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Abstract Associative memories retrieve stored information
given partial or erroneous input patterns. A new family of
associative memories based on Sparse Clustered Networks
(SCNs) has been recently introduced that can store many
more messages than classical Hopfield-Neural Networks
(HNNs). In this paper, we propose fully-parallel hardware
architectures of such memories for partial or erroneous
inputs. The proposed architectures eliminate winner-take-all
modules and thus reduce the hardware complexity by con-
suming 65 % fewer FPGA lookup tables and increase the
operating frequency by approximately 1.9 times compared
to that of previous work. Furthermore, the scaling behaviour
of the implemented architectures for various design choices
are investigated. We explore the effect of varying design
variables such as the number of clusters, network nodes, and
erased symbols on the error performance and the hardware
resources.
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1 Introduction

Associative Memories are structures that store data patterns
such that, when a partial pattern is presented as an input,
the memory can quickly recover the full pattern. There-
fore, the function of an associative memory is different from
indexed memories in which data is accessed by presenting
an explicit address as input which is often determined after
an exhaustive search operation. Associative memories elim-
inate exhaustive search operations and are thus attractive in
certain applications such as data mining and implementa-
tion of sets, where the computations can benefit from their
specific functioning [5, 9, 12, 15, 16].

Content-Addressable Memories (CAMs) are specific cat-
egories of associative memories in which two data fields
are associated with each other: An input field containing
pointers (tags) to an output field, where the actual data is
stored. The architecture of the tag field is referred to as
CAM in literature by which an input can be matched against
the stored contents during the search process. CAMs are
used in a variety of applications such as image processing
[13] and network routers [3, 8]. However, CAMs consume
large amounts of power due to the operation of parallel com-
parators performing brute-force search [14]. In applications
where fully-associative CAMs are required such as Transla-
tion Lookaside Buffers (TLBs) [1, 2, 4], they only contain
a few entries and dissipate significant amounts of the total
power.

A classical state-of-the-art associative memory is the
Hopfield Neural Network (HNN) [7]. HNNs are also known
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as auto-associative memories, where inputs and outputs are
not separated in the way they are represented in the net-
work as opposed to their hetero-associative counterpart.
In this paper, we always refer to auto-associative memo-
ries. An HNN is capable of storing (learning) the patterns
(messages) by linking all of their constituent data bits, and
storing the links in a memory module. Using the stored
links, HNNs can then retrieve the full length of a previously
stored pattern given only a part it.

Although HNNs demonstrate attractive learning and
retrieving features, there exists major drawbacks with them:
First, in order to increase the size of the memory, the length
of the messages need to be unnecessarily increased. There-
fore, the number of different messages HNNs can learn
(diversity) is small since, due to a fixed number of available
physical memory bits, they can only store few long mes-
sages instead of many short ones. Second, the ratio between
the number of information bits that it can store (capacity) to
the memory bits that it requires to store the links (efficiency)
approaches zero as the memory size is increased.

A new class of associative memories, also known as
Sparse Clustered Networks (SCNs) has been proposed in
[5] that addresses the drawbacks of the HNNs. It proposes
an algorithm for associative memories that features a large
diversity and a significantly superior efficiency. SCNs are
graphically modelled, similar to HNNs, by nodes (neurons)
and connections between them. However, unlike HNNs,
the neurons are grouped into clusters and the connection
weights are binary [6].

A proof-of-concept hardware architecture of an SCN-
based associative memory has been proposed in [10], where
the authors show that when implemented in hardware, the
architecture provides significant speedup compared to its
software counterpart. However, the previous architecture
requires resource-hungry Winner-Take-All (WTA) mod-
ules, which are based on a classical compare-and-select
algorithm.

