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Abstract—Associative memories, a classical model for brain
long-term memory, face interferences between old and new
memories. Usually, the only remedy is to enlarge the network
so as to retain more memories without collisions: this is the
network’s size–diversity trade-off. We propose a novel way of
representing data in these networks to provide another mean to
extend diversity without resizing the network. We show from our
analysis and simulations that this method is a viable alternative,
which can perfectly fit cases where network’s size is constrained,
such as neuromorphic FPGA boards implementing associative
memories.
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I. INTRODUCTION

Studying the inner workings of brain memory has increas-
ingly become a major challenge for modern neuroscience,
since memory is likely a fundamental building block for higher
cognitive functions, such as language, reasoning, creativity and
consciousness [1].

Associative memories are a branch of now classical com-
putational models for brain memory. Contrary to the von
Neumann computing architecture [2], [3], where memory is
indexed by attributing a unique address for each data, an
associative memory change the representation of data in a
way that allows to recover an entry only using an incomplete
or noisy portion of that data. Furthermore, these models
emphasize greater biological plausibility by satisfying the
metabolic constraints the organic brain has to face [4], [5].

However, since transformed data can overlap in associative
memories, they suffer from interference: there is a tradeoff
between network’s size and data diversity (number of different
entries possibly stored) [6].

We propose a novel way of representing data in these net-
works by adding a pairing meta-information among edges, thus
relaxing the above mentioned tradeoff by providing another
way to extend the network’s data diversity.

For this purpose, we will first introduce briefly a classical
model in Section 2, then in Section 3 we will extend this
model with the pairing strategy. The specific dynamics of
this extended model will then be analyzed in Section 4 and
simulated in Section 5. Finally, an opening to biological
hypotheses will be offered to the reader in Section 6 and this
work will be concluded alongside a description of a few future
avenues in Section 7.

II. CLASSICAL MODEL

We will extend the clique neural network, a neural network
based auto-associative memory introduced by Gripon et al. [7].
Since this is an associative memory, messages are stored such
that it is possible to retrieve them from noisy or partially erased
input.

Formally, we call message a finite sequence of characters
of length χ over the alphabet [`] where [`] denotes the set
of integers between 0 and `, with 0 being a special symbol
representing emptiness (this is a non-value), and c the number
of significant, nonzero symbols in a message. This empty
0 symbol allows to construct sparse messages, because this
character has no explicit representation in the network.

Consider a set M of sparse messages. To store them,
Aliabadi et al. [8] propose to use a neural network with χ
parts each containing ` units. They index each part from 1 to
χ to correspond to each character of a message, and in each
part they index each unit from 1 to ` to correspond to the
possible values for that character. By notation abuse, we will
make no distinction between a unit and its associated pair of
indices. Then, they define a mapping associating any sparse
message m = (m1,m2, . . . ,mχ) with a subset of units in the
network:

µ = f(m) = {(i,mi), 1 ≤ i ≤ χ,mi 6= 0} . (1)

Rather than storing a message m, Aliabadi et al. [8] propose
to store µ. To do so, they connect together all units in µ,
embodying a clique into the neural network and effectively
learning in one-shot. This process is depicted in Figure 1.
This implies that the network is binary: an edge exists or it
doesn’t.

Storing a set of messages M in the network is simply
the union of every messages’ cliques. Because cliques can be
overlapping (by sharing at least two units), this representation
of information is lossy [8].

The process of retrieving a previously stored message, also
called decoding, given a partial and/or erroneous input then
consists in iterating two steps [9], as shown in Figure 2.

Different ways of operating these two steps (called retrieval
rules) have been extensively studied by Aboudib et al. [9].
In this work, we choose to define the score of a unit to be
the number of activated units it is connected to, called the
Sum-Of-Sum rule [8]. We then select the units that reach the
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Figure 1. Process of storing an image composed of the pixels sequence {B,
G, G, W} (from left to right and from top to down) in the clique network. In
this scenario, the parameters of the network are χ = c = 4 and ` = 3 (pixel

intensities range of 3 values: B for black, G for gray and W for white).

For each input query:
1) Activate units corresponding to the input query
2) Until stop criterion (number of iterations or convergence

criterion):
a) Propagation: Compute a score s for each unit in the

network. This score represents the unnormalized
likelihood that a unit is part of the target message.

b) Filtering: Use a selection operator to choose
whether to activate units or not based on their
score.

