
980 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Storing Sparse Messages in Networks
of Neural Cliques

Behrooz Kamary Aliabadi, Student Member, IEEE, Claude Berrou, Fellow, IEEE,
Vincent Gripon, Member, IEEE, and Xiaoran Jiang, Student Member, IEEE

Abstract— An extension to a recently introduced binary neural
network is proposed to allow the storage of sparse messages,
in large numbers and with high memory efficiency. This new
network is justified both in biological and informational terms.
The storage and retrieval rules are detailed and illustrated by
various simulation results.

Index Terms— Associative memory, error correcting code,
machine learning, parsimony, recurrent neural network, sparse
coding.

I. INTRODUCTION

THE brain stores information with high concern for parsi-
mony. For obvious reasons of both restricted available

resource and energy limitations, the pieces of information
memorized by the biological neural network result from a
strong compression of the physical stimuli stemming from the
“richly detailed world” [1]. For the same reasons, storage and
retrieving operations involve a few cerebral regions and a few
neurons at each time. The way the brain recruits and organizes
these small populations of neurons to perform the so-called
“sparse coding” of mental information [2]–[5] has still to be
discovered.

On the other hand, in healthy brains, mental information
is robust and durable, therefore must be redundant. Without
redundancy, mental information would be too frail facing the
physicochemical aggressions that the brain constituents suffer
continuously and for so many years.

In those terms, the situation is very similar to the well-
known source coding/channel coding scheme of modern
telecommunication systems: first, information is cleared of
useless components and then intelligent redundancy is added
to allow error correction at the receiver side [6]. This rationale
has recently led to the proposal of a new neural architecture
combining recurrent binary networks and error correcting
codes [7]. Actually, it was demonstrated in this latter paper
that no error-correcting code had to be artificially added.
Indeed, any graph, whatever the support, biological or arti-
ficial, may contain highly redundant codewords when they

Manuscript received August 16, 2012; revised August 17, 2013; accepted
October 1, 2013. Date of publication November 8, 2013; date of current
version April 10, 2014. This work was supported by the European Research
Council under Grant ERC-AdG2011 290901 NEUCOD.

The authors are with the Electronics Department, Brest 29238, France,
and also with the Laboratory for Science and Technologies of Information,
Communication and Knowledge, Brest 29238, France (e-mail: behrooz.
kamaryaliabadi@telecom-bretagne.eu; claude.berrou@telecom-bretagne.eu;
vincent.gripon@telecom-bretagne.eu; xiaoran.jiang@telecom-bretagne.eu).

This paper includes multimedia material available online at
http://ieeexplore.ieee.org (File size: 27 Kbytes).

Digital Object Identifier 10.1109/TNNLS.2013.2285253

are assimilated to specific graph patterns, namely cliques.
Exploiting this very beneficial property, multipartite clique-
based networks have been proposed in [7] to store messages
with large diversity (the maximum number of messages that
can be stored) and capacity (the maximum amount of stored
binary information), as well as strong robustness toward
erasures or errors. However, these networks were devised in
such a way that all the clusters resulting from multipartition
are used in the memorization procedure. Therefore, they do
not correspond directly to the sparse coding vision of mental
information. Moreover, the diversity of these networks is
proportional to the square of the number of nodes in each
cluster, and not to the square of the total number of nodes.
To lift these restrictions, the clique-based networks have to
be reconsidered and reassessed with respect to the storage of
sparse messages, that is, messages that do not call for the
complete network but only for parts of it. The storage cost
(i.e., the required binary resource) for sparse messages being
significantly reduced compared with that of nonsparse ones,
the improvement in diversity is appreciable.

The acquisition and storage of sparse messages have been
an important research topic in various fields; among those
are compressed sensing [8], [9], sparse regression [10] and
information theory [11]–[13]. Regarding the possible applica-
tions of the network presented in this paper, the most obvious
one could be the implementation of dictionaries for the sparse
acquisition and representation of data, such as speech, images
or semantics [14]–[16]. In this kind of applications, the net-
work would acquire and store numerous dictionary codewords
materialized by small cliques and the concomitant activation of
some of these cliques would materialize a particular element
of knowledge. The dictionary may be prefixed (e.g., using
wavelets as codewords) or may evolve with the coming of
new elements. The advantages offered by the network for the
implementation of such dictionaries would be high capacity,
full parallelism, and error correction capability. The rest of this
paper, which does not deal with such advanced applications but
deepens the informational properties of the proposed network,
is organized in seven sections. Section II recalls the principles
and notations of the clique-based networks and also proposes
a slight improvement of the retrieving algorithm introduced
in [7]. Some considerations about the biological plausibility
of the architecture are propounded as well. In Section III,
the storage and retrieving algorithms of sparse messages
are described. Sections IV and V provide some theoretical
analysis and simulation results for the basic applications of
associative memory and set implementation. Section VI gives

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ALIABADI et al.: STORING SPARSE MESSAGES 981

an illustration of the network performance, in terms of error
correction for classification. In section VII, the question of
sparse messages with variable degrees of sparsity is taken up.
Finally, some comments about the openings of this new kind
of neural networks are proposed in the conclusion.

