
A GPU-based Associative Memory using Sparse
Neural Networks

Zhe Yao
Electrical and Computer Engineering

McGill University
Montréal, Canada

zhe.yao@mail.mcgill.ca

Vincent Gripon
Electronics Department

Télécom Bretagne
Brest, France

vincent.gripon@telecom-bretagne.eu

Michael Rabbat
Electrical and Computer Engineering

McGill University
Montréal, Canada

michael.rabbat@mcgill.ca

Abstract—Associative memories, serving as building blocks for
a variety of algorithms, store content in such a way that it
can be later retrieved by probing the memory with a small
portion of it, rather than with an address as in more traditional
memories. Recently, Gripon and Berrou have introduced a novel
construction which builds on ideas from the theory of error
correcting codes, greatly outperforming the celebrated Hopfield
Neural Networks in terms of the number of stored messages
per neuron and the number of stored bits per synapse. The
work of Gripon and Berrou proposes two retrieval rules, SUM-
OF-SUM and SUM-OF-MAX. In this paper, we implement both
rules on a general purpose graphical processing unit (GPU).
SUM-OF-SUM uses only matrix-vector multiplication and is easily
implemented on the GPU, whereas SUM-OF-MAX, which involves
non-linear operations, is much less straightforward to fulfill.
However, SUM-OF-MAX gives significantly better retrieval error
rates. We propose a hybrid scheme tailored for implementation
on a GPU which achieves a 880-fold speedup without sacrificing
any accuracy.

Keywords—Associative memory, Recurrent neural networks,
Parallel processing, Sparse coding, CUDA, GPGPU

I. INTRODUCTION

The recent work of Gripon and Berrou [1], [2] proposes a
new family of sparse neural network architectures for asso-
ciative memories. We refer to these as Gripon-Berrou neural
networks (GBNNs). In short, GBNNs are a variant of the
Willshaw networks [3], [4] with a C-partite structure, sharing
spirit with the model proposed by Moopenn et al. [5]. How-
ever, GBNNs combine the notion of recurrence from Hopfield
networks [6], [7] with ideas from the field of error correcting
codes and achieve nearly optimal retrieval performance. A
detailed description of the GBNN architecture and operation
is given in Section II.

In [8], Berrou and Gripon successfully introduce Walsh-
Hadamard codes into bidirectional associative memories. The
same authors also consider the use of sparse coding in a
Hopfield network. They show that, given the same amount of
storage, GBNNs outperform conventional Hopfield networks
in diversity (the number of patterns that the network can
store), capacity (the maximum amount of stored information
in bits), and efficiency (the ratio between capacity and the
amount of information in bits consumed by the network when

diversity reaches its maximum), while decreasing the retrieval
error. In [9], GBNNs are interpreted using the formalism of
error correcting codes, and a new retrieval rule, SUM-OF-
MAX, is introduced to further decrease the error rate. Jiang et
al. [10] modify the GBNN structure to store long sequences
by incorporating directed edges into the network. Aliabadi et
al. [11] make the extension to store sparse messages where
messages with different lengths are stored and retrieved in the
same network.

To be useful in applications, it is also essential to develop
fast and efficient implementations of GBNNs. Jarollahi et
al. [12] demonstrate a proof-of-concept using the field pro-
grammable gate array (FPGA). Due to hardware limitations,
their implementation is constrained to have at most 400
neurons. Larras et al. [13] implement an analog version of the
network which consumes 1165× less energy and is 2× more
efficient both in the surface of the circuit and speed, compared
with an equivalent digital circuit. However, the network size
is further constrained to 208 neurons in total.

This paper demonstrates the first implementation of GBNNs
on a GPU using the compute unified device architecture
(CUDA) for both retrieval rules, SUM-OF-SUM [2] and SUM-
OF-MAX [9]. SUM-OF-SUM is easier to implement, because it
requires only matrix-vector multiplications, a highly optimized
operation in CUDA. SUM-OF-MAX is much more difficult
because it involves non-linear operations, but it gives supe-
rior retrieval performance (lower error rates). Our massively
parallel implementation supports a much larger number of
neurons than existing ones, and is 880× faster than a CPU
implementation using optimized C++ libraries for linear alge-
bra operations, without any loss of retrieval accuracy.

