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Abstract—Signal processing on graphs has received a lot of
attention in the recent years. A lot of techniques have arised,
inspired by classical signal processing ones, to allow studying
signals on any kind of graph. A common aspect of these
technique is that they require a graph correctly modeling the
studied support to explain the signals that are observed on it.
However, in many cases, such a graph is unavailable or has no
real physical existence. An example of this latter case is a set
of sensors randomly thrown in a field which obviously observe
related information. To study such signals, there is no intuitive
choice for a support graph. In this document, we address the
problem of inferring a graph structure from the observation
of signals, under the assumption that they were issued of the
diffusion of initially i.i.d. signals. To validate our approach, we
design an experimental protocol, in which we diffuse signals on
a known graph. Then, we forget the graph, and show that we
are able to retrieve it very precisely from the only knowledge
of the diffused signals.

I. INTRODUCTION

Signal processing on graphs has recently gained a lot
of interest, and recent years have seen the appearance of
numerous new techniques based on its principles. Although
it was orignially seen as an extension of classical signal
processing to more complex domains – thus generalizing
the Fourier approach –, applications now emerge in various
fields such as wavelets on graphs, that find application in
fields such as brain imagery [12]; or filtering, applied to big
data analysis [16]. Other examples are the recent work of
Dong et. al [7] that have studied the political orientations
of the Swiss cantons from voting data; or the application of
Abry et. al [1] to photographic prints classification.

One common aspect of all the existing applications is that
they rely on the Graph Fourier Transform (GFT) of the graph,
which is a cornerstone of signal processing on graphs. This
particular transform is performed using the eigenvectors of
a particular matrix that is dependent on the graph used to
represent the support of the signals. However, such a matrix
is not always available. In some even more complex – and
frequent – cases, the graph has no real physical existence.
Example of this are when sensors are thrown in a field, or
are used to measure the brain activity (EEG). There is an
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obvious link between the signal components observed in the
various signals, but there is no intuitive notion of graph.

To circumvent this problem, methods have recently been
developed to allow one to recover a graph structure from
the observation of signals. The idea behind this is to provide
a structure that would naturally represent the relationships
between the signal components. Even in the case when
the graph does not exist, such techniques should be able
to provide a graph that captures these relationships, and
would provide a support for the application of graph signal
processing tools.

One possible approach was proposed in the Ph.D. disser-
tation of Costard [5]. Her work is based on previous work
from Dempster [6], that estimates the covariance matrix of
signals with the constraint that some values of its inverse
— called the precision matrix — are null. This latter work
has then allowed Wermuth [19] to show that the non-null
entries of this precision matrix correspond to edges of a
graph representing the studied signals. Based on this result
and on the additional works in [15], [2] on model selection,
Costard [5] reviews existing methods for recovering a sparse
precision matrix. Additionally, she introduces a new method
called ABIGlasso, based on Bayesian inference techniques
initialized using the Graphical lasso [9]. Related practical
algorithms for estimating a sparse inverse covariance matrix
were developed since then (eg. [10]).

Another existing approach to retrieve a graph from the
observation of signals is the one introduced in the recent
work of Dong et. al [7]. The notion of smoothness of
a signal on a graph was originally defined in [17] as a
quantity representing the total variation of a signal with
respect to adjacent nodes. Based on the assumption that
adjacent nodes in a graph should share similar signal values
— i.e signals should be smooth — Dong et. al propose a
graph reconstruction technique that enforces this smoothness
constraint.

To the best of our knowledge, these two approaches
are the main efforts that have been made to answer the
problem of graph reconstruction from the observation of
signals. However, for the approach of Costard, the author
shows that her work is only applicable to a small number of
variables [5]. Concerning the approach of Dong et. al, they
use the assumption that signals should be smooth on the
recovered graph. In this paper, we propose a new method
to recover a graph from signals, with different assumptions
on the observed signals; that is to say they are issued from
the diffusion of initially i.i.d. signals in the graph. Our
method consists of serching a solution in a system of linear
constraints, which is of polynomial complexity [3] and can
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be done efficiently via the interior point method [13].
In this article, we first introduce in Section II some

definitions and properties that are needed for a complete
understanding of our method. Then, in Section III, we
introduce the setup that enables us to validate our approach,
presented in Section IV. Finally, experimental evaluation is
provided in Section V, and we discuss our method and future
work in Section VI.