In this paper, we present an extended version of a previ-
ously proposed work in [11], where preliminary hardware
implementation results for two reduced-comp-lexity archi-
tectures were demonstrated: an architecture useful for appli-
cations that recover partially erased input patterns, and an
architecture suitable for applications that the input patterns
may also contain erroneous bits. In this paper, essential
design variables and the effects of their variations are also
evaluated for the proposed architectures. The exploration
includes (i) the effect of the number of erased symbols on
the error performance of the message retrieval process, that
is the number of correctly retrieved messages to that of
the total inputs, (ii) the effect of increasing or decreasing
the number of clusters on the allocated hardware resources
and the error performance, and (iii) the effect of the num-
ber of iterations on the convergence of the output of the

associative memory for various erasure conditions. Fur-
thermore, the scalability of the hardware architectures and
their limitations are discussed. The proposed architectures
introduce new decoding methods in hardware that elimi-
nate the requirement to employ the winner-take-all modules
in [5, 6, 10]. Therefore, they improve the design complex-
ity by reducing the required resources and increasing the
maximum operating frequency in an attempt to improve
the scalability. In addition, the proposed architectures have
a similar error performance to that of [10]. The algo-
rithm is explained from a hardware design perspective in
Section 3, and the hardware implementations are introduced
in Section 5. In Section 4 the design variables and the effects
of their variation on the error performance and hardware
resources are studied for the proposed algorithm and archi-
tectures. Section 6 summarizes the results, and is followed
by conclusions in Section 7.

2 Review of Hopfield Neural Networks

Hopfield Neural Networks are biologically-inspired state-
of-the-art family of associative memories which are repre-
sented by n nodes (neurons) that are fully interconnected by
integer-weighted links. Each neuron is the place-holder of a
bit in an input data (message). A link between the i-th and
the j -th neuron in the network (1 ≤ i, j ≤ n) has an integer
weight, ≤ w(i,j). The number of messages the network has
stored is referred as M in this paper. Messages to be stored
and to be retrieved are n bits in length, such that the index
of each bit corresponds to that of a neuron in the network. A
set of M messages are stored in the network by adding the
links between the nodes to the network, and storing them in
a storage device according to the following algorithm:

wi,j ←
⎧
⎨

⎩

M∑

m=1
vmi v

m
j , if i �= j

0, otherwise
, (1)

where vmi is the binary value of the i-th binary bit in a
message m (1 ≤ m ≤ M). Therefore, the hardware imple-
mentation of the HNN must account for M + 1 distinct
values for each link in a network including n(n − 1)/2 dif-
ferent link values by which the capacity and the efficiency
of the network can be computed (see [5]).

The message retrieval (decoding) process is performed in
an iterative process given a partial and/or erroneous input
pattern that updates the value of each neuron vi by retrieving
the trained links according to the following rule:

v∗i ←
⎧
⎨

⎩

+1, if
M∑

m=1
wi,j vj ≥ 0

−1, otherwise
, (2)
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where v∗i is the updated value of the i-th neuron at the end
of an iteration. Antipodal format of the input bits permits an
erased value in the input pattern (erasure) to be presented as
zero. In other words, an erasure cannot contribute in favour
of or against the activation of a neuron (setting its value to
+1 or -1 respectively). It can be observed that the number of
nodes is equal to the number of bits in a message. Further-
more, the capacity of the network depends on the number
of neurons. Therefore, the number of bits in a message is
dominated by the capacity of the network. In [5], the authors
showed that the efficiency of HNNs, that is the number of
memory bits stored to the ones used, tends to zero as the
number neurons is increased.

3 Sparse Clustered Networks

First introduced in [5], and similar to HNNs, sparse clus-
tered networks belong to a class of associative memories
that can be modelled graphically by showing the associa-
tions between related patterns by lines and nodes. As shown
in Fig. 1 SCNs can be represented as a graph consisting of
a set of computing nodes (neurons) and binary connection
weights as opposed to their integer-valued counterpart as
in HNNs. More precisely, the network consists of n binary
neurons arranged into c equally-partitioned clusters. Each
cluster is associated with a portion of a message to be
learned or retrieved. The network is c-partite with respect
to the clusters previously defined, which means that two
neurons in a same cluster cannot be interconnected. A par-
tial input pattern is presented and a sparse set of neurons
are activated which represent the matching learned pattern.
The set is then encoded to form the full output pattern, also
called a clique.

3.1 Message Training

In order to store messages in the SCN (training), a message
m of K bits is divided into equal portions of κ bits each
resulting in the creation of c = K/κ sub-messages. Each

Figure 1 Graphical representation of neurons, clusters and cliques.

cluster in the network consists of l = 2κ binary neurons,
where each neurons represents a possible sub-message. A
function that maps the binary value of each input sub-
message to its equivalent integer number between 1 and l

is considered in this work. This integer value is the index
of the neuron to be activated in each cluster. Once the neu-
rons corresponding to an input message are determined in
all of the clusters, the corresponding binary connections are
added to the network, and stored in a memory unit. In other
words, once all the connections have been determined for
the message to learn, a neural clique is constructed as shown
in Fig. 1.

