
Algorithm and Architecture for a Multiple-Field
Context-Driven Search Engine Using Fully-Parallel

Clustered Associative Memories

Hooman Jarollahi∗, Naoya Onizawa†, Vincent Gripon‡, Takahiro Hanyu† and Warren J. Gross∗
∗Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 0E9

† Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
‡ Electronics Department, Télécom Bretagne, Brest, France.

Email: hooman.jarollahi@mail.mcgill.ca, warren.gross@mcgill.ca

Abstract—In this paper, a context-driven search engine is
presented based on a new family of associative memories. It
stores only the associations between items from multiple search
fields in the form of binary links, and merges repeated field
items to reduce the memory requirements. It achieves 13.6×
reduction in memory bits and accesses, and 8.6× reduced number
of clock cycles in search operation compared to a classical
field-based search structure using content-addressable memory.
Furthermore, using parallel computational nodes in the proposed
search engine, it achieves five orders of magnitude reduced
number of clock cycles compared to a CPU-based counterpart
running a classical search algorithm in software.

I. INTRODUCTION

There is a significant need for energy-efficient context-

driven search (CDS) engine [1] due to the drastic growth in

the amount of stored information in complex digital databases

such as DBLP, Twitter, YouTube, or LinkedIn. In such appli-

cations, items from multiple search-fields are often queried to

refine the search results.

Conventional software-based multiple-field search engines

such as [1] consume high energy since exhaustive back-and-

forth memory-access operations through I/O drivers, and also

high-latency comparison operations are performed. Content-

Addressable Memory (CAM)-based [2], [3], Trie-based [4],

and Hash-based schemes [5], [6] are alternative search ap-

proaches that when used in hardware, are typically intended

for high-speed Longest-Prefix Matching (LPM) in network

processing, for which fast IP-lookup operations are required

against the stored contents.

CAMs employ a brute-force search scheme by matching

an input search-word against all of the CAM entries in an

attempt to find a matched word or words that point to the

corresponding output in another memory module, that is typ-

ically a Static Random Access Memory (SRAM). Therefore,

CAMs consume large amounts of dynamic, as well as standby

energies in modern CMOS technologies due to the increase of

leakage energy dissipation of SRAMs. Another reason for high

energy consumption of CAMs, when used for multiple-field

search applications, is due to their data-storage inefficiency.

In order to be able to search for a set of outputs, associated

with a single input item, the shared input item must be stored

redundantly for every association. For example, if an input

item “Blue” is associated with two different entries, “A”,

and “B”, two copies of “Blue” are stored in the CAM array

dedicated for the search field of “Color”. On the other hand,

if a single output is associated with multiple input items,

redundant SRAM words are occupied with the same output.

These redundancies, especially if full text of the items and

outputs are stored, result in increasing the memory usage, the

number of search operations, and thus standby and dynamic

energy consumptions.

The two-field structure of the CAM-SRAM array, i.e. tag-

output, requires dedicating an array for each search field.

Therefore, independent search operations result in large num-

ber of outputs, whose intersections are the actual desired

search results. Therefore, large delays in transferring and post-

processing of the independent search results are required.

Trie-bases search structures perform the search operation in

a tree-like process searching a few bits at a time. This approach

results in multiple-levels of searching, and thus increases the

latency and the memory usage to store pointers from nodes to

the children [5]. Hash-based search architectures store com-

pressed versions of the information and often require large-

memory usage, and result in output collisions which would

require post-processing operations that typically incorporate

multiple hash-tables for each length of the stored entry. This

is unattractive since the length of an item in a search engine

can be arbitrary unlike that of the IP addresses in networking

applications.

In this paper, we present a system-level algorithm and

architecture of an associative memory-based multiple-field

search engine. L-SCAN (Link, Sparse, Context, Associative,

Network) reduces the memory requirement of the search

operation and can be tuned to confine the search scope to

either one or a few possibilities. A false-negative result never

occurs, i.e., if a matched entry exists, it is always found.

The proposed system is an application-specific variant of

a recently-introduced family of associative memories based

on Sparse Clustered Networks [7]–[9] (SCN). It eliminates

the necessity for storing the text of the search items and the

outputs. Consequently, it also eliminates the energy-hungry

U.S. Government work not protected by U.S. copyright

brute-force search operations. Furthermore, in contrast to

CAMs, it requires a single storage of repeating items as well as

outputs, as well as the associations between them for multiple

database entries.