II. DEFINITIONS AND PROPERTIES

In the context of signal processing on graphs, a graph is
a mathematical structure used to represent the support of
the observed signals. Particular instances of graphs can be
used to represent the classical domains. For example, a chain
graph can model the support of time-defined signals, and a
grid can model the supporting pixels of an image.

Definition 1 (Graph): A graph G is a pair (V; E) in which
V = {1; . . . ;N} is a set of N nodes and E = V ×V is a set
of edges.

With this definition, a signal on a graph can be seen as a
value attached to every node in the graph:

Definition 2 (Signal): A signal x on a graph G of N nodes
is a vector in RN .

A convenient way to represent a graph is through its
adjacency matrix W, defined as follows:

Definition 3 (Adjacency matrix):

∀u, v ∈ V : Wu;v ,

{
1 if(u; v) ∈ E
0 otherwise . (1)

In this article, we consider graphs with the following
properties:
• Simple: ∀u ∈ V : Wu;u = 0.
• Undirected: ∀u, v ∈ V : Wu;v = Wv;u.
• Connected: ∀u, v ∈ V : ∃w1 . . . wk ∈ V such that

(u;w1) ∈ E , (wk; v) ∈ E and ∀i ∈ {1; . . . ; k − 1} :
(wi;wi+1) ∈ E .

From the definition of the W, we can define the diagonal
degrees matrix D of the graph, representing the degree of
every node of V:

Definition 4 (Degrees matrix):

∀u, v ∈ V : Du;v ,

{ ∑
w∈V

Wu;v ifu = v

0 otherwise
. (2)

Using the definitions of W and D, we can finally define
the normalized Laplacian Ł of the graph. This is an operator
analogous to the classical Laplacian operator [17], that
models the derivative of one diffusion in the graph:

Definition 5 (Normalized Laplacian):

Ł , IN − T (3)

with
• IN is the identity matrix of size N .
• T , D−

1
2 WD−

1
2 is called the diffusion matrix.

By construction, and with our assumptions on G, Ł is a
real symmetric matrix, and can thus be diagonalized into a
basis of eigenvalues ΛŁ = diag(λ1 . . . λN ) and associated
eigenvectors X Ł = {χ1; . . . ;χN}. From [4], we know that

the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN of Ł have some
interesting properties. One of them is that they are all in
[0; 2], with λN = 2 for and only for bipartite graphs (i.e
graphs for which there exist two sets V1 and V2 such that
V1 t V2 = V , and such that ∀(u; v) ∈ E : (u ∈ V1 ∧ v ∈
V2)∨(v ∈ V1∧u ∈ V2)). As a consequence, the eigenvalues
of T are in [-1; 1].

III. PROBLEM SETUP

In this paper, we propose a method to recover a graph
G from the observation of signals diffused on it, with the
assumption that they were initially i.i.d. Hereafter, we denote
as X the N ×M matrix of i.i.d. signals, and Y = TKX the
matrix of diffused signals, for a given value of K. Thus, our
problem becomes as follows:

From the only observation of Y, and under the assumption
that Y is issued from the diffusion of initially i.i.d. signals,
is it possible to recover T, and thus G?

More specifically, to validate our algorithm in Section IV,
we create an experimental protocol consisting of five steps:

1) We randomly generate a graph G, and compute the
associated diffusion matrix T. In real applications, this
graph is unknown, and is what we want to learn using
our algorithm.

2) We randomly generate M i.i.d. signals.
3) For a chosen value of K, we compute Y = TKX.
4) We use the algorithm presented in Section IV to

recover an estimate T̃ for T from only knowledge of
Y.