The tremendous speedup comes from: a) GPU’s highly
parallel and efficient architecture; and b) our joint retrieval
scheme using aspects of both SUM-OF-SUM and SUM-OF-
MAX, so that impossible neurons are eliminated early in the
retrieval process and do not waste the computing resource.
Although we discuss a GPU implementation in particular, we
believe the ideas presented here is general enough so that it
is also useful when we extend the network to other parallel
architectures.

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 688

Figure 1. An example of a network with 4 clusters of 16 neurons each [2].
We number the clusters from left to right and from top to bottom as 1 · · · 4.
The same scheme applies for neurons 1 · · · 16 within each cluster.

II. GRIPON-BERROU NEURAL NETWORKS (GBNNS)

The architecture of a GBNN [2] is closely coupled with the
structure of the stored messages. Suppose a message M can be
divided into a tuple of C symbols, M = (m1,m2, . . . ,mC),
where each symbol mc can take L possible values, from x1

to xL. Then the network comprises C clusters of L binary-
valued (0 or 1) neurons each. A message M = (m1, . . . ,mC)
is represented by activating the only neuron corresponding to
the value of mc in each cluster, and setting all other neurons
to 0. In this way, the message is naturally encoded as a binary
string of length n = CL with exactly C ones.

When a network is initialized, no edge exists between
neurons. When storing a message, edges are added to connect
all pairs of neurons which are activated for this particular
message. For example, consider the network in Fig. 1, where
each message contains C = 4 symbols and each symbol takes
one of L = 16 possible values. The message indicated by
the bold edges is (x9, x4, x3, x10). The edges corresponding
to any single message thus associate with a clique (complete
sub-graph).

For retrieval, the network is probed with an incomplete
message, e.g., (m1,m2, ?, ?), and it must find a stored message
which completes the probe. If the network is queried with an
entire message as a probe, then the problem boils down to
deciding whether or not this message has been stored. For
this case, it has been shown that the missed detection rate is
zero, and the false positive rate depends on the number of
messages stored in the network [2], [14]. GBNNs can also be
used with inputs which contain errors, but the retrieval rules
need to be modified accordingly.

III. RETRIEVAL RULES

To perform a retrieval, we discuss two synchronous discrete
time rules. The set of active neurons at the end of the iterative

retrieval process corresponds to the network response to the
probe.

A. The SUM-OF-SUM Rule

Active neurons emit signals through network connections.
The simplest rule [2] consists in initializing the neurons
corresponding to the missing symbols deactivated, and adding
all the signals a neuron receives in the current iteration as its
score. Then in each cluster, only neurons with the highest score
are kept active. The scores are recalculated, and the process
is repeated until a convergence criteria is met if ever.

Let neuron(c, l) denote the lth neuron in the cth cluster,
and let w(cl)(c′l′) denote an indicator variable for whether
or not a connection is present between neuron(c, l) and
neuron(c′, l′). We also denote by stcl and vtcl respectively the
score function for the number of signals neuron(c, l) receives
and the indicator function for whether or not neuron(c, l) is
activated at iteration t, with v0cl being the corresponding value
for neuron(c, l) in the probe.

At the retrieval stage, the variables w(cl)(c′l′) are fixed. As
a consequence, the retrieval procedure can be formalized as

stcl = γvtcl +
C∑

c′=1

L∑
l′=1

(vtc′l′w(c′l′)(cl)) (1)

stc,max = max
1≤l≤L

stcl (2)

vt+1
cl =

{
1 if stcl = stc,max

0 otherwise
, (3)

where γ ≥ 0 is a reinforcement factor, which influences the
extent a neuron’s own value contributes to its signal at the
current iteration. Essentially, (1) counts the score for each
neuron. It involves summing over all clusters and all neurons
within each cluster, hence the name SUM-OF-SUM. (2) finds
the value of the neurons with the strongest signal in each
cluster, and (3) keeps them active.

Unfortunately, SUM-OF-SUM is not consistent with the
clique structure such that for a particular message, each neuron
should ideally receive one signal per cluster only. This defect
undermines the retrieval correctness severely, especially when
erased clusters increases; see Fig. 4 in Section V. Also it is not
guaranteed to converge either, even in a very simple setup [15].