Once the proposed architecture is trained with the asso-

ciations, it retrieves associated outputs given partial input-

items, without storing the data bits directly, which would

otherwise lead to a large memory requirement as in CAMs.

Instead, only the associations between the related items from

different search-fields are stored in the form of binary links.

The location of such binary links are determined by the values

of the items. What makes the data-representation different

from a hash-based counterpart is that in the proposed system

input items are segmented into multiple parts when required,

which reduces the memory requirement. This segmentation is

performed when the number of different items a search field

is required to cover is large. Therefore, the length of each

database entry is considered only to avoid collisions. Once the

length is enforced by the data-distribution in the application,

the diversity of the database entries is realized in selecting the

hardware-parameters.

The organization of the paper is as follows: In Section

II, a system-level algorithm and architecture is presented.

Characteristics of the proposed system are evaluated in Section

III. In Section IV, it is compared with classical approaches

in terms of the memory requirement and delay. Section V

concludes the paper.

II. AN ASSOCIATIVE MEMORY-BASED MULTIPLE-FIELD

SEARCH ENGINE

The proposed system is depicted in Fig. 1 showing the

communication structure of a co-processor with the main

processor running the interface software program, and the

external storage device. A database entry consisting of fields,

including inputs and outputs, is also shown.

The proposed co-processor is an SCN-based associative

memory performing multiple-field search operations by recov-

ering the previously trained search results given a collection of

input items from different search fields. The training process

is performed prior to the search operation. For example, in

an article-publishing database, field items such as specific

keywords, list of authors, publication year, and the text of

the paper are stored in a file, with a unique file ID. The files

are stored in the external storage device.

The generated search results from the co-processor may

include a few detectable false-positives, which can be filtered

externally in software or directly displayed. However, a false-

negative never occurs. The number of false positives depends

on the density of the used connections. In this paper, the ratio

between the average number of retrieved results, including the

desired ones, to that of the total possibilities in the search

scope is referred to Search Focus Rate (SFR). SFR is tunable

using the design parameters of the proposed system, some of

which influence its hardware complexity.

The role of the co-processor during search is thus to focus

the search scope from a large number of possibilities to a few

Fig. 1. System level block diagram of the proposed system showing how the
co-processor communicates with the CPU during search.

Fig. 2. An example of the proposed SCN-based multiple-field search engine
consisting of 4 fields with various number of clusters in each field and various
number of nodes in the clusters.

ones such that the number of generated results is much smaller

than the total number entries a CPU-based alternative would

search through by itself otherwise.

The average number of generated search results is tunable

by optimizing the design parameters of the proposed system

such as the length of the inputs, and the total number of

database entries.

The SCN-based associative memory used in the co-

processor is illustrated in Fig. 2 using an example showing

a network consisting of four fields: three input fields (Field

0 - Field 2), and an output field (Field 3). In general, it

consists of fMax fields, where each field consists of cf
(0 ≤ f ≤ fMax − 1) clusters. The number of nodes in

the i-th cluster (0 ≤ i ≤ cf − 1) of the f -th field, l(f,i),
is not necessarily equal in all clusters. The concatenation of

the indices of one node per cluster in all clusters of a field

is the place holder of an item. The connections within the

clusters of a field permit reconfigurability of the system, since

depending on the application, the clusters can be grouped in

other fields if required. The operation of the proposed system

is realized in two stages: (i) Training the co-processor: where

association between the related search items and the search

results (File IDs) are stored in the co-processor. (ii) Search

operation: where the file contents are searched by presenting

the known items in the search fields.

A. Training

Training process of the proposed co-processor is performed

by finding and storing the association of the field items. During

the training stage of the co-processor, a series of operations

are performed:

1) Data Collection: A database entry consisting of items

from various search fields and the associated file ID(s) is

obtained. Each search field covers a collection of search items

that are shared among multiple database entries unlike the

CAM-based or CPU-based counterparts, where two database

entries do not share an item, and thus duplicate items need to

be stored.

2) Input Preparation: Each input item in a field is first

reduced in length by extracting Kf bits to be used as inputs in

the proposed architecture. In this paper, a maximum length of

256 bits is dedicated for each search field before the extraction.

Kf can be selected depending on the diversity of the items of

field f , Df , and the minimum required SFR. The extraction

method depends on the data distribution of the field items and

aims to reduce collisions between the extracted items.