5) We recover G̃ from T̃.
To study the reconstruction error, we use the root mean

square error (RMSE) between the real and recovered adja-
cency matrices:

Definition 6 (Root mean square error):

RMSE(W, W̃) ,

√√√√ 1

N2

N∑
i=1

N∑
j=1

|Wi;j − W̃i;j |2 . (4)

In this work, we only consider graphs such that the
eigenvalues of T have pairwise distinct absolute values. Note
that this restricts the class of considered graphs to non-
bipartite graphs that have one eigenvalue equal to 1 and one
equal to −1.

IV. GRAPH RECONSTRUCTION PROCESS

In this section we detail our algorithm to recover an
estimate G̃ for a graph G, from only knowledge of Y, as
described in Section III.

A. Covariance of the diffused signals

Let ΣY be the covariance matrix of Y. With the assump-
tion that the signals Y are issued from the diffusion of ini-
tially i.i.d. signals, we can make the following development:

ΣY = E[YY>]
= E[TKXX>(TK)>]

= TKE[XX>](TK)>

= T2K ,

(5)
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with the last simplification coming from — with the i.i.d.
assumption — E[XX>] = IN and from the observation that
T is symmetric.

If we denote by Σ̃Y the empirical covariance of Y, it is
well known that Σ̃Y converges to ΣY as M tends to infinity.
A consequence of this property is that we can obtain the
eigenvectors of T̃ from the diagonalization of Σ̃Y — since
the eigenvectors of all powers of a matrix are identical —
provided that M is big enough.

However, this is not the case for the eigenvalues of T̃.
Since Σ̃Y is equal to T̃2K , we have the property that the
eigenvalues Λ

T̃2K
of T̃2K are all positive. Therefore, we

can only obtain the absolute values of the eigenvalues of T̃
— hereafter denoted Λ|T̃| — through the 2K-root of T̃2K .

In the remainder of this paper, we will assume that Σ̃Y =
ΣY. The impact of the noise when retrieving the covariance
matrix will be briefly analyzed in Section V, and will be the
main part of our future work.

B. Recuperation of the signs of ΛT̃

At this point, we have a way to recover the eigenvectors
X T̃ of T̃ and the absolute values Λ|T̃| of its eigenvalues,
from only knowledge of the signals Y, provided that M is
big enough. Now, we want to be able to recover a vector
s of signs (−1 or +1), such that ΛT̃ = diag(s)Λ|T̃| are
eigenvalues such that T̃ = X T̃ΛT̃X T̃

> obeys some chosen
properties:
• Values on the main diagonal of T̃ are all equal to 0.
• Off-diagonal values are either positive or null.
• T̃ is symmetric.
These three properties are by construction observed for

any diffusion matrix in the class of graphs that we consider.
Therefore, we will define a set of constraints that enforce
these properties.

The problem in retrieving s directly is that the values we
want s to take are non-continuous, making the problem too
difficult to solve. As a consequence, we will not put any
constraint on the domain of s, and will consider that it takes
its values in RN .

Based on the observation that the trace of T̃ should be
equal to 0, and using the equality between the trace of a
matrix and the sum of its eigenvalues, we create two sets of
constraints:

1) N equality constraints :

∀i ∈ {1; . . . ;N} :
N∑
j=1

(
X̃ Ti;j

)2
sj = 0 . (6)

These constraints enforce the main diagonal of T̃ to be
null, when considering s as its eigenvalues.

2) N(N−1)
2 inequality constraints:

∀(i; j) ∈ triu(N) :

N∑
k=1

X̃ Ti;kX̃ Tk;jsk ≥ 0 , (7)

with triu(N) being a function returning the indices of
the triangular upper part of a N × N matrix. These
constraints enforce the off-diagonal elements to be
either positive or null. Moreover, considering only the
triangular upper part enforces the symmetry of the
recovered T̃.

