of the neuron to that of the 
McCulloch-Pitts model, systems with millions of units can be 
simulated with acceptable response time. It is then possible to 
devise and test vast networks in which advanced concepts such 
as sparse coding [8] and clustering [9] may be implemented. 
Neuron with binary output and binary inputs (i.e. with synaptic 
weights equal to 0 or 1) is the simplest model that can allow 
studying the brain at a really informational and systemic (e.g. 
hierarchic) large scale. If needed, multi-valued neuronal output 
may be considered to take variable spiking frequency into 
account, that is, variable energy. But this multi-valued signal is 
rather to be regarded as a measure of reliability (like the 
logarithm of likelihood ratio in message passing decoders) than 
as information encoding and mapping. 

As for the connections between neurons, whatever the 
mathematical model, they are mainly of three types: short or 
long range excitatory or short range inhibitory [10]. Long range 
signals, transmitted through white matter and the corpus 
callosum, enable communication and cooperation between the 
various functional areas of the brain within and between both 
hemispheres. Short range signals serve for local dedicated
processing. This, added to the fact that inhibitory neurons are a 
minority in the cerebral cortex (about 20% [11]), may suggest 
that information storing, recovery and conveying is essentially 
provided by excitatory neurons. Section V is more explicit 
about this point. 

Despite the analogy we drew in the introduction between

LDPC variable-processors and neurons, it is difficult to admit 

that the neuron could be the repeating fundamental operator in 

the brain, due to its great diversity in shape, location within 

the six layers of the grey matter, axonal projection, 

neurotransmitter sensitivity and behavior. If one wants to find 

such an omnipotent unit to emulate the "universal" mental

operator, the concept of microcolumn (also called 

minicolumn) may be very useful. This very heterogeneous 

group of about 100 neurons repeats itself quasi-uniformly in a 

large part of the grey matter and is able to send and receive 

excitatory signals to and from all regions of the brain, as well 

as lateral short range inhibitory signals [12]-[14]. These lateral

inhibitory signals may be, for instance, necessary to the 

implementation of the Winner-Take-All mechanism which 

helps a strongly active unit extinguish other competing ones in 

its close vicinity, for reasons of limited available energy 

(blood and oxygen). 

III. THE SHANNON'S MODEL OF COGNITION 

How can a system with a limited number of operators
construct and transmit or store an accurate and robust 
representation of a richly detailed and fleeting source of 
information? Such a question is familiar in the field of sensing, 
telecommunication and mass storage and has found many 
satisfying responses, in video and audio applications for 
instance, based on the Shannon's model: firstly, information is 
cleared of useless components and then “smart redundancy” is 
added to allow error correction at the receiver or reading head 
side. This well-known source coding - channel coding scheme 
seems relevant to schematize the way the brain captures and 
stores what it considers as essential information (Fig. 1). 

The first part of the acquisition work (source coding) has 
attracted a lot of interest from the computational neuroscience 
community under the name of "machine learning". From the 
seminal perceptron [15] to deep neural networks [16], from 
decision trees [17] to dictionary learning for sparse coding 
[18], many architectures and methods have been proposed so 
far to mimic the brain as an intelligent learner and classifier. In 
contrast, much less effort has been made on the second part 
(channel coding), which is related to the problem of robust and 
durable memorization and even further to reasoning. The use of 
two distinct expressions: computational neuroscience or 
informational neuroscience could be helpful to mark the 
difference between the two classes of problems. 

Like many artificial systems (e.g. a video camera), the 
brain, as a capturing and storing machine, has to transform 
signals coming from an analog environment (the surrounding 
world and the physiological body) into stable, robust and 
durable information in order to recover it easily in case of 
necessity. The best way that engineers have found to achieve 
this in artificial systems is digitizing. Indeed, smart redundancy 
is much more resource-efficient to implement in digital 
systems than in analog ones. In the latter, exploiting the 
concept of redundancy amounts to multiplying (duplicating, 
triplicating, etc.) the material and/or the functions, that is, so-
called functional redundancy which is not a thrifty solution. 