Figure 2. Clique network iterative retrieval (decoding) process

maximum score in the network: this is the Global Winner-
Take-All rule [10].

III. PROPOSED MODEL

Although the clique network is binary, brain synapses do
not function in such a fashion: they emit an action potential
of variable intensity. Illustrious models for associative mem-
ories [11]–[14], as well as most other non-associative neural
networks, take account of this variable intensity by affecting a
weight on the edges. However, this results in poor performance
in terms of memory efficiency, constrained by a sub-linear
law [6], [15].

Contrariwise to this approach, we propose to assign a color,
or tag, to each edge instead of a weight, with the goal of
pairing together the edges from the same clique. Indeed, this
edge meta-information now represents a pairing cue instead
of a synaptic potential intensity modulation. Thus, this meta-
information does not affect information processing, but only
helps in disambiguating. The tags can be seen as a modified
Hebbian rule: Neurons that fire together, wire together, and
with a strong affinity. In this sense, the tags can be related

to the neurobiological mechanism called synaptic discrete
states [16]–[18].

More specifically, let us now suppose that connections in the
network are not binary but can take up to g distinct, discrete,
values. This results in a colored graph, where each connection
has its own color. We modify the storage process as follows:

1) First we associate each message to store with a tag,
2) When storing the clique equivalent of a message, we

assign the corresponding tag to the clique’s edges,
replacing any previous tag if the edge already exists.

As a result, a recently stored message, which now corresponds
to a clique with a unique tag in the network, can overwrite
parts of an older message they share by changing the tag of
those shared connections.

Another, more visual, formulation using colored graph the-
ory is that tags can be seen as different overlays or colors of
the same network, each defining a sub-graph containing edges
of only one color. By focusing on one color, it’s easy to decode
the clique without ambiguity, which is not possible with the
original clique network. Thus, those colored layers can be
separated easily: newer messages can be retrieved flawlessly,
while older messages can still be retrieved without ambiguity,
as illustrated by Figure 3.
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Figure 3. Comparison of the clique network (left) and tagged network
(right), with tags represented as colored layers.

More formally, let us consider that messages to store are
assigned a tag k from 1 to g. The storing process can be
defined as constructing the adjacency matrix A of the colored
graph, but instead of assigning 0 or 1 to assert an edge
existence, we assign the latest, highest tag k attached to each
edge:

A(ij)(i′j′) = {max(k)
∣∣∃m ∈M,

tag(m) = k ∧mi = j ∧mi′ = j′} ,
for 1 ≤ i, i′ ≤ χ and 1 ≤ j, j′ ≤ `. (2)
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Note that k is to be defined by an assignment function,
which purpose is to generate a tag for each message. We will
later in this section discuss about several possible strategies.

We thus obtain an adjacency matrix where entries are valued
from 0 (edge nonexistence) to g (existence + tag membership).

In order to benefit from this added material, the iterative
retrieval process is adapted, as shown in Figure 4.

1) Decode just like before: propagate using Sum-Of-Sum
rule and filter using Global Winners-Take-All rule.

2) Disambiguation post-processing step:
For each message:

a) Find major tag (= compute mode) among edges.
b) Delete every edges possessing a different tag than

the major.
c) Delete isolated units.

Figure 4. Global-Vote-Local-Elimination retrieval rule

This results in a collaborative decision between units, which
will favor likely tagged edges, and remove units that don’t
share at least one edge of the correct, major tag.

This combination of a local elimination based on a global,
cooperative decision is the most successful strategy, which
we call the Global-Vote-Local-Elimination rule. We also tried
several other variants like a local vote (compute mode per each
node) and global elimination (filter out all nodes which local
major tag isn’t the global major tag) but they all produced
significantly lower performance. The voting strategy to find
the most likely tag is probably optimal, since we simulated
a tagged network with tag guiding (the tag for each clique
is known, hence there’s no uncertainty), and it provided no
difference in performances.

Of course, assigning a tag per clique is optimal, since the
tag is then unique. However, log2(g) more resources than the
clique network are needed to store the tags information. Hence,
it’s possible to tradeoff with the number of tags g compared
to the total number M of messages in the set M:
◦ g = 1 will output the same result as the non-tagged clique

network, since all edges will have the same tag, the tags
disambiguation step will just have no effect.