B. The SUM-OF-MAX Rule

SUM-OF-MAX is proposed in [9], formally described as
follows:

stcl = γvtcl +
C∑

c′=1

max
1≤l′≤L

(
vtc′l′w(c′l′)(cl)

)
(4)

vt+1
cl =

{
1 if stcl = γ + C − 1

0 otherwise
. (5)

(4) involves a summation over max operation, hence the name
SUM-OF-MAX. The basic idea is that, to retrieve a correct

689

message, the score of a neuron should not be larger if it
receives multiple signals from the same cluster. The maximum
operation taken in (4) ensures each neuron receives at most
one signal from each cluster. Since each stored message
corresponds to a clique of C neurons, one in each cluster, a
neuron should be activated if it receives exactly C − 1 signals
from the other clusters plus some value γ from the self loop.

For SUM-OF-MAX to work properly, the network must be
initialized appropriately when a probe is presented. Instead
of deactivating all neurons associated with missing symbols
as in SUM-OF-SUM, we initialize them to be active. In that
case, other neurons will definitely receive signals from these
missing clusters, L signals per missing cluster, but they will
be regulated by (5).

IV. ACCELERATIONS

A. Accelerating SUM-OF-SUM

Vectorization is a first step to fully utilize GPU’s highly
parallel architecture. If we stack all neurons in a row and
reindex neuron(c, l) to be neuron((c − 1)L + l), it is not
difficult to visualize that (1) can be rewritten as

st = Wvt, (6)

with

W =

γ w12 · · · w1n

w21 γ · · · w2n

...
...

. . .
...

wn1 wn2 · · · γ

 ,

whose element wij is the indicator if neuron(i) and neuron(j)
are connected in the new index system. Thus, the score
equation (6) is a matrix-vector product, computed efficiently
in parallel on a GPU.

Algorithm 1 The SUM-OF-SUM retrieval procedure.
Input: the maximum number of iterations permitted tmax, the

weight matrix W , the partially erased message vector v0

Output: the recovered vecor vt

1: t = -1
2: repeat
3: t = t+1
4: st = Wvt

5: vt+1 = the kernel function as in Fig. 2
6: until vt+1 == vt or t == tmax

The pseudocode for the SUM-OF-SUM procedure is given
in Algorithm 1. To update vt, a dedicated thread processes
one cluster (see Fig. 2), finding the maximum value in that
cluster, and then keeping the neurons that reach the maximum
value active. The retrieval procedure terminates when either
the network converges or it reaches the maximum number of
iterations permitted.

	

thread 1 thread 4 thread 2 thread 3

Figure 2. Illustration of the CUDA kernel function for SUM-OF-SUM.
Each rectangular represents a cluster. A dedicated thread will determine the
maximum value in its cluster and set the corresponding neurons active.

vt vt+1 W

thread 2

thread n

Figure 3. Illustration of the kernel function for the SUM-OF-MAX rule. To
update the element vt+1

i , we examine both vt and the ith column of W .

B. Accelerating SUM-OF-MAX

The pseudocode for SUM-OF-MAX is almost the same as
Algorithm 1, except that Lines 4 and 5 are replaced by another
CUDA kernel function illustrated in Fig. 3. We do not follow
strictly (4) and (5) to evaluate a max function. Equivalently we
check if a neuron receives signals from every cluster; hence, to
update neuron(i)’s value vt+1

i , a dedicated thread i is required,
examining through both vt and the ith column of W .

Thread i loops through cluster c, from 1 to C.

• For any positive γ, if neuron(i) belongs to cluster c =
⌊ i−1

L ⌋+1, we directly set sti = sti+1. (⌊·⌋ is the standard
floor operator.)

• Otherwise, we check within the same cluster, i.e., wji

and vtj , where j goes from (c − 1)L + 1 to cL. The
first time we encounter wji > 0 and vtj > 0, we set
sti = sti+1, and proceed to the next cluster c+1 without
further investigation.

• If cluster c does not contribute any signal to neuron(i),
i.e., sti does not change, we stop right away without
checking following clusters.

We favor this approach over (4) and (5) for two reasons:

1) It explicitly clarifies the requirement that every cluster
should contribute one and only one signal.

2) It proceeds to subsequent clusters or stops processing
as quickly as possible so that further expensive memory
accesses are avoided.