In this paper w(ci ,lj )(ci′ ,lj ′) refers the binary interconnec-
tion value between the j -th neuron of the i-th cluster to the
j ′-th neuron of the i ′-th cluster.

3.2 Message Retrieval

To retrieve a message, it is first determined which neurons
should be activated given a partial or erroneous input pat-
tern. Because the stored messages are matched against a
partial input message, multiple neurons for a cluster might
be activated. The interconnection weights between clusters
are then used to allow the learned associations between por-
tions of the learned message to affect which neurons should
be activated. This process iterates until only one neuron per
cluster is activated or the number of activated neurons is
not changed. The active set of neurons is then encoded to
form the output. The decoding process is performed in two
stages: Local Decoding (LD) and Global Decoding (GD).
Only global decoder is performed iteratively to retrieve the
message.

3.2.1 Conventional Algorithm

Local Decoding In the conventional local decoding pro-
cess [5, 6, 10], the indices of the neurons to be activated
in each cluster are determined. Using the scalar product
of a matrix g with each κ-bit sub-message I i (1 ≤ i ≤
c), the j -th neuron of the i-th cluster is given a score,
s(i,j):

s(i,j) =
κ∑

h=1

g(j,h).(I
i)T (h) (3)

where g(j,h) denotes the h-th element of the j -th row of
matrix g, and (I i)T (h) denotes the h-th element of the trans-
posed vector I i . In this paper, g is an l×κ matrix containing
ordered antipodal values representing integer numbers rang-
ing from 1 to l. This ordering is consistent with the way
a sub-message was mapped to a neuron in the training
process.
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The scoring process is then followed by finding the
maximum value of the scores that would exceed a certain
threshold value σ :

v∗(i,j) ←
⎧
⎨

⎩

1, if s(i,j) = smax

and smax ≥ σ

0, otherwise
, (4)

where the value of σ depends on the number of erased bits
in a sub-message. This step is referred to as winner-take-all
(WTA) rule in the theory of neural networks where only the
neuron(s) with maximum score(s) (smax) are activated.

Due to the possible presence of erasures in an input mes-
sage, it is possible that after local decoding process more
than one neuron is activated in each cluster causing ambigu-
ities in constructing a unique clique. These ambiguities are
the attempted to be disambiguated in the global decoding
process.

Global Decoding Following local decoding, global decod-
ing is performed using the stored links and the activated
neurons in the local decoding process. Similar to the local
decoding process, each neuron is given a score but in a
different computational procedure. In order to compute the
score of the j -th neuron of the i-th cluster (s(i,j)) in global
decoding, the link values of all other neurons in other clus-
ters to the neuron being globally decoded are first multiplied
by the binary values of their attached neuron in other clus-
ters. These values along with a scaled value of the neuron
being globally decoded are then added together to compute
the score:

∀i, j, s(i,j) =
c∑

i ′=1

l∑

j ′=1

w(i ′,j ′)(i,j)v(i ′,j ′) + γ v(i,j). (5)

The addition of the scaled value of the neuron being glob-
ally decoded is referred to as the memory effect [5], and
is to consider the value of the local decoding process. The
scale factor, γ is necessary to achieve good performance
by enabling a memory effect such that a learned message
is distinguished from the non-learned ones. In this paper
γ = 1 is considered for simplicity in the hardware imple-
mentation. Once all the scores are computed, the WTA rule
is then applied using Eq. (4) similar to the last step of the
local decoding process. The process of computing scores
and applying the WTA rule continues in an iterative process
using Eqs. (5) and (4) respectively until either the values
converge, i.e. more iterations are ineffective in changing
the retrieved bits, or the maximum limit of the number of
iterations is reached.