 

 

 

 

 

 

 

 

Fig. 1. The Shannon's model of cognition: richly detailed information 

provided by the external world is strongly compressed and then "smart 

redundancy" is added to enable robust and durable memorization. 

If evolution, in its continuous race towards efficiency, has 
made good choices, it is not inconceivable that long term
cerebral memory could be built on digital principles. Indeed, 
more than one billion years ago, evolution already made the 
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digital choice for genetic memory, that is, DNA with its 
quaternary alphabet (A, T, C, G). It would not be so surprising 
that the mental information that the brain has to preserve firmly 
during the time of a life is also of the digital type. In spite of all 
attacks (chemical, radiative, degenerative) that our brains 
sustain continuously, they are able to maintain and associate a 
myriad of pieces of information for tens of years and without 
any error. "9 times 8 equals 72" is learnt during the childhood 
and may still be valid seventy years later! 

In information sciences, in particular telecommunications, 
the distinction between the two notions of signal and 
information is well understood. It is much less clear when it 
comes to the nervous system. Because all nervous cells use the 
same kind of signalization - action potentials with same shape 
and magnitude -, one could think that all these cells have the 
same functional role. But, when considering functionality and 
not cellular biology, what have in common for instance a 
neuron of the premotor cortex which contributes to a 
movement of the hand and another, in the prefrontal cortex, 
which helps remind the result of an elementary multiplication?
Obviously, these neurons use the same signalization but do not 
handle the same kind of information. One has still to 
understand how these particular cells that were initially 
adopted by evolution to map out the sensorial system have also 
become suited to the implementation of the long term memory 
(LTM). 

IV. NOISE AND VARIABILITY 

The brain is a noisy and changeable material. It could be 
compared, for instance, with an integrated circuit having 
billions of transistors, each one producing impulses fired at 
random according to a Poisson's distribution. Moreover, these 
transistors would be clustered in processing units whose size 
and organization could be modified at any time. This circuit 
would probably not work properly. The brain does! 

A. Noise 

Two types of noise have to be considered. Firstly most 
neurons have a tonic activity due to fluctuations of their 
membrane potential. A continuous flow of ions (K+, Na+ ,Cl-) 
through this membrane maintains its voltage at a constant 
resting mean value of about -65 mV. The flow of ions being a 
random walk, the voltage varies around this value and may 
reach a sufficient level to depolarize the inner side of the 
membrane and make the neuron fire [19]. Fluctuations in 
neurotransmitter vesicle release [20] may also contribute a lot 
in the generation of spurious spikes as well as incoming 
random impulses coming from other neurons. The latter point 
indicates that spurious spikes may be strongly correlated 
among neighboring cells. 

Secondly, we have to consider another kind of noise whose
effect is not the generation of spurious spikes but the 
suppression of good ones. For chemical reasons (lack of 
neurotransmitter at the arrival of a spike), the voltage-current 
conversion at the synaptic junction can fail. For instance, 
authors have shown that in natural conditions, the average 
release probability of glutamate (the main excitatory 
neurotransmitter of the nervous system) in cortical neurons is 

0.5 to 0.64 at low stimulation frequencies and may be as low as 
0.1 for frequencies higher than 5 Hz [21], [22]. 

These two kinds of noise, positive (insertion) and negative 
(deletion), suggest modeling communication paths between 
neurons or columns as insertion/deletion channels with high 
error rate. The way mental information propagates between the 
different areas of the brain must have adapted to these very 
severe conditions (see section VI). 

Lastly, it is well known that noise can play a positive role in 
the dynamics of non linear systems, for instance to escape local 
minima or to synchronize oscillators. Though several authors 
have also considered neural noise as beneficial in mental 
information processing (see [23] for instance), in order to be 
coherent with the analogy between information/communication 
systems and the brain that we want to deepen, noise has to be 
regarded in a classical way, that is, as the opponent of 
information. 

