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Abstract—Associativememories allow the retrieval of previously
stored messages given a part of their content. In this paper, we are
interested in associative memories based on -partite graphs that
were recently introduced. These memories are almost optimal in
terms of the amount of storage they require (efficiency) and allow
retrieving messages with low complexity. We propose a generic im-
plementation model for the retrieval algorithm that can be readily
mapped to an integrated circuit and study the retrieval perfor-
mance when hardware components are affected by faults.We show
using analytical and simulation results that these associative mem-
ories can be made resilient to circuit faults with a minor modifi-
cation of the retrieval algorithm. In one example, the memory re-
tains 88% of its efficiency when 1% of the storage cells are faulty,
or 98%when 0.1% of the binary outputs of the retrieval algorithm
are faulty. When considering storage faults, the fault tolerance ex-
hibited by the proposed associative memory can be comparable to
using a capacity-achieving error correction code for protecting the
stored information.
Index Terms—Associative memory, fault tolerant systems, error

correction codes, digital integrated circuits.

I. INTRODUCTION

A SSOCIATIVE memories are devices that are able to re-
trieve previously stored messages given a part of their

content. They are used in a variety of applications ranging from
CPU caches [2] to database engines [3], and intrusion detection
systems [4].
Implementations differ depending on the domain. In elec-

tronics, most systems are based on content-addressable memo-
ries (CAM) [5]. CAMs can locate data associated with an input
(the key) by comparing it concurrently with all the stored ele-
ments. They do not provide as much flexibility as general asso-
ciative memories because the portion of the data that represents
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the key and the portion that represents the result are pre-deter-
mined. Moreover, because all the keys stored in the memory
must be accessed in response to every query, they require a lot
of power, and in practice they are limited to a moderate number
of elements.
In neuroscience, the most celebrated associative memory

model is that proposed by Hopfield [6]. Hopfield neural net-
works allow storing and retrieving binary messages when any
fraction of the stored messages is missing as input. However,
they provide a limited diversity (number of messages it is
possible to store and then retrieve with high probability as a
function of the size of the network) [7]. Therefore, they are
unpractical when the number of elements to store is large.
Another influential model was proposed by Willshaw [8].

Used as associative memories, Willshaw networks have a much
better efficiency (ratio of information stored to the amount of
storage required) than Hopfield networks. Several analytical re-
sults have been derived to describe their efficiency (see [9] and
references therein). Among these, the so-called learning bound
is an asymptotic upper bound that is independent of the retrieval
algorithm.
Recently, Gripon and Berrou [10], [11] proposed a novel ar-

chitecture for associative memories (AM) based on -partite
graphs that is almost optimal in terms of storage efficiency [12].
Moreover, the retrieval complexity is limited, even when the
number of stored messages is large. Compared to Willshaw net-
works, -partite AMs add an error correction mechanism by en-
suring that only one vertex in each of the subsets is associ-
ated with a given stored message. This allows them to achieve
a greater efficiency. We give examples in the paper of -partite
AMs with an efficiency higher than the learning bound of Will-
shaw networks.
In this paper, we consider the performance of -partite AMs

when implemented on unreliable hardware. Considering unreli-
able hardware is motivated by the fact that, as the feature size of
integrated circuits decreases, it is becoming increasingly hard
to control the variability associated both with the fabrication
process and with the circuit’s operating conditions [13], [14]. As
a result, larger safety margins must be used tomaintain yield and
performance guarantees. Fault tolerance provided by the algo-
rithm allows reducing these safety margins, thereby increasing
the implementation’s efficiency.
Willshaw AMs have been studied under faulty data storage.

Notably, a lower bound on efficiency is derived in [15], some
simulation results are presented in [16], and [17] derived max-
imum a-posteriori retrieval rules that take into account the prob-
ability of faults in the storage cells. An associative memory that
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is similar to the -partite AM was also proposed in [18]. The
efficiency of the memory is discussed, but the fault tolerance of
the retrieval algorithm is not considered. Some recent work [19]
proposes a new neural network model that is able to store
messages, where is the number of vertices and . This
model is also analyzed for the case where the retrieval process
is affected by internal noise [20]. However, the model uses con-
tinuous weights on edges and therefore makes it impossible to
evaluate the efficiency of the memory, which is a crucial metric
for digital implementations.
The rest of the paper is organized as follows. We start in