◦ 1 < g < M defines a limited set of tags to use
among all cliques. This produces a trade-off between
network’s capacity and the amount of resources required
to represent the tags. In practice, since there is a limited
set of tags available, they will be recycled among the
cliques, thus rendering tags non-unique and producing
more ambiguities. Any surjective function can be used
to map the tags onto the cliques. In practice, it seems
reasonable to use a uniform distribution, which will
distribute randomly the tags almost uniformly among
messages, and also allow for online learning (learning
new messages over time).

◦ g =M will assign one unique tag per clique. In this case,
we get as many tags as there are cliques. Performance is
then optimal, but more resources are consumed. In such

case we consider that the set of messages to store are
ordered from lowest to highest tag, such that a message
with a high tag number is said to have been stored
recently and a message with a low tag is said to be old.

IV. ANALYSIS

A. Density

Since the network still relies on cliques and edges existence
to store and retrieve information, the theoretical density d –
defined as the ratio of used edges to that of possible ones– is
just the same as in the classical clique network [8]:

d = 1−

(
1− c(c− 1)

χ(χ− 1)`2

)M
. (3)

B. Efficiency

The network is split into χ parts with ` units in each. Thus,
the network possess n = χ ` total units and χ(χ−1)`2

2 total
possible edges. Furthermore, edges aren’t binary anymore, but
store their tag, thus an edge can now store a value between
0 and g, and therefore the tagged network representation
amounts to a binary resource Q of:

Q =
χ(χ− 1)`2

2
log2(g + 1) . (4)

The entropy per message b and total entropy B, or amount
of binary information B learned by the network after storing
all message M , does not change from the classical model [8]:

b = log2

(
χ

c

)
+ c log2(`) . (5)

B = bM =M

(
log2

(
χ

c

)
+ c log2(`)

)
. (6)

We can then easily derive the network’s efficiency η, that
is the efficient usage of available network’s resources:

η =
B

Q
=

2M

(
log2

(
χ
c

)
+ c log2(`)

)
χ(χ− 1) `2 · log2(g + 1)

. (7)

which leads to the network’s efficiency-1 diversity, an upper
bound of the optimal number of M messages to store to
maximize the network’s efficiency:

Mmax =
Q

b
=
χ(χ− 1)`2 · log2(g + 1)

2

(
log2

(
χ
c

)
+ c log2(`)

) . (8)
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C. Error rate

Since we are doing an associative task, that is we are trying
to recover a full corrected message from a query, a retrieval
error is defined as the network converging to a different,
spurious clique than the correct clique from which the (partial,
noisy or complete) input query was generated from.

Let us now suppose that we set g =M . As described in the
previous section, at the disambiguation step of the decoding
process, only nodes without any edge of the major tag will
be filtered out. This implies that even if an old edge from an
old clique can get its tag overwritten by a new clique, the two
units, which the edge is linked to, are still retrievable without a
hitch as long as they each possess at least one other edge with
the proper tag. This means that for a clique to be irretrievable
anymore, it has to lose at least one unit, and to lose one unit
is for this unit to be shared by so many other, new cliques that
all edges of this unit got overwritten.

This kind of error, very specific to the tagged network,
is what we call the lost unit error Plost, and is the most
significant factor contributing to retrieval error. It is also quite
interesting for the fact that it’s only defined by the learning
process (new cliques overwriting tags of old cliques’ edges),
without any influence by the decoding dynamics.

Since the network store cliques of size (number of edges)
c(c−1)

2 , and if we consider that cliques’ edges are generated
randomly uniformly among all possible network’s edges, then
the probability to overwrite one edge of an old unit when
storing a new clique is 2

χ(χ−1)`2 , and we can define Plost as
follows:

Plost =

(
1−

(
1− 2

χ(χ− 1)`2

)(M−1) c(c−1)
2

)c
. (9)

This formula can be understood as the probability that an
edge gets overwritten by any edge from every learnt messages,
and then this probability is powered to c because for a unit to
be lost, every one of its edges belonging to the original clique
must be overwritten. This formula is but an approximation of
the lost unit error because of our assumption that messages
are i.i.d., which is of course not the case.