II. NETWORKS OF NEURAL CLIQUES

A. Summary

Consider a network with n binary nodes linked by binary
edges (that is, each edge exists with weight 1 or does not
exist). This network can then be described by a nonweighted,
nonoriented graph whose nodes may be activated or not, with
respective values 1 and 0. The network is split into c clusters,
each containing l = n/c nodes. For reasons that will be
given later, these nodes are called fanals. Though any alphabet
with cardinality l could be considered in the representation
of information stored by the network, we focus on binary
messages to allow classic computations or estimations of
storage properties. Therefore, l is taken to be a power of 2:
l = 2κ . With an input binary message m of length k = cκ
bits to store, is associated a unique set of fanals, one per
cluster, using the mapping: C : m = (m1, . . . , mi , . . . , mc)→
( f (m1), . . . , f (mi ), . . . , f (mc)) where mi of length κ bits is
the submessage or character associated with the i th cluster,
f (.) is the function that maps each submessage to a unique
fanal in the corresponding cluster.

Thus, the network stores a given message by selecting one
fanal per cluster and connecting these c fanals to build a
fully interconnected subgraph, that is, a clique. In other words,
storing the particular message m is equivalent to storing the
pattern C(m). If M is the set of messages stored by the
network, W(m) the set of edges that has to be created to
store particular message m, the ensemble W of existing edges
resulting from the storage of M is simply given by

W =
⋃

m∈M
W(m). (1)

This result does not depend on the order in which messages
are presented, and storing a new message can be done at any
moment. This very simple storage rule leads to a completely
binary network. Note that no connection is established within
a cluster.

The retrieving algorithm is a two step, possibly iterative,
procedure. First, at the global scale and from what is known
of the stimulus (that is, some of the submessages mi ), the
corresponding fanals send unitary signals toward the network
through established connections and then, the contributions
are added at each node. After this message passing step, at the
local scale of each cluster, a winner-take-all rule is performed.
Noting v(ni j ) the value of the j th fanal in the cluster with
index i (1 ≤ i ≤ c; 1 ≤ j ≤ l) and w(i ′ j ′)(i j ) the weight
(0 or 1) of the edge between the fanals ni ′ j ′ and ni j , the
global decoding equation is

v(ni j )←
c∑

i ′=1

max
1≤ j ′≤l

(w(i ′ j ′)(i j )v(ni ′ j ′))+ γ v(ni j ). (2)

A memory effect with parameter γ is added to the message
passing procedure. This relation is slightly different from
the one proposed in [7], as the summation on node ni j of
the signals stemming from the same cluster with index i ′ is
replaced with a selection of its maximum. The reason why
equation (2) is now preferred is detailed in [17]. Briefly, the
max function is justified by the following argument: when
several fanals are active within the same cluster, that is, in the
presence of ambiguity, this very cluster must not impact on the
rest of the network more than in the case of only one active
fanal. In other words, ambiguity is tolerated at the local level
but not favored at the global scale. As for the local winner-
take-all selection, the relations are the same as in [7], precisely

∀i, 1 ≤ i ≤ c : vmax,i ← max
1≤ j≤l

(v(ni j ))

∀i and j, 1 ≤ i ≤ c, 1 ≤ j ≤ l :

v(ni j ) =
{

1 if v(ni j ) = vmax,i and vmax,i ≥ σ,
0 otherwise

. (3)

After these operations, all fanals have value of 1 or 0, which
explains why this network is said to be binary, even if transi-
tory fanal values may be larger than 1. σ is a threshold, which
is quite comparable with that of the McCulloch–Pitts model
of neuron [18] and which may be used as an additional level
of control. In normal conditions and classical applications, all
the vmax,i computed in the c clusters are equal and can then be
reduced to a single maximal score vmax. A counter-example
would be, for instance, a network in which some established
connections have disappeared, due to some physical flaw;
in these conditions, some signals may be missing in the
computation described by (2), preventing one or more fanal
values from reaching vmax.

After the calculations formulated by (3), more than one fanal
may remain activated within the same cluster. In this ambigu-
ous situation, a repetition of (2) and (3) may be profitable and
the process may need several iterations to converge toward a
fixed point.

B. Biological Considerations

As already pointed out in the introduction, parsimony is a
prominent characteristic of the brain organization and func-
tioning. The amount of data which are continually conveyed
by the nervous system, the visual cortex for instance, is
gigantic. Yet, what is retained by the brain for a possible
later exploitation (e.g., the description of a flower) requires
much less information than the original physical stimuli. These
stimuli undertake several filtering operations, from the sensory
levels (e.g., points, lines, shapes and colors) to the most
cognitive ones (names, concepts, etc.), each level adapting the
elements of knowledge to its own mode of representation and
storage [19].

It is now surmised [3], [20] that these different modes
of representation of mental information, either sensory or
cognitive, correspond to the activation of small populations
of neurons in dedicated parts of the cortex. Under some
strongly reductionist hypotheses, it is possible to describe this
biological network by a recurrent graph in which the activation



982 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

of some nodes may form a pattern, which could be considered
as the material representation of a stored piece of information.
Actually, from the point of view of informational organiza-
tion, the fundamental processing unit acting as a repetitive
node in the biological graph is likely not a neuron alone,
but the microcolumn (also called the minicolumn) [21]–[23].
This very heterogeneous group of about 100 neurons repeats
itself quasi-uniformly over the about 20 square decimeters
of the human gray matter. Therefore, the microcolumn, as
an “identical repeating unit”, can be considered as a node
in a graph, able to receive and send many signals from and
toward the rest of the network, with the same informational
abilities everywhere in the cortex. As written in [23]: “current
data on the microcolumn indicate that the neurons within the
microcolumn receive common inputs, have common outputs,
are interconnected, and may well constitute a fundamental
computational unit of the cerebral cortex.”