3.2.2 Proposed Local Decoding

It is possible to simplify the functioning of the conven-
tional local decoding process [5, 6, 10] by considering the

fact that the maximum possible value for a neuron in the
local decoding process is directly dependent on the num-
ber of erased bits per cluster. Therefore, it can be derived
to be equal to κ − ne where ne is the number of erased
bits. This simplification will eliminate the need to apply
the WTA rule after finding scalar product of g and I as
follows:

v(i,j) ←
{

1, if s(i,j) = κ − ne
0, otherwise

. (6)

3.2.3 Proposed Global Decoding

It is possible to reduce the computational complexity of the
conventional global decoding using two methods:

Method I As mentioned earlier, the local decoding process
process can result in more than one activated neuron in the
clusters with erasures or erroneous values. It can be shown
that the score of a neuron being globally decoded can be
determined to be (or remain) activated only if it receives at
least one signal from every other cluster than itself. In other
words, the ambiguities of other clusters will not have an
effect on the value of the neuron being computed in global
decoding. In [6], the scoring process for the new discovery
is expressed as:

s(i, j) =
c∑

i ′=1

max
1≤j ′≤l

(
w(i ′,j ′)(i,j)v(i

′, j ′)
) + γ v(i, j). (7)

Since the maximum value of w(i ′,j ′)(i,j)v(i ′, j ′) is equal to
one, the decoding process can be expressed as:

v∗(i, j) ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,
c∑

i ′=1

l∨

j ′=1

(
w(i ′,j ′)(i,j)v(i ′, j ′)

)+
γ v(i, j) ≥ σ

0, otherwise

, (8)

where
l∨

j ′=1
performs an l-input logical OR operation, and

σ is a threshold value that can be adjusted to fine-tune the
error rate in case the input messages are erroneous instead
of containing erased bits. If σ = γ + c− 1, this method can
only be useful for retrieving inputs containing erased bits
and not for the erroneous ones.

As an example, let us assume a network comprised of
three clusters (c = 3), two neurons each (l = 2), γ = 1, and
a single learned message “010”. An erroneous input mes-
sage “110” will activate a false neuron in the first cluster.
Therefore, if σ = c, all neurons will switch off after the
first iteration and therefore the network will not retrieve the
message. On the other hand, if σ = c − 1, the network will
be able to retrieve the correct message.
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This algorithm is the basis of the first proposed hard-
ware implementation (Architecture I) explained later in this
paper.

Method II In scenarios where the input messages are not
erroneous and only contain erased bits, a neuron is activated
when its score is equal to γ +c−1 during the global decod-
ing. The global decoding process can then be expressed as:

v∗(i, j) ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
c∑

i ′=1

l∨

j ′=1

(
w(i ′,j ′)(i,j)v(i ′, j ′)

)

+γ v(i, j) = γ + c − 1
0, otherwise

. (9)

Method I (8) can therefore be altered to suit digital cir-
cuit implementation by removing the sum and using logic
symbols as shown in:

v∗(i, j) ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
c∧

i ′=1

l∨

j ′=1

(
w(i ′,j ′)(i,j)v(i ′, j ′)

)

∧
v(i, j)

0, otherwise

, (10)

where
c∧

i ′=1
performs a c-input logical AND operation. This

method can only be used for a case when bit erasures exist,
and will not work for erroneous input corrections. This algo-
rithm is the basis of Architecture II explained later in this
paper. Equations (9) and (10) are equivalent when γ �= 0.

This representation of the global decoding process is
the basis of the second proposed hardware implementation
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Figure 2 Comparison between message error rate of the previous [10]
and the proposed methods (l = 54, n = 432, it = 4, ce = 50 %).

(Architecture II). Software simulation results for confirm-
ing the validity of Eq. (9) are depicted in Fig. 2 comparing
the error performance of the conventional global decoding
algorithm with the proposed methods. Since the decoding
algorithm of Method I and Method II is the same for erasure-
only scenarios, the error performance of both methods are
also equivalent.

4 Design Space Exploration

There are a few choices one can make in designing an
SCN-based associative memory, and performing the mes-
sage retrieval process. The effect of the message density, and
the number of iterations on the error performance given a
fixed number of erased clusters (ce in percentage) has been
studied in [5]. The effect of the number of bit erasures on
the error performance was discussed in [10]. In this section
we investigate the impact of a few other choices focusing on
scenarios, where all of the bits for one or more sub-messages
are erased rather than individual bits.