Section II by reviewing the neural network model proposed by
Gripon and Berrou, and describe the modifications that must
be made to the retrieval algorithm to make it resilient to faults.
In Section III, we propose a realistic model to account for
the effect of hardware faults on the algorithm. We define two
categories of faults: first those that affect the storage hardware,
and second those that affect the computations of the retrieval
algorithm. These two types of faults are treated separately
throughout the paper. Based on this model, in Section IV we
derive some analytical results for the retrieval performance of a
faulty implementation expressed as the probability of retrieving
a message in terms of the number of messages stored in the
memory, and also present simulation results. In Section V, we
define the storage efficiency based on the mutual information
between the stored messages and the retrieved messages, and
explain how our definition relates to similar definitions in the
literature on Willshaw networks. We compare the efficiency
achieved by -partite AMs with several other implementation
approaches. In particular, we show that the maximum effi-
ciency of an implementation affected by storage faults can
be comparable to the efficiency of a hypothetical implemen-
tation where the reliability of the data storage is ensured by
the use of a capacity-achieving error-correction code. Finally,
Section VI concludes the paper.

II. REVIEW OF -PARTITE ASSOCIATIVE MEMORIES

In this section we review the functioning of the associative
memories introduced in [10], [11]. More precisely, we start from
the improvement proposed in [12], and make minor modifica-
tions to improve the fault-tolerance of the decoding algorithm.
Suppose that we want to store a set of messages, each

composed of symbols in the alphabet .We
will then be interested in retrieving a message given
a partial version of it, that is a copy of where some of the
symbols have been replaced by an erasure symbol .
For example, consider an associative memory that stores mes-
sages and . The output associated with is

, while the output is ambiguous for input (in some con-
texts, the AM could output an arbitrary message from the set of
matching messages).

A. Network Representation
To describe the AM’s internal representation, let us consider

an undirected and unweighted1 graph made of vertices. The
graph is partitioned into independent subsets, each containing

1If vertex is connected to vertex , then vertex is connected to vertex ,
and edges are binary: either they exist or not.

Fig. 1. Storing process illustration reproduced from [10]. Here, messages to
store are made of symbols in the alphabet . The
graph is therefore divided into 4 groups (filled circles, filled rectangles, rect-
angles and circles), each containing 16 vertices. The message currently being
stored has added 6 edges to the graph (represented with bold lines), that is all
those between the 4 vertices representing the message in the graph.

the same number of vertices. We will call these subsets symbol
groups. Let us then index the groups from 1 to and vertices in
each group from 1 to . Any vertex in the graph is therefore
uniquely identified by a pair , where and

.
To represent messages to store in the network, we define a

function that maps a message or a partial message to a
subset of vertices in the graph. The function is defined as
follows:

(1)

where is the -th vertex in symbol group and repre-
sents the -th symbol of . A group corresponding to an erased
symbol in the message is referred to as an “erased group”.
Note that does not contain any vertex in erased groups.
The function is invertible, such that to a subset of vertices
containing at most one vertex in each symbol group will corre-
spond a unique partial message.

B. Storing Messages
Before storing messages, the graph contains no edges. To

store a message in the graph, we add all the edges be-
tween vertices in , with the exception of self-loops. There-
fore, becomes a clique in the graph, that is a subset of ver-
tices fully interconnected. The graph being unweighted, edges
that are already in the graph remain unchanged. The storing
process is depicted in Fig. 1 using an example graph made of

symbol groups, each containing vertices.
One can test whether a message has been stored previ-

ously by checking if the corresponding clique exists. In a re-
liable implementation, the probability that a message that was
stored previously is not recognized is 0, while the probability of
wrongly identifying a message as having been stored is usually
very small (see [10], Section V).