These microcolumns are grouped into columns whose pop-
ulations are various, from some tens to some hundreds. These
columns are believed to contain microcolumns that react to
the same family of stimuli (e.g., the value of an angle in
the visual cortex). Rising in the neural hierarchy, columns
gather in macrocolumns and then several macrocolumns
together constitute the so-called functional areas of the
brain.

We propose to liken the fanals of the clique-based networks
to microcolumns, the clusters to columns, and finally the
network itself to a macrocolumn. For the sake of simplicity,
all the clusters have same cardinality l in this paper, but as
already stated, biological columns are of various sizes. The
term fanal has been adopted to represent a node in the clique-
based networks for two reasons. First, it expresses the reality
of a cluster in which only one fanal can be lighted during
the storage process; second, it makes clear that a node of the
graph is not a single neuron, but a group of neurons, namely
a microcolumn.

III. PROCESSING SPARSE MESSAGES

Consider a message of length χ composed of characters
taken in an alphabet denoted by A, the neutral character 0
being one of its elements. According to the classical definition,
a sparse message is a message containing few nonzero charac-
ters. Such messages are the subject of many current studies in
the field of information theory, especially for the compressed
sensing application [8], [9], or also for classification [24]. We
have here to change the definition and say that a message
is sparse when it contains few significant characters, that is, a
limited number of informative characters, in specific locations,
the others being of no concern. To take a simple example, if
A is the ensemble of positive or null integers less than eight,
a sparse message of length χ = 24, according to the con-
ventional definition, could be: (000500060010000030000000),
whereas we consider here messages such as: (−−−5−−−
6−−1−−−−−3−−−−−−−), each dash meaning “blank”.
The blank characters do not need to be stored by the neural
network and do not require any fanal to be recruited in the
storage of the message, while a classical sparse message would

Fig. 1. Network composed of nine clusters of 16 fanals each. A first clique
with four vertices has been formed in the network.

need the writing of the 0s. This vision of sparse messages is
much more in accordance with the way the brain learns its
knowledge elements, with the concern for parsimony.

A. Storing

Until Section VII, we consider the storage of messages
of length χ with the same number c of a few significant
characters that we call indifferently the clique or message
order in the sequel. Alphabet A contains l = 2κ nonblank
elements and, in the same way as proposed in [7], the network
is split into χ clusters, each containing l fanals. Therefore, the
network contains n = χl fanals and χ(χ − 1)l2/2 potential
connections, that is, a binary resource of

Q = χ(χ − 1)l2

2
[bits]. (4)

Starting from an initial state with no connection at all, the
storage of a first message will recruit c fanals and establish
c(c− 1)/2 connections to buildup a clique (see an example
in Fig. 1 for χ = 9, l = 16, and c = 4 and one established
clique with 4× 3/2 = 6 connections). The probability that any
particular connection does not belong to this clique is supposed
to be: 1 − c(c − 1)/χ(χ − 1)l2 (this is not rigorously exact
because the connections created by the clique are correlated,
but the effect of this correlation is negligible when a large
number of cliques have been formed). So, after the storage of
M independent identically distributed (i.i.d.) random messages
(each character being drawn at random), this probability, which
we assume to give directly the expected connection density, is

d = 1−
(

1− c(c− 1)

χ(χ − 1)l2

)M

. (5)

Reciprocally, given a density d , the number M of i.i.d. stored
messages is

M = log(1− d)

log
(

1− c(c−1)
χ(χ−1)l2

) . (6)

Fig. 2 shows the evolution of d as a function of M , for
χ = 100, l = 64 and various values of c. For low values of
d , we have

d ≈ c(c − 1)M

χ(χ − 1)l2 (7)



ALIABADI et al.: STORING SPARSE MESSAGES 983

Fig. 2. Density of the network connections as a function of the number M
of stored messages, for χ = 100, l = 64 and four values of c.

and reciprocally

M ≈ χ(χ − 1)l2

c(c− 1)
d ≈ χ2l2

c(c− 1)
d ≈ n2d

c(c − 1)
(8)

for χ 
 1. This very simple result shows that, for a given
density d and a particular value of the clique order, the number
of messages that the network is able to store is proportional to
the square of the number of nodes, or fanals. This quadratic
law has for instance to be compared with the well-known
sublinear law of Hopfield networks (see [7] for details) or other
comparable laws obtained with networks based on weighted
connections.

We can express the amount of binary information B stored
by the network after the memorization of M messages as

B = M

[
log2

((
χ

c

))
+ cκ

]
. (9)

The first term between the parentheses accounts for the choice
of the clusters in the storage of one message, with c significant
characters among χ . The second term represents the binary
content of each message, where κ = log2(l). Finally, we define
efficiency η as the ratio of B and Q:

η = B

Q
= 2M

[
log2

((χ
c

))+ c log2(l)
]

χ(χ − 1)l2 . (10)

For efficiency equal to 1, this formula leads to an upper
bound for M , called the efficiency-1 diversity of the network1

Mmax = χ(χ − 1)l2

2
[
log2

((χ
c

))+ c log2(l)
] . (11)

For instance, with χ = 100, l = 64, and c = 16, Mmax
is around 1.30 × 105 messages of 156 bits each. Density
calculated from (5) is then about 0.54.

From (11), we observe that the largest values of Mmax are
obtained for the lowest clique orders c. This is quite natural:

1However, because messages are not ordered in an associative memory and
therefore require less resource than ordered messages, efficiency larger than
1 is not inconceivable [7].

for a given binary resource, the shorter the messages are, the
more numerous they can be. However, the smaller a clique is,
the less robust it is facing possible flaws (e.g., errors, erasures
or over storage). The choice of c is thus the result of a tradeoff
between the density and robustness. The optimal values for
the applications of associative memory will be discussed in
Section IV.