If the items for each field have a uniform-random distri-

bution, i.e. no particular similarity patterns can be discovered

between the input patterns, the extracted bits can be selected

randomly. The index (position) of the selected bits for extrac-

tion are consistent in all inputs. In databases, where a field

receives inputs with high degrees of similarity, an SCN-based

associative memory still generates the correct results, as shown

in [10]. However, higher number of pattern similarities result

in the generation of a larger number of output search results

that include the desired ones.

One simple method is to reduce the similarities by using

random vector-projection of the inputs, where an H-bit input

pattern is first multiplied (using logical XOR operations) by

a [H × N] random matrix (N > H) of binary elements to

generate an alternative input pattern with fewer similar bits.

The extracted items are then segmented into cf parts.

3) SCN Mapping and Link Storage in the Co-processor:
During mapping, nodes in clusters corresponding to the input

segments are activated (set to ‘1’) according to a specific rule

describing the relationship between the segment value and the

index of the node to be activated. Then the binary links are

added between the activated nodes. To establish the binary

links between the nodes, an input pattern with length of Kf -

bits is divided into cf segments such that:

w
(f,i,j)
(f ′,i′,j′) =

⎧⎪⎪⎨
⎪⎪⎩

1, if

⎧⎨
⎩

i �= i′

and ∃mn ∈ {m0...mM−1}
s(f,i,mn) = j and s(f ′,i′,mn) = j′

0, otherwise
(1)

where w
(f,i,j)
(f ′,i′,j′) denotes the binary value of the connection

from the j-th node of the i-th cluster in the f -th field to

the j′-th node of the i′-th cluster of the f ′-th field. The link

values are stored in memory for later use during search. mn is

the n-th database entry among M total entries combining the

information from all the input/output fields. It is segmented

into fMax fields and cf segments in each field. The i-th
segment (0 ≤ i ≤ cf − 1) of the f -th field of mn is denoted

by s(f,i,mn), and its length in bits is denoted by κ(f,i) for all

M database entries such that:

κ(f,i) = log2(l(f,i)). (2)

In (1), the mapping rule is that the value of segment s(mn,f,i)

is directly mapped to the index of the node to be activated.

Therefore, there should exist 2κ(f,i) nodes to cover all possi-

bilities.

The definition of density in [7] does not directly apply

since the number of nodes in the clusters are not necessarily

equal. Therefore, assuming that in M entries trained to the co-

processor, all fields are used to define a clique, a new definition

of density can be defined between two specific clusters as

Local Density:

d(f,i,f ′,i′) = 1−
(
1− 1

l(f,i)l(f ′,i′)

)M

, (3)

where (3) is the ratio between the number of used binary links

to that of the total possible connections between clusters i
and i′. In [7], it is shown how increasing the value of density

affects the message error rate in an associative memory. In the

proposed system, increasing the value of local densities can

increase the number of false-positive search results and thus

increases SFR. Therefore, in order to reduce SFR as a means

to improve the search quality, one can reduce the value of the

local densities in two ways: (i) by reducing the total number

of stored entries, (ii) and/or increasing the number of nodes in

clusters with large diversities of the items. It is interesting to

note that the local density is not directly proportional to the

number of clusters. However, due to the limitation of silicon

area, it is possible to increase the number of clusters in order

to increase diversity (without changing the total number of

nodes), but with the cost of increasing the density and hence

the number of false positives.

B. Search Operation

Once the co-processor has been trained with the database

entries, the search operation can be initiated. The search

operation in the proposed system is partially illustrated in Fig.

1. The search process in more detail is a series of operations:

1) Data Collection: This operation is similar to that of the

training process. The search queries are obtained from the

search fields with available information.

2) Input Preparation: In this step, required data is gener-

ated for the input of the co-processor using a similar approach

that was explained in the input preparation operation of the

training process. The difference is in the status of the inputs

as some parts of the inputs are missing such as the file IDs.