B. Variability 

There are no two human brains identical. With tools that 
continue to improve, especially functional magnetic resonance 
imaging, neural activity may be mapped with enough accuracy 
to assess inter- and intra-subject variability on both structural 
[24] and functional [25] bases. This variability has been proved 
both in space and in time [26]. 

One very interesting point, highlighted in [25] for instance, 
is that variability does not express itself uniformly across brain 
regions. Heteromodal (associative) regions are more plastic 
than unimodal (specific) ones. Translated in terms of 
information processing, this would mean that acquisition and 
compression principles have been somewhat stabilized during 
evolution and are reproducible whereas long term memory and 
associative mechanisms are more tentative and adaptive in their 
implementation. In particular, one can see variability in frontal 
and parietal cortices (the main associative areas) as a 
consequence of redundancy rate adaptation. In order to avoid 
overloading and interference due to excessive density in a 
dedicated memorization network, one may imagine that this 
would extend the circuitry in its vicinity to benefit from more 
additional discriminating (redundant) information. In other 
words, the redundancy rate in the "channel coding operation of 
the brain" would depend on the amount of knowledge. 

V. CODING 

The expression "neural code" may have various meanings 
depending on the topic in discussion. We are interested here in 
the way the many elements of knowledge that our reason 
exploits are robustly stored in the cortex in spite of its poorly 
reliable components. Once again, two visions in principle 
conflict: that of the "grand-mother cell" and that of neuronal 
assemblies. The former [27] says that a fundamental and
recurrent memory such that a familiar face or name is fixed by 
a unique neuron in a specialized cortical region. This neuron is 
at the top of a hierarchical processing that reduces the amount 
of information step by step. The latter [3], [28] upholds the idea 
that small groups of neurons (or microcolumns) activate 
synchronously to express elements of knowledge. In order not 
to limit memory capacity, these groups have to overlap. 
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When a single node in a network (or a single bit in a binary 
dataset) is devoted to the expression of a particular piece of 
information, the only one way to protect it against erasure or 
error is repetition. This means that the number of grand-mother 
cells would be several times larger than the number of elements 
to store. The counting law of elements of knowledge as a 
function of the network population would then be significantly 
less than linear. In contrast, when several nodes are used 
together to materialize elements, the notion of redundant 
coding may lead to more subtle protection strategies as it is for 
bits in a codeword. This leads to the concept of assembly or 
coactivation coding. 

On another essential point, considering the high level of 
noise that affects communication between neurons as well as 
the natural short term fluctuations of synaptic conductance 
[29], the argument of analog memorization does hardly hold. 
Analog memorization hypothesis, which means that knowledge 
is embedded in synaptic weights through hebbian and anti-
hebbian rules, is flimsy when it comes to robustness and 
durability.

All the arguments above advocate for the vision of a binary 
assembly-based LTM. Assembly-based models have already 
been proposed and evaluated with a high level of biological 
accuracy. In [30], [31] for instance, the authors demonstrate the 
possibility for neurons (or groups of neurons that we can 
assimilate to microcolumns) to activate synchronously when 
they are modeled as spiking pyramidal cells with the Hodgkin-
Huxley equations. Inhibitory interneurons are used to make the 
discrimination between all possible patterns easier. However, 
because these assemblies cannot overlap, the diversity (the total 
number of patterns that can be stored with later good enough 
recovery rate) follows a linear law. 

We have recently demonstrated that Willshaw networks 
[32], revisited in order to allow them to handle non binary
alphabets, are able to store patterns according to a quadratic 
law and with quasi-optimal efficiency [33]-[35]. This good 
performance results from the redundancy naturally offered by 
the more than sufficient connections binding an interdependent 
and coactivating assembly of nodes. To speak in terms of graph 
theory, a fully interconnected sub-graph in a graph is called a 
clique (Fig.2 (a)). The number c of its vertices is called the 
clique order. Let us consider the case of degenerated cliques, 

such at that of Fig. 2 (b) and suppose the node degree � (2 ✁ � 

✁ c -1) is the same for every node. Likening this pattern to a 
graphical codeword whose symbols are the edges, we can 
observe that the minimum Hamming distance is given by the 
comparison of two patterns having c - 1 common nodes, thus 

differing in 2� edges: 