B. Retrieving

The basic equations for the retrieving of stored messages
are still (2) and (3), but in which some adjustments have to
be made to consider sparsity

v(ni j ) ←
χ∑

i ′=1
max

1≤ j ′≤l

(
w(i ′ j ′)(i j ) v(ni ′ j ′)

)+ γ v(ni j ) (12)

∀i, 1 ≤ i ≤ χ : vmax,i ← max
1≤ j≤l

(v(ni j ))

vmax ← max
1≤i≤χ

(
vmax,i

)

∀i and j, 1 ≤ i ≤ χ, 1 ≤ j ≤ l :

v(ni j ) =
{

1 if v(ni j ) = vmax and vmax ≥ σi

0 otherwise
. (13)

Let us first point out that, despite the fact that a stored
message uses a restricted number c of clusters at each time,
these clusters vary from one message to another. Therefore, in
common situations, the decoding procedure has to address the
whole network uniformly. To achieve this, c is replaced with
χ as the upper index of the summation in (12). Second, the
winner-take-all rule expressed by (3) for each cluster has now
to be extended to the whole network to find the appropriate
clusters in search of a particular message, if their indices
are not known. To achieve this, (13) retains the maximum
value vmax of maximum scores obtained in all clusters and
assigns vmax as the condition to reach for all fanals to be
active. Finally and in general cases, threshold σ is now cluster
dependent and thus is denoted σi . Indeed, in some applications,
all the clusters may not be involved in a specific task. For
instance, if the network is asked to recognize, or reject, a
particular message with c < χ significant characters, only the
corresponding clusters have to be processed. The threshold
of the other clusters is then set at a high unreachable value.
In another situation if the network has to store not only binary
messages, but also some kind of cognitive features, the choice
of distinct values for σi may orientate the network decoding
toward constrained solutions. A high value for the threshold
of a particular cluster would mean that this has no relevance
in the current process.2

IV. ASSOCIATIVE MEMORY

Suppose that a network with parameters χ and l has stored
M i.i.d. random messages with order c, that is, M cliques
with c vertices. We want to know what the error probability
is in the recovery of one stored message when ce < c clusters

2A C++ software, performing the storage and retrieval of sparse messages,
in the way described in this section, is available as a multimedia content in
IEEEXplore.



984 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

are not provided with information. Two extreme cases have
to be considered. Either the indices of the ce missing clusters
are completely unknown—we call this most severe case blind
recovery—or they are totally known—it is then called guided
recovery.

A. Blind Recovery

The first and most obvious reason why the retrieving of a
previously stored message may fail is because at least one
other valid message shares the same known characters. For
i.i.d. messages and large enough values of c − ce and l, this
probability is negligible. The second reason is the possible
existence of spurious cliques (i.e., nonvalid cliques resting
inopportunely on the edges of valid cliques) that would
contain the known fanals and then interfere in the retrieving
process.

Because any subset of a clique is a clique, the probability
that no such spurious clique, of any order, exists is the
probability that there is no spurious clique with c − ce + 1
vertices, that is only one more than the known characters.
Therefore, to determine the probability of nonexistence of
spurious cliques of any order, it is sufficient to calculate the
probability P ′ of not having a spurious clique with c− ce+ 1
vertices. Given the density d of the network connections, the
probability that a particular fanal does not form a clique with
the c − ce known fanals is 1 − dc−ce . The number of fanals
available to form such a spurious clique is ce(l−1)+(χ−c)l.
Therefore, the probability that no such clique exists is

P ′ = (
1− dc−ce

)ce(l−1)+l(χ−c)
. (14)

Because of the aforementioned arguments, the probability of
nonexistence of spurious cliques, which we assimilate to the
probability Pr of retrieving the correct message, is

Pr =
(
1− dc−ce

)ce(l−1)+l(χ−c)
. (15)

Performing several iterations does not help the recovery in the
presence of spurious cliques. The appendix gives an example
of why such a spurious clique makes the decoding fail, even
in an iterative process. The probability of recovery error Pe is
then given by

Pe = 1− Pr = 1− (
1− dc−ce

)ce(l−1)+l(χ−c)
(16)

which can be approximated, for small values of d , as

Pe ≈ (ce(l − 1)+ (χ − c)l)d(c−ce). (17)

Note that, even without erasure (ce = 0), the error probability
in blind recovery is not zero. This is because a given stored
clique of order c may belong to a spurious clique with order
c + 1, with approximated probability (χ − c)ldc.

The curve (a) of Fig. 3 shows the simulated error rate in
the blind recovery of messages, as a function of their number
M , for χ = 100, l = 64, c = 12, and ce = 3, after one
iteration of (12) and (13). All thresholds σi are equal to zero
in the decoding process and memory parameter γ is equal
to 1. Values given by (16) are also indicated, showing good
correspondence between theory and simulation.

From relations (5) and (16), it is possible to link M and c,
for a predetermined value of Pe = P0. To do this easily, we use

Fig. 3. Error rate in both blind and guided recovery of M i.i.d. messages
with order c = 12 in a network composed of χ = 100 clusters of l = 64
fanals each. ce = 3 clusters have no initial information.