690

C. Joint Scheme

SUM-OF-MAX is much more computationally demanding
than SUM-OF-SUM, because to update a single value, two
vectors of length n are examined. It is mentioned in Section III
that for SUM-OF-MAX to operate correctly, all neurons asso-
ciated with the missing symbols need to be activated initially.
However, we manage to prove in [15] that a neuron will
never turn back to active in sequel iterations once deactivated.
Therefore, if we can eliminate impossible neurons from the
startup, it will save computations considerably.

Notice that a partial probe with e symbols erased always
has C − e neurons active. Therefore, a desired neuron should
receive signals from those C − e active neurons. We run
one iteration of SUM-OF-SUM (efficient matrix-vector product)
to activate those neurons before feeding them into SUM-OF-
MAX, with the rest inactive during the whole retrieval process.
Simulation results in Section V demonstrate the joint scheme’s
exciting performance.

V. EXPERIMENTS

The CPU experiments are executed on a 2.6GHz AMD
Phenom (tm) 9950 Quad-Core Processor with 16GB of RAM.
In order to make as fair a comparison as possible, our CPU
code makes full use of the Armadillo library [16], linked to
BLAS and LAPACK, for optimized linear algebra operations.
The GPU experiments are executed on an NVIDIA C1060
card, which runs at a frequency of 1.3GHz with 4GB memory
and has 30 stream multiprocessors. The run time configuration
for the kernels is 256 threads per block and 240 blocks per
grid. We use the built in CUBLAS library for the matrix-vector
multiplication.

Fig. 4 demonstrates the runtime (in seconds) and retrieval
rate of the joint scheme compared with SUM-OF-SUM and
SUM-OF-MAX for two scenarios, while varying the number
of erased symbols. The spikes in runtime for SUM-OF-MAX
and for the hybrid scheme in Fig. 4a are due to the fact that
decoding becomes more difficult as the number of erased
clusters increases, consequently more iterations are required
in these cases. If too much information is missing (7 clusters
erased), a great number of stored messages correspond to this
same probe, the network converges quickly to the state where
all neurons activates, where the retrieved pattern is useless. In
Fig. 4a, although the retrieval rate is significantly lower, SUM-
OF-SUM runs a bit faster when 6 clusters are erased. However,
this is an illusion, since we impose a limit on the number
of iterations permitted. Note that increasing this limit does
not improve any retrieval rate, but it can make the runtime
arbitrarily worse because SUM-OF-SUM oscillates, whereas
the joint scheme and SUM-OF-MAX always converge. If the
number of stored messages increases, the advantage of the
joint scheme (also SUM-OF-MAX) over SUM-OF-SUM will be
further pronounced. We conclude from Fig. 4 that the joint
scheme combines the benefits of both existing rules, achieving
fast decoding while also maintaining a high retrieval rate.

Since SUM-OF-MAX outperforms SUM-OF-SUM signifi-
cantly in terms of retrieval rate, next we only consider the
runtime improvements achieved by a GPU versus a CPU
SUM-OF-MAX implementation. We have C = 16 clusters
with L = 512 neurons each, out of which 7 clusters are
erased. We generate and store 50000 random messages, with
a random subset of 30000 tested. The CPU version completes
the simulation in 13191.70 seconds, while our joint scheme on
GPU only takes 14.86 seconds without any loss of accuracy,
which is more than 880× accelerated.

VI. SUMMARY

In this work, we present optimized implementations of
associative memories using Gripon-Berrou neural networks on
a GPU, for both SUM-OF-SUM and SUM-OF-MAX. In order
to achieve the full speedup, we combine the two rules and
propose a hybrid scheme, minimizing the unnecessary com-
putation burdens. The experimental results show an exciting
acceleration against a CPU implementation using an optimized
linear algebra library.

In the future, we will try to develop other retrieval schemes,
e.g., to handle corrupted patterns besides incomplete probes.
Since SUM-OF-SUM runs orders of magnitude faster, another
sensible topic is to emulate SUM-OF-MAX using SUM-OF-
SUM so that both performance and speed can be retained
simultaneously. We may also seek the way to generalize
the GBNN and extend the sparse neural network’s use in
tasks other than associative memory, e.g., classification and
regression.

ACKNOWLEDGMENT

This work was funded, in part, by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds
Québécois de la recherche sur la nature et les technologies
(FQRNT) and the European Research Council project NEU-
COD.

REFERENCES

[1] V. Gripon and C. Berrou, “A simple and efficient way to store many
messages using neural cliques,” in IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Paris,
France, 2011, pp. 1–5.