4.1 Number of Clusters

The number of clusters in an SCN-based associative mem-
ory determines the flexibility of the number of possible
different locations of erasures. For example, if a K-bit mes-
sage is used in an SCN network with c1 or c2 clusters
(c1 < c2), the network with c2 clusters will permit random
erasures in a smaller range of lengths and is thus more flex-
ible on the position of erasures. In Fig. 3, it is shown that
given a fixed number of neurons and a fixed percentage of
erasures in the message bits, increasing the number of clus-
ters will also increase the error rate. Due to the reduction
of the number of neurons per cluster, fewer connections are
available that given the same number of stored messages,
as in a case with smaller number of neurons per cluster,
results in an increased density and thus an increased error
rate.

4.2 Number of Erased Clusters

Another important factor in the error performance is the
number of erasures in the input message (erasure rate). If we
assume uniform random distributions of inputs, a particular
position of the erasures does not have any advantages or dis-
advantages on the error performance. In Fig. 4, the impact
of various erasure conditions on various network parame-
ters is shown for a fixed number of neurons in total and
different number of clusters. The first observation is that
the difference of the effect on the error performance for
25 % compared to 50 % erasures is more dramatic for a net-
work with 4 clusters compared to another network with 8
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Figure 3 The effect of
increasing the number of
clusters given a fixed number of
neurons and the number erased
clusters on the message error
rate (ce = 50 %).
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clusters regardless of the number of iterations. The second
observation is that for a network with 4 clusters, only a
single iteration is sufficient to achieve convergence given
inputs with 25 % erased clusters. However, increasing the
number of erased clusters will require more iterations to
achieve a converged output.

4.3 Iterations

After local decoding, global decoding is performed itera-
tively to achieve convergence or a desired error level. As
more neurons are disambiguated in each iteration, the deac-
tivated neurons cause further reduction of ambiguities in
the next iteration by resulting in 0’s in the outputs of the
AND operations of Eq. (9). Figure 5 depicts the effect of the
number of iterations on the error performance for various
network parameters given a fixed number of neurons in all
networks. It can be observed that as the network converges

after the second iteration for a network with 4 clusters,
whereas for a network with 8 clusters, larger number of
iterations are required to reach convergence. Therefore, iter-
ations have a higher effect on convergence for networks with
larger densities.

5 Proposed Hardware Implementation

In designing the hardware architecture of SCN, algorith-
mic and design parameters are selected according to the
input characteristics (length, erasure locations, erroneous
and/or erasure bits), available hardware resources, speed,
and performance requirements. In Section 4, we discussed
how different parameters influence the error performance.
In this section, we investigate the explored parameters in
hardware implementation and suggest suitable architectures
accordingly. Considering the evaluation results in Section 4

Figure 4 The effect of
increasing the number of erased
clusters on the message error
rate for different sizes of
clusters and given a fixed
number of neurons.
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Figure 5 The effect of
increasing the number of
iterations for two different
number of clusters (ce = 50 %).
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to develop an initial intelligent guess for the parameters, the
designer needs to iteratively evaluate the parameters of the
design back-and-forth using Section 4 and this section to
meet a specific hardware and algorithmic requirement.

The number of nodes, clusters, iterations are thus to be
selected first by using software simulations according to
the required diversity, message lengths, erasure locations.
Once an initial intelligent guesses are made, the designer
can tune the design parameters after running software simu-
lations according to Section 4 to meet the error performance
requirements. Then, the desired hardware solution can be
selected by reviewing this section. If the parameters that
were initially selected are too resource-hungry or slow, the
designer must go back to Section 4 and update the parame-
ters (eg. increase the number clusters without increasing the
total number of nodes).

Two architectures are proposed: (i) The first architecture
(Architecture I) incorporates the proposed local decoding in

Section 3.2.2, with the proposed global decoding in Method
I (8), (ii) The second architecture (Architecture II) incorpo-
rates the proposed local decoding process with the proposed
global decoding in Method II (10).

5.1 Design Hierarchy

A top-level system diagram of the proposed hardware archi-
tectures is depicted in Fig. 6. There are two types of possible
input messages: training or retrieving. The input messages
contain antipodal values (−1 or +1) or zeros to indicate
erasures. Therefore, two bits are required to represent these
values: 00 → Erased, 01 → +1, and 10 → −1.