Beside the lost unit error, other factors may contribute to
a wrong retrieval, such as when the vote to compute the
major tag leads to a wrong tag (tag vote error), or when the
propagation/filtering steps lead to a wrong clique (leading to
a spurious clique, just like with the classical clique network)
before the tag disambiguation step (decoding error). Yet, after
simulating the tagged network’s dynamics with erasures, we
have found that the lost unit error is prevalent, and is a very
good approximation of the overall error, as shown in Figure 5.
However, this is only true when g = M , if we use only a
limited definite number of tags lower than M , other types of
error will have increasingly more effect.

V. SIMULATIONS

We analyze the network’s performance with an erasure
scenario, which is the substitution of one or several nonzero
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Figure 5. Impact of various types of errors on message retrieval in a sparse
tagged network. The errors are computed as the ratio of total messages

suffering from this particular error type over all learnt messages. Predicted
error rate is the sum of all error types to check that they are good predictors

of the real error rate. As can be seen, the lost clique error is a very close
predictor of the real error rate, with a small difference due to the impact of

the tag vote error.

symbols in a message m by 0. The simulations were done
by learning uniformly random messages and then each point
was generated by sampling a subset of the learnt messages
and erase half of the nonzero symbols. To avoid random
fluctuations, each point has been averaged over 10k trials (200
messages per 50 different networks).

To study the influence of tags on the error rate, we simulated
a sparse tagged network with various numbers of tags, against
a classical sparse clique network with similar parameters as
described by Aliabadi et al. [8]. As can be seen in Figure 6,
tags greatly impact on network’s performance, significantly
lowering the error rate even with a small finite set of tags such
as 5, but the maximal gain is of course obtained by using M
tags (one unique tag per message).

Empirically, we found that to maximize the tagged net-
work’s performance, some key parameters need to be set, in
particular: the network must be sparse (χ > c) ; there must
be more than one unit per part (` > 1) ; and the γ memory
effect [8] should be set to 1.

Thus, tags significantly enhance the retrieval process, but to
be fair, we have to consider the added resources we use in the
network to account for those tags. Therefore, we have done
a similar simulation in Figure 7, but we here compared the
clique network’s efficiency with the tagged network’s, and to
set a comparable frame we plot the efficiencies with respect
to the error rate since the tagged network can run at far higher
density regimes than the clique network.

This shows that tags are a less efficient mean to extend a
network’s diversity than by resizing the network. However,
these two means are not exclusive, and thus can be used
concurrently to extend a network: first by size up to a limit,
and then tags can be used to extend further. This can be a
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from input query) and 4 decoding iterations. The plot has two axes: the main
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
ffi

ci
en

cy

Error rate

One/No tags - theo
One/No tags - 1 it

M tags - theo
M tags - 1 it

20 tags - 1 it

Figure 7. Efficiency with respect to the error rate for the sparse tagged
network (green) compared to the clique network (red). Standard deviations

are shown in dotted lines and theoretical error rates in dashed lines.
Network’s parameters are the same as in Figure 6 except that we here use
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network’s size is.

very interesting alternative for devices with a finite, static set
of units, such as VLSI (Very-Large-Scale Integration) [19]–
[21], ASIC (Application-Specific Integrated Circuit) [22] or
FPGA (Field-Programmable Gate Array) [23] based neuro-
morphic and neuromemristive [24] hardware devices, where
it is certainly easier to add a tag counter than to resolder the
board in order to resize the network.

These results are reproducible via the complete source-code
in MatLab/Octave, which is freely available online [25].

VI. DISCUSSIONS

The biological mesoscopic mechanisms of learning and
memory storing are extremely complex and are still a mys-
tery. The mechanisms of forgetting are even further from
grasp. This simple extension provides an elegant way to
implicitly implement a forgetting mechanism with variable
effect (stronger when the number of tags is low), and as
such this provides a continuum to transition from a long-term
memory model (clique network), where there’s no overwriting
nor “forgetting” of old memories, to a palimpsestic working
memory [17], [26], [27]. However, even long term memory
can benefit from forgetting, as this fundamental regulating
mechanism seems to be tightly coupled with the retention
of memories in order to mitigate the overfitting (lack of
generalization) phenomenon [28]–[31]. An interesting side
effect is that refreshing tags on access (i.e., when a clique
is accessed, the computed major tag is assigned to each of
its edges, thus “refreshing” the clique) could account for the
spacing effect in learning [32]–[34], and future work in this
direction may yield interesting results.