Since a null vector of dimension N is a trivial solution to
the constraints, we use the observation that the eigenvalue
associated to the constant-sign eigenvector should be equal
to 1 [17]. Therefore, we add a final constraint to prevent this
case:

[1;ON−1]
> s = 1 , (8)

with ON−1 being a null vector of size N − 1.
By constraining the cells of T̃ through (6) and (7) — using

its eigendecomposition T̃ = X T̃ diag(s)X T̃
> — we make s

converge toward a vector of values that should tend to the
same sign as the expected eigenvalues. Finally, we only keep
the signs of the eigenvalues, and inject them in the previously
obtained Λ|T̃|:

ΛT̃ = sign(s)�Λ|T̃| , (9)

with � being the elementwise product of vectors, and
sign(s) being a function returning a vector in which the i-th
component is equal to −1 when si < 0, and +1 otherwise.

We can note that, even though the problem is linear, we
have a quadratic number of constraints in 2). We will show
in Section V that we can limit ourselves to only a fraction
of these constraints, thus reducing the complexity while still
obtaining the same results. A solution to this set of linear
constraints can be efficiently obtained using the interior point
method [13].

Remark 1: The restriction of our method to graphs having
identical absolute eigenvalues, as described in Section III,
can be understood here. As a matter of fact, if T has eigenval-
ues of opposite signs, then when retrieving Σ̃Y ∼ T2K , these
signs have disappeared. A consequence of this observation
is that the diagonalization of Σ̃Y will not necessarily give
the same eigenvectors as those of T, since two distinct
eigenspaces were merged into one.

C. Summary of the algorithm

In this section, we have proposed an algorithm to retrieve
T̃ from the observation of diffused signals Y, under the
assumption that they were initially i.i.d. Our method works
in five steps, summarized as follows:

1) We compute Σ̃Y, the empirical covariance matrix of
Y. For M big enough, Σ̃Y ∼ T̃2K .

2) The diagonalization of T̃2K gives a set of eigenvectors
X T̃ and eigenvalues Λ

|T̃2K |
.

3) The 2K-root of the values in Λ
|T̃2K |

are the absolute

values of the eigenvalues of T̃ : Λ|T̃|.
4) Find a solution to the constraints in Section IV-B to

obtain T̃.
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5) Since T is a simple normalization by the degrees of
W, then it is null where and only where W is null.
As a consequence, we fix a small ε — to circumvent
machine precision limitations — and retrieve W̃ from
T̃ as follows:

∀i, j ∈ {1; . . . ;N} : W̃i;j =

{
0 ifT̃i;j < ε
1 otherwise

.

(10)
As we will show in Section V, this algorithm works well

for the class of considered graphs. However, we make in
this first work some assumptions on the number of observed
signals, and on the distinguishability of the eigenvalues of
the covariance matrix. Also, the value of K is currently fixed
in our work, and is common for every signal. We think that
we can get rid of this additional parameter, and will study
this hypothesis in future work.

V. EXPERIMENTAL EVALUATION

In this section, we first study the reconstruction perfor-
mance — and the associated execution time — of our method
for various graph orders, using the settings introduced in
Section III. Then, we briefly study the impact of the value
of M — and thus of the noise on the covariance matrix —
on the successfulness of our algorithm.

To perform our tests, we make some experimentation
choices, such as the use of an Erdős-Rényi model [8], with
edge probability P = 0.3, for G; and the choice of a normal
distribution N (0, 1) for X. Similar results are observable
for different graph definitions — such as random geometric
graphs — and choices of distribution.

All tests in this document are performed using the CVX
package [11] with solver SDPT3 [18] for MATLAB [14],
with default parameters.

A. Reconstruction performance of the method

We have seen in Section IV-B that the number of in-
equality constraints describing the matrix to reconstruct was
quadratic in the dimension of the signals. For this reason, we
limit ourselves a randomly selected subset of them. By doing
so, we slightly increase the number of possible solutions.
However, it appears that this class of solution vectors has
still a very low cardinality — in fact it is most of the time
unique — and that it is sufficient to guide our solver by
constraining only a small number number of off-diagonal
cells to be positive.