The difference between this design hierarchy and that
reported in [10] is in the way both the local and the global
decoders are implemented. A threshold generator module
is designed to generate the required threshold values for
local decoder based on the number of erased bits as shown

Figure 6 Simplified block
diagram of the top level
hierarchy with shaded regions to
show the improved modules
compared to [10].
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in Section 3.2.2. The global decoder module has also been
re-designed in two possible ways to implement the proposed
global decoding algorithms discussed in Section 3.2.3.

Once the network is trained with the messages, the
message retrieval process can be initiated by presenting par-
tial input patterns to the network. Local decoding and the
iterative global decoding processes are then performed to
generate the output results. An output encoder module is
dedicated to convert the l-bit values of the neurons in each
cluster to κ bits. If at the end of the last iteration more than
one neuron is activated, a sequential encoder can be imple-
mented to sequentially output the values. However, in this
paper the latter scenario is not implemented i.e. it is assumed
that the last iteration will produce a single activated neuron
in each cluster.

5.2 Architecture of the Training Module

The training of the network is achieved by storing the
binary links in c two-dimensional register arrays of size
(l × (c − 1)l) bits as shown in Fig. 7. The links associated
with the messages are sequentially stored to the FF array in a
similar way to Static Random Access Memories (SRAMs),
with the difference that in SRAMs, simultaneous access to
data for different addresses is not possible. A parallel array
of OR gates are employed to merge the values of the links

for different messages in the register array by first reading
the appropriate values of the link values and performing the
logical OR on them with the incoming inputs. This array of
OR gates is necessary since when consecutive messages are
trained into the network, one can overwrite the links asso-
ciated to that of the previous ones otherwise. A multiplexer
(OR Mux)is employed that selects which row of the register
array must be OR-ed with the new input depending on the
values of the inputs. The row and column decoders are sim-
ply one-hot decoders that convert each κ bits of the message
into 2κ bits.

The registers are accessed independently to permit par-
allel computation of the values of the neurons in global
decoding. Since a neuron in each cluster is connected to all
the neurons in other clusters than itself, and that each con-
nection requires one bit of storage device, the number of
memory bits required to store these connection is given by
c(c − 1)l2.

5.3 Proposed Architecture for Local Decoding

The proposed architecture of the local decoder is based on
the algorithm presented by Eq. (6) and depends on the num-
ber of erased bits and the total number of bits in a message .
The local decoding process is initiated by first determining
the threshold value from which, if a neuron’s score exceeds,

Figure 7 Architecture of the
training module consisting of an
array of parallel independently-
accessed flip flops storing the
binary links between neurons in
different clusters.



J Sign Process Syst (2014) 76:235–247 243

+

-

Figure 8 Architecture of the threshold generator used by the local
decoder.

it will be activated. This threshold value is generated using
the threshold generator module shown in Fig. 8. Since
each bit in a sub-message is replaced by two bits to allow
representation of an erased bit, the XNOR gates evaluate the
two-bit equivalent of each bit in a sub-message to determine
if it is erased. An adder simply adds the number of erasures
such that κ−ne can be calculated afterwards using a simple
subtractor. The output of the threshold generator can vary
depending on the number of erased bits in a cluster.

The generated threshold values are used as inputs into the
local decoder module shown in Fig. 9. The local decoder
module activates the neuron(s) in each cluster and no longer
requires resource-hungry WTA modules as in [10]. In the
architecture of each local decoder module for each neuron,
two sets of XOR gates along with a κ-bit adder are used to
add the scalar product of a row in the g matrix with the nega-
tive and positive parts of each sub-message separately. Then
these values are subtracted to calculate the final value of the
scalar product. In the hardware architecture considering the
g matrix, although the values are antipodal, a single bit is
sufficient to represent a bit as no erasures can occur in the
input messages. After calculating the score for each neuron,

≥ -

Figure 9 Architecture of the Local Decoder.

a comparator compares the score with the threshold value
that is calculated in parallel using the threshold generator
module. If the score is larger than or equal to the threshold,
the corresponding neuron is activated accordingly.