   ✂= 2mind    (1) 

On the other hand, when the size of the graph is large in 
comparison with that of patterns, the coding rate is given by the 
ratio between the minimal number of edges necessary to 
specify a clique and the number of actual edges [33]. This 
coding rate is thus given by: 

   

2

2

1

c

c

R
✂

✄
☎

✄
✆
✝

✆ +

=    (2) 

For c even, this reduces to 1/�, leading to a merit factor 

   2min == RdF    (3) 

For c odd, the value is a little bit more favorable. This very 
simple demonstration shows that a clique-based code, even if 
edges are missing (uniformly), offers error correction 
properties thanks to a merit factor larger than 1 (the merit 
factor of the well-known (8,4,4) Hamming code is also equal to 
2). This is really a good mathematical argument to support the 
hypothesis of cell-assembly cerebral coding. Even if 
connections disappear due to some damaging, the quasi-clique 
is still able to respond synchronously or to resonate in response 
to some relevant stimuli. The missing connections can also be 
repaired thanks to the Hebbian rule. Note also that this model 
involves only excitatory connections. Among other recent 
studies worth of mentioning about this kind of approach, we 
can cite [36] for improved diversity and [37] for resilience 
properties. 

 

(a) (b)  

Fig. 2. (a) A perfect clique of order c = 8. (b) The same clique with regular 

degeneration (diametral connections were removed) resulting in a node degree 

✞  = 6. Both patterns, as codewords of a binary graphical code, benefit from 

the same error correction properties because the merit factor F is independent 
of the node degree (if edges are uniformly removed) and always equal to 2 (or 

slightly larger for c odd). 

Cerebral processing is fundamentally dynamic. So, in 
addition to the existence of atemporal elements of knowledge 
(cliques or quasi-cliques as described above), sequences have 
also to be considered. To implement sequences in the network 
of microcolumns, edges have to be replaced with arrows, which 
are more natural, biologically speaking (communication 
between neurons is unidirectional, from axons to synapses). 
Fig. 3 depicts a short fraction of a sequence composed of three 
successive patterns. Each symbol of a pattern in connected to 
all symbols of the subsequent one, which offers full 
redundancy in the immediate connectivity. Moreover, to reflect 
the anticipation effects brought to the fore in many 
experiments, hearing for instance [38], the activation of a 
pattern at time t may prepare those to come after t + 1. In Fig. 
3, the activation of circles, at time t, prepares that of squares at 
time t + 2. 
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t t + 1 t + 2
 

Fig. 3. A fraction of a sequence with three patterns (circles at time t, triangles 

at t + 1 and squares at t + 2). All circles are connected to all triangles and 

squares. The activation of circles triggers that of triangles and anticipates that 
of squares. Each pattern may also be interconnected as a clique (not 

represented here). 

Both spatial assembly redundancy and sequential 
redundancy, with or without anticipation, may be combined to 
make the activation of a node more reliable. If c is the number 
of symbols in a pattern, fully interconnected as a clique and if 
this pattern has the control over the r subsequent ones, the 
number of stimulating signals that each node receives is c - 1 +
rc. Of course, implementing so many nexuses has an 
immediate effect on the network density and may lead to 
overloading. This problem has been studied in [39]. 

VI. NETWORK AND MODULATION 

The most astonishing feature of neural communication is 
probably the fact that a neuron is not aware of where the spikes 
it fires will arrive. Thus, the brain cannot be compared with a 
classical network, such as Internet, with addresses and routers. 
However, the neuron does not project its axon at random as its 
genetic program imposes a type of connection, short or long 
range and in the latter case its preferred interregional relations. 
So the brain appears to be a peculiar kind of network 
presenting both broadcasting and routing characteristics. 