3) Search Operation in the Co-processor: Once the search

operation is initiated after the prepared data inputs are pre-

sented to the co-processor, the CPU waits for the co-processor

to perform the search operation and transfers its outputs to the

CPU. The search process in the co-processor is performed by:

a) Local Decoding: The Kf -bit input, prepared in the

input preparation operation, is divided into κ(f,i) (0 ≤ i ≤
cf−1) segments. Each segment is mapped to activate a binary

node in the i-th cluster of the f -th field. The mapping method

is the same as the SCN mapping operation in the co-processor

training. A field with missing input information, such as that

of the File ID field, will have all of its nodes activated to

permit all possible search results.

b) Global Decoding: Once the corresponding nodes to

the input segments are activated in all the clusters, global

decoding is performed using the stored links and the indices of

the activated nodes. This process can be iterative, for which

a node in any cluster remains or becomes activated in each

iteration, if and only if v∗(f,i,j) = ‘1’:

v∗(f,i,j) =
(ψ−1∧

i′=0
(f ′,i′) �=(f,i)

γ−1∨
j′=0

w
(f,i,j)
(f ′,i′,j′)v(f ′,i′,j′)

)∧
v(f,i,j),

(4)

where v∗(f,i,j) is the updated value of the j-th node of the

i-th cluster in the f -th field after an iteration. ψ is equal to
cf−1∑
i′=0

, and γ is equal to l(f,i′). The indices of the activated

nodes in the output field are transferred to the CPU after

global decoding operation is completed in the co-processor.

An iteration may thus reduce the number of falsely-activated

nodes, and may thus reduce the delay to transfer the results.

4) External-Storage Content-Retrieval: In this operation,

the CPU reads the co-processor outputs, and generates the

required addresses for the external storage device using the

co-processor outputs.

a) Formation of File IDs: The file IDs are formed from

the co-processor outputs by concatenating the indices of the

activated nodes in the file ID field, and then realizing all

possible combinations that can be created using the index of an

activated node in a cluster to all those of other activated nodes

in other clusters in that field. For instance, if nodes 3 and 4

are activated in cluster 0, and node 5 is activated in cluster 1

of the file ID field consisting of only two clusters, the possible

file IDs are: “3,5” and “4,5”. Therefore, iterations can affect

both the number of activated nodes, and the formation delay.

b) File Access: In the next step, the content of the

corresponding files to the formed file IDs are retrieved from

the external storage device. The addresses are either realized

directly by the file IDs, or by mapping them to another set

of numbers. In either of the two situations, if a generated

address is not valid (eg. if the address is not in the scope of

the addresses), the CPU drops it before accessing the external

storage device.

5) Filtration and Display of Search Results: Since the

formed file IDs may include false-positive results, the retrieved

file contents may also include a few false-positive contents.

The search results at this step can be further processed in

either of the two ways: (i) The false positive contents are

post-processed (filtered) in software by matching the search

inputs with the information included in the file contents. Then

the search results are displayed. (ii) or the search results are

directly displayed without any filtration in form of a list to

select from.

C. Updating

In order to update the co-processor with a new database

entry, following scenarios are possible depending on the

application:

1) Frequent Updates: If frequent updates are required in an

application, only a single, but large cluster, can be dedicated

for the output-field. This way, once an association is requested

to removed, and updated with a new set of input items, then

all the connections from the nodes of the output clusters can

be removed. Large clusters increase the memory requirement

to store the connections.

2) Moderately or Rarely-Frequent Updates: If less-frequent

updates occur in an application, it is possible to temporarily

mark dirty the associations that are no longer valid in software,

and drop them if searched. This approach increases the net-

work density, which results in increasing the number of false-

positives that can be removed in a post-processing software

program. However, no false-negative results are ever produced.

Eventually, the co-processor is retrained with freshly updated

associations after several updates take place.

III. EVALUATION

In [7], the authors showed that density, number of clusters,

and number of erased clusters determine the error performance

of an SCN, that translates into the number of falsely activated

nodes. The total number of clusters and the number of erased

clusters are determined by the search-engine requirements

such as how many fields are more frequently used during

search, or the desired diversity of search items in each field.

For example, if 1024 keywords are required, then either a

single cluster consisting of 1024 nodes must be considered,

or if constrained by the silicon-area, that single cluster can be

divided into multiple clusters to reduce the number of nodes

per cluster, and thus reduce the total memory requirement. On

the other hand, increasing the number of clusters exacerbates

the number of false-positives as the values of local densities

are increased.

Selecting the value of local density between two fields that

are frequently used during search (eg. Keyword, and file ID),

can be used as a guide to create the intelligent guess for the

number of nodes in a cluster. First, a target density, e.g. 60% is

selected that determines the error rate. Then, according to (3),

given a specific number of SCN messages, (eg. M = 10, 000),
and assuming equal number of nodes between the two clusters,

the number of nodes in each cluster is rounded to 105. A set

of parameters has been selected after various simulations, for

the case study of the proposed system, as shown in Table I.