Figure 1 shows the mean RMSE between the initial W
and the reconstructed estimate W̃, for various ratios of kept
constraints, i.e for various values of α in αN(N−1)

2 .
Here, we use an oracle to find the best ε possible in (10),

although the gap with the real values of T̃ is generally high
and it is quite easy to distinguish noise from data. We make
this choice because we want to study the reconstruction
performance of our method. In real applications, ε should
impose a degree of sparsity on the reconstructed matrix.

We can see from this table that our algorithm works quite
well, and succeeds in reconstructing the original graph in
100% cases in our tests when we keep a number of inequality

N
α

0 1
2N

1
N

1
4

1
2 1

25 0.3835 0.052153 0 0 0 0
50 0.29981 0 0 0 0 0
100 0.2739 0 0 0 0 0

Fig. 1. RMSE as a function of the graph order, for various ratios of kept
constraints. Mean for 20 randomly generated graphs.

constraints over 1
N . We can also see that even with a smaller

number of constraints, the method is still robust, but some
errors start to appear, mainly for smaller graphs. However,
the first column shows that keeping some of these inequality
constraints are essential to guide the solver toward the correct
solution.

Because removing some constraints does not overly in-
crease the error, we study the impact it has on the execution
time of our algorithm. Figure 2 depicts the time required by
our algorithm to reconstruct the graph, as a function of the
graph order, for the same ratios of kept constraints.
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Fig. 2. Execution time as a function of the graph order, for various ratios
of kept constraints. Mean for 20 randomly generated graphs.

As expected, removing some inequality constraints in (7)
considerably reduces the execution time of our algorithm.
As a matter of fact, we can remove a nonlinear number of
constraints while keeping the same performance, thus making
the number of inequality constraints linear. A consequence
of this is that our method is now based on finding a solution
to a linear number of linear constraints. Therefore, it can be
applied to graph reconstruction with high dimension signals.

B. Impact of the noise on the reconstruction

At this point, we have made one strong assumption that
the number M of observed signals is big enough to consider
Σ̃Y = ΣY. Although it is true in the limit case of an infinite
number of signals, in real applications there is some noise
in the empirical covariance matrix.

Figure 3 shows the impact of the value of M on the
RMSE, for randomly generated graphs of 15 nodes.

In addition to these curves, it is interesting to remark that
the RMSE when performing our tests is generally either 0 or
very close, or around 0.5. Although the mean error decreases
as the M increases, the previous observation shows that noise
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Fig. 3. RMSE as a function of the number of signals, for graphs of 15
nodes, when using Σ̃Y instead of ΣY, with a ratio of inequality constaints
α = 1

N
. Mean for 1000 randomly generated graphs.

when retrieving Σ̃Y is the main problem of our method, and
will therefore be the main focus of our future work.

One promising direction comes from the observation that
most of the error is concentrated in the eigenvectors of Σ̃Y
and not in its eigenvalues. Therefore, we might be able to
use the fact that the first eigenvector of T̃ should be of a
certain form — from the observation that the components of
the first eigenvector of Ł are values that are function of the
graph degrees — to realign the eigenvectors of Σ̃Y properly.

VI. CONCLUSIONS

In this paper, we have introduced a scalable method to
retrieve a graph from the observation of signals diffused
on it. We have experimentally shown that we could reduce
the number of inequality constraints in our problem, thus
making our method as complex as finding a solution to a
linear number of linear constraints.

The main limitation of our work is currently the impact
of the noise on the reconstruction of the covariance matrix
of the observed signals. For this reason, this will be the core
aspect of our future studies. Additionally, we want to get rid
of the parameter K, describing the number of diffusions of
the observed signals, in our algorithm. This would enable us
to consider signals observed at different points in time in an
unified framework.
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