Fig. 4. Diversity of the network composed of χ = 100 clusters of l = 64
fanals each, as a function of the message order c, when a quarter of the
c clusters have no information at the initialization step [relation (18) with
α = 0.25] and for a given error probability P0 in blind recovery.

the approximations given by (7) and (17), with the additional
and rough hypothesis: χ 
 c
 1. We also set ce as a fraction
α of c: ce = αc. All this results in

M ≈
(

χl

c

)2 (
P0

χl

) 1
(1−α)c

. (18)

Fig. 4 shows the variation of diversity M , as a function of
c, for χ = 100, l = 64, α = 0.25 and three values of
P0. These curves show that there exists a value of c that
maximizes the diversity of the network, for a given value of P0.
This value, denoted copt, is estimated by deriving (18) (through
the logarithm) with respect to c, and finding the condition for
extremum. The computation gives

copt ≈
log

(
χl
P0

)

2(1− α)
. (19)



ALIABADI et al.: STORING SPARSE MESSAGES 985

For instance, with χ = 100, l = 64, α = 0.25, we have
copt equal to 9 and 15 for P0 = 10−2 and 10−6, respectively.
The corresponding diversities given by (18) are around 70 000
and 25 000 and efficiencies, as formulated by (10), are 33%
and 18%. As can be surmised, material efficiency (η) and
effectiveness in restoring the messages (Pe) are conflicting,
but not so sharply.

B. Guided Recovery

In this favorable case, some characters of the message are
missing, but their supporting clusters are known. The thresh-
olds σ of irrelevant clusters are then set to an unreachable
value. The situation comes down exactly to that described in
[7, Section VI] in which all clusters are systematically known
to retrieve a message. The error probability, after one iteration,
is given by

Pe = 1− (
1− dc−ce

)(l−1)ce . (20)

The simulated error rate, after several iterations, may be
notably less than Pe. The curves (b) and (c) of Fig. 3 show
the evolution of the error rate as a function of M , after one
and four iterations, respectively, and with the same parameters
as curve (a). The theoretical values given by (20) are also
indicated.

The gap in performance between the blind and guided
recovery is not considerable in terms of diversity. When
guided, instead of blind, decoding is performed and for a
given error rate, diversity M [which is roughly proportional
to density d , through approximation (7)] is higher by about
50%, after one iteration and 100% after four iterations.

V. SET IMPLEMENTATION

As in [7, Section V], we consider a simple set imple-
mentation application. The network with parameters χ and
l stores M i.i.d. messages with same order c < χ . The
decoding procedure is still described by relations (12) and
(13) with γ = 1, but thresholds σ are now equal to c for the
clusters under test (those which have a fanal activated) and a
higher unreachable value for the others, to prevent them from
interfering. The network is then asked whether a message is
known by it or not, that is, practically whether the decoding
procedure will accept the stimulus without modification or not.
The recognition of stored messages is always successful, since
all the activated fanals will obtain the maximal score (i.e., c),
as soon as the first iteration has finished and no other one can
be the winner within the clusters under test. Therefore, the
type I error is naught:

Ptype I error = 0. (21)

Because the thresholds of the irrelevant clusters are set to
unreachable values, the only possibility for the network to
accept a wrong message, that is, a type II error, is the existence
of a spurious clique of order c in the clusters under test.
Assuming again that not only messages, but also connections
are i.i.d., the probability of having such a spurious clique is

Ptype II error = d
c(c−1)

2 =
(

1−
(

1− c(c − 1)

χ(χ − 1)l2

)M
) c(c−1)

2

.

(22)

Fig. 5. Type II error rate as a function of the density of the network composed
of χ = 100 clusters of l = 64 fanals each, with cliques of order c = 6 or 9.
Densities corresponding to efficiency-1 diversities (Mmax) are also indicated.

Fig. 5 shows the type II error rate obtained from simulation,
on the one hand, and relation (22), on the other hand, as a
function of density d . The parameters are χ = 100, l = 64 and
c = 6 or 9. This figure also shows the values of efficiency-1
diversity Mmax, as calculated from (11), showing that low error
rates may be obtained even for efficiencies higher than 1. For
instance, with c = 9, diversities more than three times Mmax
[with d = 0.68 according to (5)] can be attained while keeping
the error rate below 10−6.

VI. BLURRED MESSAGES

Because the proposed network uses cliques as support of
information and since cliques are redundant structures, the
error correction of distorted or blurred incident messages is
possible. To illustrate this property, we consider a network
with parameters χ = 100, l = 64, and c = 12. M messages
are stored using c contiguous clusters, the first one being
randomly located at a position between 1 and χ − c+1 = 89.
After the storage phase, messages are presented to the network
after systematic permutation of two consecutive characters, in
a cyclic way. For instance, if the messages were, among other
things, 12 letter English words, the stored word “intelligence”
may be received either as “nietllgineec” or “etnleilegcni”. If
the network is able to recognize “intelligence” from these
pairwise permuted versions, it would also be able to correct
less disturbed words, such as “intleligecne” or “intellgienec”
(a task that the human brain is also reputed to be capable
of [25]).

To allow the network to cope with the upset order of
characters, the initialization of the retrieving process has to
be modified: when a fanal is activated in a cluster, then the
equivalent fanals (i.e., fanals with the same index values j )
of the adjacent clusters have also to be activated. There-
fore, at the beginning of the retrieving process, each cluster
contains three active fanals. The stored clique intelligence
being contained in the activated subgraph composed of the
12 × 3 = 36 nodes, the decoding procedure described by
(12) and (13) will hopefully, after several iterations, switch



986 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 6. Error rate in the retrieving of messages distorted by permutations of
contiguous characters. The network parameters are χ = 100 and l = 64, and
messages have order c = 12.

off the irrelevant fanals and display the word with the right
order.