TABLE I
CASE STUDY PARAMETERS

Parameter Value

Input
Search Fields

3: Field 0 (Eg. Keywords),
Field 1 (Eg. Year), Field 2 (Eg.
Name)

Output Fields 1: File ID (Field 3)

fMax 4

Clusters/Field (cf) c0 = 2, c1 = 1, c2 = 2, c3 = 3

Clusters (

fMax−1∑
f=0

cf) 8

Nodes/Cluster

l(0,0) = l(0,1) = 128
l(1,0) = 32
l(2,0) = 16, l(2,1) = 128
l(3,0) = l(3,1) = l(3,2) = 128

Iterations 1

Unique file IDs 2,000

Field 0 items 16,384

Field 1 items 32

Field 2 items 2,048

Entries (M) 10,000

Field 0 items/File ID 5 (Avg.)

Search Item length (bits) 256

Segmented
Item Length (bits)

κ(0,0) = κ(0,1) = 7
κ(1,0) = 5
κ(2,0) = 4, κ(2,1) = 7
κ(3,0) = κ(3,1) = κ(3,2) = 7

The simulation results in this section are presented prior to

the optional filtration operation in software as discussed step

5 in Section II-B.

As the proposed co-processor stores the associations within

the database entries, the number of the used connections is

increased, causing the local density values to also increase.

Fig. 3 depicts the relationship between the number of stored

database entries (i.e. uniquely associated file IDs), and the

number of generated search results in the proposed system for

various search scenarios. The rate of change in the number

of generated search results (Rg) to the total number of the

associated file IDs (NID) is equal to:

SFR =
dRg

dNID
. (5)

The generated co-processor signals are the indices of the

activated nodes in the clusters that, when processed, create

the file IDs. The generated file IDs include the desired file

ID or IDs if they exist along with a few detectable false-

positive results. The number of generated search results in

the proposed system depends on the search scenario, such

as how many search fields with valid search information

have been presented. In Fig. 3, four search scenarios are

presented. The advantage of the proposed system in focusing

the search scope is realized, as shown in Fig. 3, when large

number of search fields with presented inputs are required

to identify desired search results. Fig. 4 depicts the effect

Fig. 3. Relationship between the number of search results, generated by L-
SCAN, and the total number of associated database entries in the form of file
IDs for various search scenarios.

Fig. 4. Relationship between the number of search results, generated by L-
SCAN, and the number of required clock cycles to transfer the node indices
for various search scenarios.

of iterations on the number of clock cycles to transfer the

search results from the co-processor to the CPU for various

search scenarios. The number of clock cycles are simulated by

evaluating the maximum number of activated nodes among

all output clusters, and assuming that each activated node

requires a clock cycle to transfer its index. It is assumed that

the indices of the activated nodes in a cluster are transferred

serially for each cluster but in parallel with other clusters.

Considering the observations from Fig. 3 and Fig. 4, it can be

concluded that the search scope after using the co-processor

can be significantly focused. Only a single matched result is

determined if the total number of associated file IDs (stored

database entries) falls into a region, where a small rate of

changes in the number of search results can be observed (Eg.

when the number of file IDs are < 2, 000). This rate of change
is SFR, that is a parameter which can be defined in the design

requirement for a specific database to control the number of

false-positive results.

IV. COMPARISON

In the co-processor, the total number of required memory

bits, P, is given by:

P =

fMax−1∑
f=0

cf−1∑
i=0

2κ(f,i) ·
fMax−1∑
f ′=0

cf−1∑
i′=0
i′ �=i

2κ(f′,i′) , (6)

TABLE II
FEATURE COMPARISON

Parameter
L-SCAN

(This work)
CPU-CDS CAM-CDS

Required
Physical Memory (Mb)