[2] ——, “Sparse neural networks with large learning diversity,” IEEE
Transactions on Neural Networks, vol. 22, no. 7, pp. 1087–1096, 2011.

[3] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-
holographic associative memory.” Nature, vol. 222, pp. 960–962, 1969.

[4] D. Willshaw, “Models of distributed associative memory.” Ph.D. disser-
tation, Edinburgh University, 1971.

[5] A. Moopenn, J. Lambe, and A. Thakoor, “Electronic implementation of
associative memory based on neural network models,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 17, no. 2, pp. 325–331,
1987.

[6] J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[7] ——, “Neurons with graded response have collective computational
properties like those of two-state neurons,” Proceedings of the National
Academy of Sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

691

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of erased clusters

ru
n
n
in

g
 t

im
e

in
 s

ec
o
n
d
s

sum of sum

sum of max

joint scheme

(a) runtime (small)

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

number of erased clusters

re
tr

ie
v
al

 r
at

e

sum of sum

sum of max

joint scheme

(b) retrieval rate (small)

0 5 10 15
0

100

200

300

400

500

600

700

800

number of erased clusters

ru
n

n
in

g
 t

im
e

in
 s

ec
o
n
d
s

sum of sum

sum of max

joint scheme

(c) runtime (large)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

number of erased clusters

re
tr

ie
v

al
 r

at
e

sum of sum

sum of max

joint scheme

(d) retrieval rate (large)

Figure 4. The behavior of the joint retrieval scheme in general. Both runtime in seconds and retrieval rate are plotted respectively as the number of erased
clusters increases. We set γ = 2 and the maximum number of iterations allowed is 20. (a) and (b) refer to a small network where there are 8 clusters with
128 neurons each, 5000 messages to memorize, and 3000 messages to test. (c) and (d) refer to a large network where there are 16 clusters with 512 neurons
each, 50000 messages to memorize, and 30000 messages to test.

[8] C. Berrou and V. Gripon, “Coded hopfield networks,” in Interna-
tional Symposium on Turbo Codes and Iterative Information Processing
(ISTC), Brest, France, 2010, pp. 1–5.

[9] V. Gripon and C. Berrou, “Nearly-optimal associative memories based
on distributed constant weight codes,” in Information Theory and
Applications Workshop (ITA), San Diego, CA, USA, 2012, pp. 269–273.

[10] X. Jiang, V. Gripon, and C. Berrou, “Learning long sequences in binary
neural networks,” in International Conference on Advanced Cognitive
Technologies and Applications, Nice, France, 2012, pp. 165–170.

[11] B. K. Aliabadi, C. Berrou, V. Gripon, and X. Jiang, “Learning sparse
messages in networks of neural cliques,” ACM Computing Research
Repository, 2012. [Online]. Available: http://arxiv.org/abs/1208.4009v1

[12] H. Jarollahi, N. Onizawa, V. Gripon, and W. Gross, “Architecture
and implementation of an associative memory using sparse clustered
networks,” in IEEE International Symposium on Circuits and Systems
(ISCAS), Seoul, Korea, 2012, pp. 2901–2904.

[13] B. Larras, C. Lahuec, M. Arzel, and F. Seguin, “Analog implementation
of encoded neural networks,” in IEEE International Symposium on

Circuits and Systems, Beijing, China, 2013, pp. 1–4.
[14] V. Gripon, V. Skachek, and M. Rabbat, “Sparse structured associative

memories as efficient set-membership data structures,” in Annual Aller-
ton Conference on Communication, Control and Computing, Monticello,
IL, USA, 2013, pp. 500–505.

[15] Z. Yao, V. Gripon, and M. Rabbat, “A massively parallel associative
memory based on sparse neural networks,” IEEE Transactions on
Parallel and Distributed Systems, submitted for publication. [Online].
Available: http://arxiv.org/abs/1303.7032

[16] C. Sanderson, “Armadillo: An open source C++ linear algebra library for
fast prototyping and computationally intensive experiments,” Technical
report, NICTA, Tech. Rep., 2010.

692

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'improved'

 32

 D:20140619130514
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 5.40 points
 Normalise (advanced option): 'improved'

 32
 1
 0
 Full
 675
 322
 Fixed
 Up
 5.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 0
 1

 1

 HistoryList_V1
 qi2base