The probability for the decoder to fail is again related to
the existence of spurious cliques. The most likely are those
which share c− 1 vertices with the stored clique and use one
wrong fanal in the remaining cluster as the last vertex. For a
given set of c− 1 correct vertices, the probability that such a
spurious clique exists is dc−1. Because there are 2c possible
patterns having c−1 correct vertices and a wrong one (of two
possible) in the last cluster, the probability that a false clique
may exist, giving directly the error probability in the retrieving
process, is

Pe = 1−
(

1− dc−1
)2c ≈ 2cdc−1 for d � 1. (23)

Fig. 6 shows the error rate obtained by simulation after one
and six iterations, as well as the theoretical curve deduced from
(23). Because messages that are presented to the network are
strongly distorted, several iterations are required to approach
the theoretical performance. By comparing abscissas in Figs. 3
and 6, we note that the network is able to correct wrong
messages as easily as, even a little better than, erasures.
If full anagrams, instead of contiguous permutations, were
considered, c fanals would have to be activated in each
cluster at the initialization step, instead of only 3. The error
probability in deciphering these anagrams would then be
given by

Pe=1−(
1− dc−1

)c(c−1) ≈ c(c− 1)dc−1 for d�1. (24)

VII. VARIABLE ORDER MESSAGES

We want now to assess the ability of the network with
parameters χ and l to store and retrieve messages with various
values of c. From Fig. 4, we can notice that a relatively large
set of orders c around copt may be employed without much
deteriorating the retrieving performance of the network. For
instance, with a targeted error rate P0 equal to 10−4 and for

this particular network with χ = 100 and l = 64, values
of c chosen between 8 and 20 would decrease the diversity
by about 10% or less from the optimal value obtained with
copt = 12.

To formalize the general case, let us consider clique orders
distributed between cmin and cmax, such that 1 < cmin ≤
cmax < χ . Following the same rationale that led to relation
(5), we can express the density of the network as

d = 1−
cmax∏

c=cmin

(
1− c(c− 1)

χ(χ − 1)l2

)Mc

(25)

where Mc is the number of messages stored with order c. If
c is uniformly distributed between cmin and cmax, Mc is equal
to M/λ, M still being the total number of i.i.d. messages and
λ = cmax − cmin + 1.

The storage and recovery rules are still those given in
Section III, with threshold values σi , all equal or not, depend-
ing on the application. The amount of binary information
borne by a particular message m ∈ M, materialized by a
clique with order cm , is now

log2

((
χ

cm

))
+ cm log2(l).

To write this formula, we have considered that the value of cm

does not result from a choice but is imposed by message m.
Therefore, the value of cm does not bring any information
about this particular message.

Efficiency η is given by

η =
2

∑

m∈M

(
log2

((
χ

cm

))
+ cm log2(l)

)

χ(χ − 1)l2 . (26)

It is not easy to exploit this formula in the general case. For
a uniform distribution of orders c between cmin and cmax, this
amounts to a more convenient formula:

η =
2M

cmax∑

c=cmin

(
log2

((
χ

c

))
+ c log2(l)

)

λχ(χ − 1)l2 . (27)

As in Section III-A, it is then possible to find the efficiency-1
diversity by setting η = 1. This gives

Mmax = λχ(χ − 1)l2

2
cmax∑

c=cmin

(
log2

((
χ

c

))
+ c log2(l)

) . (28)

For instance, taking cmin = 12 and cmax = 20 gives Mmax =
1.27× 105, a value very close to that obtained for c constant
and equal to 16, as observed in Section III-A.

Finally, to finish this survey of sparse messages stored
in network of neural cliques, we consider a network with
parameters χ and l storing M i.i.d. messages of variable and
uniformly distributed orders c and the blind recovery which is
done without the knowledge of ce = αc submessages. Relation
(16) being applicable to each of the subset of the messages



ALIABADI et al.: STORING SPARSE MESSAGES 987

Fig. 7. Blind recovery error rate of messages with variable order between
cmin and cmax in a network with parameters χ = 100 and l = 64, and when
ce = c/4 clusters (on average) have no initial information. One iteration.

with particular order c, we can write the average retrieving
error rate as

P̄e = 1

λ

cmax∑

c=cmin

(
1− (

1− d(1−α)c)αc(l−1)+(χ−c)l
)
. (29)

Combined with (25) for Mc = M/λ, it is then possible
to estimate the performance of the network in terms of error
rate versus diversity when variable order messages are stored.
Fig. 7 shows this performance in two cases: cmin = 6 and
cmax = 18 on the one hand, cmin = 12 and cmax = 24 on
the other hand, and for α = 0.25 (on average when c is
not a multiple of four). Both simulated and theoretical values
deduced from (29) are also displayed. As in the case of c
constant, performing multiple iterations does not reduce the
error rate and then only one iteration is considered. The curves
of Fig. 7 have to be compared with that obtained for c constant
and equal to 12 [Fig. 3(a)]. Unsurprisingly, the performance
is somewhat lower for variable order messages than for c
constant and close to copt. For low error rates, reduction in
diversity is more pronounced for small values of c. However,
in all cases, provided that c remains small compared with χ ,
the order of magnitude for diversity remains the same.

VIII. CONCLUSION

We have demonstrated and assessed the ability of binary net-
works to store and retrieve a large number of sparse messages,
of constant or variable orders. These messages are stored as
cliques whose vertices belong to distinct clusters, the number
of which (c) is small compared with the total number (χ). The
stored messages may be retrieved in the presence of erasures
and even after some kind of distortion, provided that the
decoding algorithm is adapted to the particular problematic.