To be as simple as possible, we can see the cortical network 
as composed of two distinct families of functional modules: 
unimodal (specialized) and multimodal (hetero-associative). 
Unimodal functions deal with dedicated problems such as 
vision, face recognition, hearing, etc. Multimodal elements, 
also called hubs [40], receive various pieces of information 
from other parts of the brain so as to elaborate some kind of 
syntheses that could be useful for other cerebral processes. All 
this is reminiscent of what is called cooperative communication 
in the field of telecommunication [41]. By analogy with the 
decode-forward principle of multi-relay communication, a 
speculative vision of the role of a multimodal region would be 
that of an associate-decode-forward (ADF) function. Receiving 
simultaneous stimuli from some local networks (A, B, C, …), 
for instance signals sent by a resonating assembly inside A, by 
another one inside B, etc., the hub (X) will try to make sense of 
this event. To do this, X will attempt to find in its own 
experience, the trace of a coactivating assembly (a clique or a 
quasi-clique) being the most representative as possible of the 
on going event. If the result is positive, X will forward it to 
some parts of the brain that could be concerned. Because X is
not a mere re-transmitter of signals stemming from A, B, C,…, 

but performs a local task of recovery, with possible correction 
and/or completion, the analogy with the decode-forward 
principle seems quite relevant. 

Around this idea of cerebral cooperative communication, 
many schemes linking specialized and hetero-associative 
functional units may be contemplated. Plausible and powerful 
computational architectures will certainly emerge in the years 
to come, benefiting from the continuous progress obtained in 
cerebral connectivity thanks to structural and functional 
imagery. 

Communication between local cortical networks is 
achieved through the grey matter (for short range nexuses) and 
the white matter (for both short and long range nexuses). 
Signals are transmitted on multi-wire channels, called bundles 
or tracts and the presence of several bundles between two 
regions provides full duplex communication. The estimated 
number of wires linking two regions (about one million [42]) is 
much more in accordance with the population of microcolumns 
than with that of neurons, which reinforces the hypothesis of 
the microcolumn as the fundamental processing unit.

Currently, there is no technical means to observe the traffic 
within bundles of axons. Only indirect methods may give some 
estimation. For instance, based on energetic considerations, 
[22] suggests a 1% - 16% margin as the fraction of 
simultaneous active axons at a given time. This could be 
reminiscent of what is called spatial modulation in MIMO 
systems with either one transmit antenna [43] or multiple ones 
[44], and would suggest that mental information is conveyed 
by sparse combinations of active axons. One of our studies to 
come in the next future will deal with such a model of cerebral 
communication, taking into account noisy insertions and 
deletions as introduced in section IV. 

VII. CONCLUSION 

This paper has been written for the benefit of colleagues 
who could be interested in joining the small but expanding 
community of informational neuroscience. This field of 
research is to be distinguished from computational 
neuroscience (and machine learning as one of its important 
applications) and deals with the way mental information is 
encoded, retrieved and propagates. Informational neuroscience 
is to channel coding what computational neuroscience is to 
source coding. However, as in communication systems, 
compression and protection are also two very related and even 
overlapping matters in the brain functioning. 

The principles that the brain has adopted to elaborate and 
fix mental information have still to be discovered and/or 
validated. It would not be so surprising that some ideas that 
have emerged from the imagination of researchers in 
information and communications technology, especially 
distributed coding and cooperative communications, could also 
be those chosen by life and evolution to bring them some 
intelligence! In this paper, we have proposed some leads to 
cope with this cross-fertilization of information/communication 
science and neuroscience, with the underlying conviction that
the fundamental principles of cognition are not so numerous. 
Among these, the hypothesis of cerebral memory and 
communication based on digital principles deserves much 
attention. As a very speculative but inspiring example of 
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analogy, would it not be possible to see the inter-hemisphere 
communication as a kind of turbo processing, allowing both 
parts of the brain to work at the same time on common data 
(mainly sensorial) and specific ones (their own experience and 
architecture) and finally to agree on a shared decision, that is, a 
fixed point solution of their distributed process? 
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