0.54 7.32 7.32

Min./Average
Transfer Cycles

3/16.69 - 5/158.75

Min./Average
Search Cycles

2/2
240 /

3.4× 106
2/2

Min./Average
Search + Transfer Cycles

5/18.69
240 /

3.4× 106
7/160.75

TABLE III
SEARCH RESULT TRANSFER CYCLES

Field(s) with Input L-SCAN (This work) CAM-CDS

0 35.27 5

0,1 10.82 312.5

0,2 17.67 5

0,1,2 2.98 312.5

whereas a CAM-based counterpart would require fMax×Q×M
CAM cells, where Q is the required length of a search item

in the database. This memory requirement does not take into

account the number of memory bits in the SRAM array that

is attached to each CAM array. In a CAM-based counterpart,

the SRAM array stores the file IDs. Table II shows the

comparison of the memory requirement and search delays

in clock cycles, for the proposed system for selected search

scenarios, a Texas Instrument MSP430 embedded processor,

and CAM-based search engines. The processor has 16-bit

instruction, 32-bit data and 64-KB cache memory performing

an exhaustive context-driven search in software with related

search parameters in Table I. L-SCAN requires 13.6× fewer

memory-bits compared to those of CAM-CDS. The number

of co-processor search cycles are according to that in [9]. The

search cycles for CAM are for receiving an input and then

registering the generated matched results.

As shown in Table III, the average delay to transfer the

generated search results, in clock cycles, can be calculated

using Fig. 4 in terms of the clock cycles, and considering

one transfer per cycle. This delay is, for an average search

scenario, 16.69 cycles, which is 9.5× smaller than that of

a CAM-based architecture transferring independent matched

results. Compared to a CAM, the proposed system has in

total 8.6× reduced number of clock cycles on average to

search and transfer results. Since it is required to transfer the

results serially after the search is completed, the co-processor,

and CAM architectures cannot be easily pipelined. After the

proposed co-processor computes the search results, the state

of memory units can be changed to standby while the results

are transferred to CPU from the output registers.

V. CONCLUSION

In this paper, a multiple-field search engine was presented

employing the concept of a new family of associative mem-

ories known as sparse clustered networks. In the proposed

system, the memory requirement to construct a search engine

is reduced by 13.6× compared to a classical hardware-based

search architecture based on content-addressable-memories

(CAMs). Furthermore, for comparison purposes, the search

delay of a CPU running a classical serial search algorithm

was also simulated, and its number of clock cycles were mea-

sured on average to complete several search operations with

different scenarios. Due to its parallel computation structure,

the proposed system achieves 8.6× reduced number of clock

cycles on average in performing a search operation compared

to CAMs, and five orders of magnitude reduced number of

clock cycles compared to a CPU-based counterpart running

an exhaustive search in software.

We expect that the large reduction in the number of clock-

cycles results in large delay improvements when L-SCAN is

implemented in ASIC following the results reported in [9].

Future work includes hardware-implementation and fabrica-

tion of the proposed co-processor as an energy-efficient search

engine.

REFERENCES

[1] K. Taha and R. Elmasri, “XCDSearch: An XML context-driven search
engine,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 12, pp. 1781–1796, 2010.

[2] I. Hayashi, T. Amano, N. Watanabe, Y. Yano, Y. Kuroda, M. Shirata,
K. Dosaka, K. Nii, H. Noda, and H. Kawai, “A 250-mhz 18-Mb full
ternary CAM with low-voltage matchline sensing scheme in 65-nm
CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2671–
2680, 2013.

[3] I. Arsovski, T. Hebig, D. Dobson, and R. Wistort, “A 32 nm 0.58-
fJ/Bit/Search 1-GHz ternary content addressable memory compiler using
silicon-aware early-predict late-correct sensing with embedded deep-
trench capacitor noise mitigation,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 4, pp. 932–939, 2013.

[4] Y. Chang, F. Kuo, H. Guo, and C. Su, “Layeredtrees: Most specific
prefix based pipelined design for on-chip ip address lookups,” IEEE
Transactions on Computers, 2013.

[5] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel: A storage-
efficient, collision-free hash-based network processing architecture,” in
Computer Architecture, 2006. ISCA ’06. 33rd International Symposium
on, 2006, pp. 203–215.

[6] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Transactions on Networking,
vol. 14, no. 2, pp. 397–409, 2006.

[7] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp.
1087–1096, Jul. 2011.

[8] H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Architecture
and implementation of an associative memory using sparse clustered
networks,” in IEEE International Symposium on Circuits and Systems
(ISCAS), Seoul, Korea, May 2012, pp. 2901–2904.

[9] ——, “Reduced-complexity binary-weight-coded associative memories,”
in Proceedings of the 2013 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2013, pp. 2523–2527.

[10] H. Jarollahi, V. Gripon, N. Onizawa, and W. J. Gross, “A low-power
content-addressable memory based on clustered-sparse networks,” in
Proceedings of the 24th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), Jun. 2013, pp.
305–308.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