To speak in terms of nonlinear systems, we have shown that
an appropriately organized binary recurrent graph may contain
a large number of attractors. These stable and distinguishable
patterns may be considered as codewords of a distributed code

Fig. 8. Example of failure in the retrieving of a stored clique (A-B-C-D-E-F)
due to a spurious clique of shorter order (A-B-C-D-X).

whose local codes are constant weight-1 codes [17] and the
global code is a clique-based code. The big difference and
advantage of this neural code over a classical distributed code,
such as turbo [26] or low-density parity-check [27] code, is
of course its ability to store independent codewords, that is,
words that are not linked by some linear coding relation.

Everywhere in this paper, we have considered messages as
i.i.d. to make probabilistic analysis simple. Indeed, identically
distributed patterns result in a homogeneous network, that is,
constant expected density. This hypothesis may not reflect real
applications for which messages to store are more or less
correlated (e.g., words of a lexicon having the same root).
Unequal density impairs the performance of the associative
memory because the most connected fanals may become less
discriminating in the search for the appropriate pattern, in case
of erasures or distortions. The effects of correlation have been
widely studied in the specific case of Hopfield networks (see
[28] for instance) and need also to be assessed for clique-
based associative memories, to find efficient compensation
techniques.

The construction of the proposed network was inspired by
the hierarchical organization of the neocortex: microcolumns
(fanals) grouped in columns (clusters), which gather in macro-
columns (networks). We have observed that the number of
messages that a network composed of χ = 100 clusters
having l = 64 fanals each is able to store and retrieve
correctly is around 100 000. If we extrapolate this result to
what could offer the resource of the human cortex with its
billion microcolumns (roughly), the quadratic law expressed
by (8) leads to 105(109/6400)2 ≈ 1015 messages. This order
of magnitude is certainly exaggerated as the small world
organization of the neocortex [29] does not allow extending
the quadratic law to the whole scale.

The concept of neural clique is familiar to neuroscientists
[30], [31] but to our knowledge, the storage and retrieving
properties of clique-based sparse messages had never been
studied to the point of formalization we have developed in
this paper. In a recent communication [32], such cluster-
based networks were also demonstrated to be suited to the
storage of sequences, and not only to atemporal messages.
To allow this, cliques are replaced with tournaments, that



988 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

is, cliques where arrows substitute for edges. Efficiencies in
the range of 20% are achievable with still good properties
of robustness, tournaments being structures almost as redun-
dant as cliques. The kind of neural networks that we have
analyzed in this paper has very simple storage and retrieving
rules and offers a large amount of storage capacity as well
as attractive correction properties. This may be considered
as a good candidate for modeling the cerebral long term
memory and also an interesting starting point for the design of
machines able to store a lot of messages/situations/sequences
and to combine them using some cognitive principles yet
to be defined. For instance, as already said in Section I,
this kind of network may be considered as an interesting
model for sparse coding dictionaries implementation. This
work is currently undertaken within the framework of the
Neural Coding Project funded by the European Research
Council.

APPENDIX

Fig. 8 shows a stored clique of order six with vertices A, B,
C, D, E, and F, all belonging to distinct clusters. Only vertices
A, B, C, and D are known at the beginning of the retrieving
process. A spurious clique of order five with vertices A, B,
C, D, and X exists, due to connections established by other
stored cliques (not represented).

Therefore, at the beginning, A, B, C, and D have initial
values 1 whereas the others have value 0. Then unitary signals
are sent through the network and (11) with memory parameter
γ = 1 fixes all values to 4. Spurious vertex X cannot be
eliminated using relation (12); all values are then positioned
to 1. If a second iteration is carried out, the scores become
A = B = C = D = 7, E = F = 6, and X = 5. Again, because
E and F do not obtain the maximal score which is 7, only
nodes A, B, C, and D are assigned value 1 and the clique
cannot be recovered. Further iterations will repeat the same
cycle.

REFERENCES

[1] R. A. Resnik, “The dynamic representation of scenes,” Vis. Cognit.,
vol. 7, pp. 17–42, Jul. 2000.

[2] W. E. Vinje and J. L. Gallant, “Sparse coding and decorrelation
in primary visual cortex during natural vision,” Science, vol. 287,
pp. 1273–1276, Feb. 2000.

[3] P. Földiàk, “Sparse coding in the primate cortex,” The Handbook of
Brain Theory and Neural Networks. Cambridge, MA, USA: MIT Press,
2003, pp. 1064–1068.

[4] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,”
Current Opinion Neurobiol., vol. 14, no. 4, pp. 481–487, Aug. 2004.

[5] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain,
vol. 120, no. 4, pp. 701–722, 1997.

[6] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

[7] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1087–1096,
Jul. 2011.

[8] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[9] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[10] O. A. Maillard and R. Munos, “Compressed least-squares regression,”
in Advances in Neural Information Processing Systems, Vancouver, BC,
Canada: MIT Press, Dec. 2009.

[11] M. J. Wainwright, “Information-theoretic limits on sparsity recovery
in the high-dimensional and noisy setting,” IEEE Trans. Inf. Theory,
vol. 55, no. 12, pp. 5728–5741, Dec. 2009.

[12] S. Aeron, V. Saligrama, and M. Zhao, “Information theoretic bounds
for compressed sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 5111–5130, Oct. 2010.