5.4 Proposed Architectures for Global Decoding

The proposed global decoding architectures are depicted in
Figs. 10, and 11. These architectures are referred to as global
decoding Architecture I and Architecture II in this paper,
and are based on Eqs. (8) and (10) respectively. A global
decoding unit is implemented for each neuron. To elabo-
rate on the behavior of these structures, let us assume that
the value of the j -th neuron of cluster i is to be computed
after the local decoding process has finished i.e. a prelim-
inary decision has been made on which neurons should be
activated. The global decoding unit updating the value of
a neuron has three types of inputs: 1) The binary values
of the links from all neurons excluding the one in the i-th
cluster, 2) v(i ′,j ′), the binary values of the neurons in clus-
ters excluding the i-th cluster, and 3) The binary value of
the neuron being globally decoded (v(i,j)) to account for the
memory effect. In the hardware implementation, the mem-
ory effect coefficient, γ , is considered to be equal to 1
(also discussed in [5, 10]), which will simplify the hardware
implementation.

The basic operation of the global decoding architecture I
is similar to the previous architecture in [10], in a sense that
decoding the value of a target neuron in a cluster is achieved
by first computing the binary multiplication of the values
of the binary connections to the target neuron, obtained
from the memory, and the neural values attached to the
neurons in the adjacent clusters. These multiplications are
performed using two-input AND gates operating in paral-
lel. The existence of such parallel computations in hardware

Figure 10 Hardware implementation of the proposed Global Decoder
Architecture I.
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Figure 11 Hardware implementation of the proposed Global Decoder
Architecture II.

is an advantage over a similar implementation in software.
However, unlike the previous method for finding the maxi-
mum value using the compare-and-select method, the binary
multiplication outputs are used as inputs to l-input OR gates
which generate only one signal per adjacent cluster for each
neuron being globally decoded. Then, the output from the
OR gates, as well as the neural value obtained from the
local decoder are added together and compared against a
threshold value. This threshold value is at most equal to c

and depends on the number of erasures and erroneous bits
in each cluster. The target neuron will remain activated if
the comparator outputs a ‘1’. If it is possible in an applica-
tion to pre-determine that the inputs can never be erroneous
and can only contain erased bits, the adder adding the ORed
signals from each cluster can be removed and replaced by
an c-input AND gate. This AND gate will result in a fixed
threshold. This condition is presented in Architecture II and
as shown in Fig. 11.

6 Circuit Evaluation

The proposed architectures have been implemented
using an Altera Stratix IV (EP4SGX230KF40C2) Field

Programmable Gate Array (FPGA), and were implemented
using the same network parameters (128 neurons, 8 clus-
ters) as in [10], as well as other variations of the network
parameters (256 neurons, 8 clusters and 4 clusters) to
investigate the scaling behaviour. Furthermore, the max-
imum size of the network the FPGA could fit was also
implemented consisting of 432 neurons and 8 clusters. The
maximum achievable number of neurons would not neces-
sarily permit a larger number of input lengths compared to
that of a 256-neuron network. However, it can have its own
applications that can directly map the symbols to the neu-
rons without a requirement for conversion of κ-bit inputs to
l bit outputs. After verification of the results using a similar
method described in [10], the hardware complexities, and
the performances were compared with that of the previous
work.

These implementations demonstrate how the ratio of
Logic-to-Memory ratio (LMR) is affected by in the pro-
posed architecture as the number of neurons and clusters
are scaled. As the number of clusters is doubled, LMR is
slightly increased by 8 % for n = 128 and n = 256, whereas
for the largest network the FPGA can fit, it is increased
by 18 %. However, increasing the number of neurons for a
fixed number of clusters results in a relatively constant value
for the LMR.

The evaluation results of the circuit implementation
are summarized in Table 1. Figure 12 depicts the FPGA
results of error performance for various densities. Each
point obtained from the FPGA is associated with the aver-
age MER resulted by applying the same number of test
vectors as the number of learned messages for 20 differ-
ent random networks. It also shows software simulation
results with similar parameters to verify the correct func-
tional behavior or the hardware implementation. Since in
the hardware implementations the number of neurons in the
clusters are equal, i.e., the sub-messages have equal lengths,
the message densities are calculated according to:

d = 1 −
(

1 − 1

l2

)M

, (11)

where M is the number of learned messages.

Table 1 FPGA resource allocation comparing SCN architectures with design parameters reported in [10].