On a biological side, there is currently no observation of
such an implementation of tags, and we don’t argue that tags
are physically embodied as-is in a biological brain. However,
the tags model a concept that is far more general: affinity
between synapses. Biological mechanisms behind such affini-
ties are still merely assumptions, yet they are not implausible:
synaptic discrete states [16], resonance, alike morphologies,
synapse’s conductance rate using variable myelination [35],
[36], cascading biochemical signature [37], or a sensory
modality cue. This is not as far-fetched as it sounds, as
it is currently thought, according to the synaptic tagging
model [38]–[42], that the very process of memory creation
uses some kind of chemical tagging to convert recent, short-
term and weak, memories into long-term, long-lasting and
resilient, memories.

The following is merely a hypothesis, but if we suppose
that the brain is ruled by stochastic processes, then if a set
of synapses get created at the same moment – which may
certainly be the case if synaptogenesis can be triggered in
a synchronized way by glial cells just like they can trigger
the synchronization of synaptic communications over wide
areas [36], [43] – these synapses may get the same identical
set of specific parameters (since they were created at the same
moment of the stochastic process ruling the parameters of
synaptic parameters), whether those parameters are a similar
chemical signature, a similar myelination profile (which is
very heterogeneous, probably unique, for each synapse over
the brain), a similar activation threshold, a similar set of
neurotransmitters, or just a similar morphology. Sharing a
similar set of attributes may allow these synapses to mutually
sustain, to resonate, when one or more of these synapses are
activated at the same moment later in time, as some kind of
reminder that they also were created together. This could be
seen as some sort of evolutionary collaboration: these synapses
were created at the same moment, and thus probably embody
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some sort of co-occurrence in information, and an affinity may
perfectly encode that.

Let’s now discuss about how a tagged network could
technically and efficiently be implemented in neuromorphic
hardwares. We mentioned in the previous section a few
neuromorphic technologies that could benefit from tags, but
a specific type of component could be the most efficient way
to achieve a very low-energy neuromorphic device based on
tags: memristors, and in particular compound memristors [24],
could be a great fit for tags since they can store finite precision
integers, while retaining the very interesting feature of any
memristor, that is to use almost no current to maintain their
state. The compound memristors could thus be used to store
edges tags at a very low energy cost, which is sufficient and
enough to define the storage of a whole neural network based
on tags.

VII. CONCLUSION AND FUTURE WORK

We have presented a new generic method to extend an as-
sociative memory network’s diversity by tags, which provides
an alternative to the network’s size versus messages diversity
trade-off. We based this method on an efficient associative
memory model called clique neural network, and we provided
the algorithmics underpinning this extension, which we called
the tagged neural network. We then analyzed the network’s
dynamics and simulated a retrieval scenario with partially
erased queries in order to study the impact on performance and
efficiency of this extension, which demonstrate that tags can
be used as a viable alternative, although a bit less efficient, to
extend an associative memory neural network’s capacity when
the network’s size is constrained.

Future work on this approach should focus on the analysis in
a noisy scenario, where tags would not be reliable indicators
anymore. In this scenario, it may be advisable to adapt the
retrieval process to account for this uncertainty of the tag
indicator. Another interesting avenue is the fact that the biggest
source of decoding error in this network resides in the tag
overwriting of old cliques by new cliques, resulting in the lost
units error we described. This source of error may potentially
be reduced by adapting, interestingly, the learning process, and
not the decoding process, since losing units happens at the
learning stage, without any influence of the decoding stage.
To be more explicit: the biggest source of error is structurally
encoded in the network at the learning stage, thus, optimization
effort should focus on the learning process.

Also, tags are flexible indicators, whose underlying repre-
sentation is totally dependent on the designer’s conception.
This flexibility of representation can be used for various
purposes and applications beyond neuromorphic hardware,
for example, by using tags as semantic cues: a tag can be
seen as a label representing an identity/class of the clique
pattern. Hence, a tagged network may not only increase
storage diversity but also be seen as a clear identification
system for specific kinds of patterns. Thus, the same tag could
be used to regroup patterns that are semantically similar, or
which originate from the same sensory modality (e.g., using

the same tag to regroup all patterns originating from vision,
another tag for audio, another one for taste, etc.). If efficient
enough, this semantic use of tags could be applied successfully
to a wide array of applications where we need to semantically
disambiguate, such as objects class recognition in a scene.
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