[13] M. Akcakaya and V. Tarokh, “Shannon-theoretic limits on noisy com-
pressive sampling,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 492–504,
Jan. 2010.

[14] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning
sparse dictionaries for sparse signal approximation,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1553–1564, Mar. 2010.

[15] M. G. Jafari and M. D. Plumbley, “Fast dictionary learning for sparse
representations of speech signals,” IEEE J. Sel. Topics Signal Process.,
vol. 5, no. 5, pp. 1025–1031, Sep. 2011.

[16] K. Jia, X. Wang, and X. Tang, “Image transformation based on learning
dictionaries across image spaces,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 2, pp. 367–380, Feb. 2013.

[17] V. Gripon and C. Berrou, “Nearly-optimal associative memories
based on distributed constant weight codes,” in Proc. Workshop ITA,
San Diego, CA, USA, Feb. 2012, pp. 269–273.

[18] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biol., vol. 5, no. 4, pp. 115–133,
1943.

[19] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[20] C. A. Perfetti and D. J. Bolger, “The brain might read that way,” Sci.
Stud. Read., vol. 8, no. 3, pp. 293–304, Jul. 2004.

[21] E. G. Jones, “Microcolumns in the cerebral cortex,” Proc. Nat. Acad.
Sci., vol. 97, no. 10, pp. 5019–5021, May 2000.

[22] C. Johansson and A. Lansner, “Towards cortex sized artificial neural
systems,” Neural Netw., vol. 20, pp. 48–61, Jan. 2007.

[23] L. Cruz, S. V. Buldyrev, S. Peng, D. L. Roe, B. Urbanc, H. E. Stanley,
et al., “A statistically based density map method for identification
and quantification of regional differences in microcolumnarity in the
monkey brain,” J. Neurosci. Methods, vol. 141, no. 2, pp. 321–332,
May 2005.

[24] E. Elhamifar and R. Vidal, “Robust classification using structured sparse
representation,” in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 1873–1879.

[25] J. Grainger and C. Whitney, “Does the huamn mnid raed wrods as
a wlohe?” Trends Cognit. Sci., vol. 8, no. 2, pp. 58–59, 2004.

[26] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10,
pp. 1261–1271, Oct. 1996.

[27] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[28] M. Löwe, “On the storage capacity of Hopfield models with correlated
patterns,” Ann. Appl. Probab., vol. 8, no. 4, pp. 1216–1250, 1998.

[29] O. Sporns and J. D. Zwi, “The small world of the cerebral cortex,”
Neuroinformatics, vol. 2, no. 2, pp. 145–162, 2004.

[30] L. Lin, R. Osan, and J. Z. Tsien, “Organizing principles of real-time
memory encoding: Neural clique assemblies and universal neural codes,”
Trends Neurosci., vol. 29, no. 1, pp. 48–57, Jan. 2006.

[31] L. Lin, R. Osan, S. Shoham, W. Jin, W. Zuo, and J. Z. Tsien,
“Identification of network-level coding units for real-time representation
of episodic experiences in the hippocampus,” Proc. Nat. Acad. Sci.,
vol. 102, no. 17, pp. 6125–6130, Apr. 2005.

[32] X. Jiang, V. Gripon, and C. Berrou, “Learning long sequences in binary
neural networks,” in Proc. Cognit., Nice, France, Jul. 2012, pp. 165–170.

Behrooz Kamary Aliabadi (S’09) received the
B.Sc. degree in telecommunications from Azad Uni-
versity, Tehran, Iran, and the M.Sc. degree in wire-
less communications from Lund University, Lund,
Sweden. He is currently pursuing the Ph.D. degree
with Télécom Bretagne, Institut Mines-Télécom,
France.

His current research interests include information
theory, signal processing, and neural networks.



ALIABADI et al.: STORING SPARSE MESSAGES 989

Claude Berrou (M’86–F’09) is a Professor with the
Electronics Department, Télécom Bretagne, Institut
Mines-Télécom, France. In 1990, in collaboration
with Prof. A. Glavieux, he introduced the concept of
probabilistic feedback into error-correcting decoders
and developed a new family of quasioptimal error
correcting codes, which he nicknamed turbo codes.
He pioneered the extension of the turbo principle
to joint detection and decoding processing, known
today as turbo detection and turbo equalization.
His current research interests include computational

intelligence in the light of information theory.
Mr. Berrou has received several distinctions, including the IEEE Information

Theory Golden Jubilee Award for Technological Innovation in 1998, the IEEE
Richard W. Hamming Medal in 2003, the Grand Prix France Télécom de
l’Académie des Sciences in 2003, and the Marconi Prize in 2005. He was
elected as a member of the French Academy of Sciences in 2007.

Vincent Gripon (S’10–M’12) received the Ph.D.
degree from Télécom Bretagne, Institut Mines-
Télécom, France.

He is currently a Post-Doctoral with McGill Uni-
versity, Montreal, QC, Canada. He is the co-creator
and organizer of a programming contest named
TaupIC, which targets French top undergraduate
students. His current research interests include infor-
mation theory, error-correcting codes and cognitive
science, and links between neural networks and
distributed error correcting codes.

Xiaoran Jiang (S’11) was born in Hangzhou, China,
in 1987. He received the Engineer degree in telecom-
munication from Télécom Bretagne, Institut Mines-
Télécom, France, in 2010. He is currently pursuing
the Ph.D. degree with the Electronics Department,
Télécom Bretagne.

His current research interests include information
theory, sparse coding, cognitive science, and, espe-
cially, sequence learning in neural networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