Previous work [10] Architecture I Architecture II

Memory usage dedicated to w (bits) 14,336 14,336 14,336

Registers 15, 783/182, 400(9 %) 15, 048/182, 400(8 %) 15, 035/182, 400(8 %)

Combinational Look-up Tables (LUT) 35, 224/182, 400(19 %) 13, 244/182, 400(7 %) 12, 341/182, 400(7 %)

Total pins 169/888(19 %) 169/888(19 %) 169/888(19 %)

Slow 900 mV 85C maximum frequency (MHz) 107.15 203.78 205.21

Training, Retrieving delay (per message) 10 ns, 50 ns 5 ns, 25 ns 5 ns, 25 ns
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Figure 12 Comparison
between the average MER of the
proposed architectures and that
of [10] using FPGAs, and
software simulation
(n = 128, c = 8, Number of
erased clusters (random
position): 4, FPGA number of
networks per density: 20).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Density

M
es

sa
ge

 E
rr

or
 R

at
e 

(M
E

R
)

Prev. work, it=1

Prev. work, it=4

Arch I, II: Software, it=1

Arch I, II: Software, it=4

Arch I, II: FPGA, it=1

Arch I, II: FPGA, it=4

Implementing a network with n1 = 128 neurons and
8 clusters, Architectures I and II achieve 62.4 and 65.0 %
fewer LUTs respectively compared to the previous work
[10], while the number of registers are similar. With a larger
network comprised of n2 = 432 neurons and 8 clusters,
the previous architecture, unlike the proposed ones in this
paper, can no longer fit within the same area as shown in
Table 2. This comparison shows that growth of the number
of neurons is larger than the growth of the number of LUTs.
The maximum clock frequency in the FPGA has also been
improved by ≈ 1.9 times resulting in lower computational
delay.

Table 2 FPGA resource allocation comparing two networks (n =
128) and (n = 432).

n = 128 n = 432

Registers (Prev. [10]) 15,783 160,745

Registers (Proposed Arch. II) 15,035 161,331

LUT (Prev. [10]) 35,224 359,127

LUT (Proposed Arch. II) 12,341 147,808

Table 3 FPGA resource allocation comparing three Architecture II-
based networks with different number of clusters.

Parameter n = 128 n = 256 n = 432

c = 4 Registers 13,420 51,230 143,720

LUT 10,170 38,520 111,410

LMR 0.758 0.752 0.775

c = 8 Registers 15,035 58,672 161,331

LUT 12,341 47,849 147,808

LMR 0.821 0.816 0.916

Table 3 demonstrates the effect of variations in the num-
ber of clusters on the FPGA resources given a fixed number
of neurons in the network. It also shows how the resources
grow with the increase of the number of neurons given two
choices for the number of clusters. As the number of con-
nections in this network has a quadratic relationship with
the number of neurons, the number of registers also fol-
lows a similar trend. Furthermore, since there exists at least
one 2-input AND gate per register, and that the number of
AND gates dominates the hardware resources, the number
of LUTs also demonstrates a quadratic relationship with the
number of neurons. It is also interesting to note that the
number of different messages that can be stored in the net-
work also has a quadratic relationship with the number of
neurons [5].

7 Conclusion

In this paper, we proposed the algorithm and hardware
architecture of fully-parallel associative memories based on
sparse clustered networks. The proposed architectures are
suitable to either recover partially erased input patterns,
or to correct erroneous input bits respectively. The pro-
posed architectures can be used in a variety of applications
such as search engines, data mining, and implementation
of sets. The proposed architectures introduce data recon-
struction (decoding) methods that reduce the hardware com-
plexity by consuming 62.4 and 65 % fewer lookup tables
respectively compared to those of the previous work. Fur-
thermore, the proposed architectures increase the operating
frequency approximately 1.9 times compared to that of pre-
vious work while having a similar error performance. We
introduced novel hardware techniques that eliminated the
resource-hungry Winner-Take-All circuits in the previous
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architecture, and replaced it with simpler logic without sac-
rificing the error performance or the speed. The results
were compared with that of previous work and their func-
tions were verified using a similar verification strategy in
the previous work. Additionally, we investigated the effect
of varying the design variables to meet the required error
performance and memory capacity. The design variables
include the number of network nodes and clusters, the num-
ber of data entries, severity of erasures, and the effectiveness
of iterations. The impact of such choices on the hardware
resources were also discussed.
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