C. Retrieving Partially Erased Messages
This associative memory is able to retrieve a previously

stored message when only some of its symbols are mapped
onto the graph. The retrieval algorithm relies on two basic
concepts. Recall that each vertex in a symbol group represents



LEDUC-PRIMEAU et al.: FAULT-TOLERANT ASSOCIATIVE MEMORIES 831

a possible value of that symbol. First, we say that a vertex is
active if it has been identified as a possible value of the symbol.
Second, we attribute a score to each vertex that quantifies the
likelihood that it is part of the message being retrieved. When
a vertex achieves the maximum score within its symbol group,
this indicates that it might correspond to the correct value of
the symbol. The retrieval algorithm operates by iteratively
computing the scores of vertices, and marking as active the ones
that achieve the maximum score, with the hope of converging
to a state where only one vertex is active in each symbol group.
Algorithm 1 provides a formal description of the retrieval al-

gorithm, which is adapted from the one described in [12]. The
algorithm takes as input a partially erased message that is
obtained from a message by replacing any symbols
with . Throughout the paper, we use to denote the number of
erased symbols, and to denote the number of known symbols.
Therefore we have . Algorithm 1 is defined in terms
of the graphical model. The algorithm is iterative, and its state
at iteration can be fully described by a set , whose
initial value is given by . A vertex
is referred to as an active vertex at iteration . We also use the
term spurious vertex to refer to an active vertex that does not
correspond to the correct symbol, that is a vertex such that

and .
In the algorithm, we denote the subset of vertices that are part

of the -th symbol group as , and refers to the set of
vertices that are connected to a vertex . We also introduce a
parameter which we refer to as the memory effect. The
memory effect quantifies the weight given to decisions taken at
previous iterations of the decoding process. We fix such that

.
At each iteration, we select the vertices that will remain ac-

tive based on their score. The score of a vertex is denoted .
As described on lines 10–11, the score of a given vertex is incre-
mented once for every group in which it has at least one neigh-
boring active vertex. We then find the maximum score achieved
in a given group, denoted (line 12). Note that here Alg. 1
differs from the algorithm in [12], where is always

and does not need to be computed. A vertex remains active
if it achieves the maximum score in its group. In that case, it is
added to the set (line 15), which is a temporary variable used
to construct the next value of .
In most applications, we will be interested in a decoder that

generates an estimate , as opposed to .
The optimal estimator will depend on the distribution of the
messages in . If we assume that the messages are independent
and identically distributed (i.i.d.) with a uniform distribution,
we can define an estimator that, for each group, selects
an arbitrary vertex from and returns the associated symbol
value.
Algorithm 1 has a number of interesting properties [21]. First,

if the set of active vertices in a group is not empty, it is non-in-
creasing from one iteration to the next; i.e., , if
, then . In addition, as long as
the partially erased message actually corresponds to a mes-
sage with erased symbols, and (i.e., not all
symbols were erased), then the set of active vertices in every
group remains non-empty for every iteration; i.e.,

. In fact, once a vertex is not in for some
, it will not re-enter the active set at any future iteration, and
consequently it can be shown that Algorithm 1 converges for
any input message . Moreover, any stored message
is a fixed point of Algorithm 1. (The proof of these statements
appears in [21].)

III. IMPLEMENTATION ON UNRELIABLE HARDWARE

In this paper, we would like to discuss the implementation
of Algorithm 1 in a physical system, and specifically one that
might operate unreliably. To do so, we must describe the phys-
ical representation of the algorithm in sufficient details to pro-
vide a realistic account of the impact of hardware faults on the
functioning of the algorithm. We use the term fault to refer to
the incorrect operation of a physical component, while the term
deviation refers to a change in the algorithm’s behavior as a re-
sult of a hardware fault.

A. Data Structures

We start by describing the data structures that will hold the al-
gorithm’s input, output, and intermediate data, in such away that
the mapping to physical components is obvious. The following
two data objects are needed: first the set of active vertices,
and second a description of the graph edges. As suggested in
[21], the edges can be represented using the graph’s adjacency
matrix , with dimension . However, the graph is con-
structed such that there is never an edge between two vertices
in the same symbol group, and therefore elements of are
known to be zero. Amore compact representation of the edges is
achieved by using a set of bi-adjacency matrices, each rep-
resenting the edges between a given pair of groups. We denote
the matrix representing the edges from group to group by

. Unlike , these matrices are not symmetric, but we have
that . Since the graph edges are unweighted, the
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elements of are binary. Therefore, the number of memory
bits required for storing is at most

(2)

To match the organization of the adjacency data, we represent
the vertex states separately for each symbol group. We use a set
of vectors , where each represents
the state (active or not) of the vertices in group . An element
of is denoted and defined as

(3)

where is the -th vertex in group .

B. Unreliable Retrieval Algorithm

To study the implementation of the associative memory, we
rewrite Algorithm 1 in terms of the data structures introduced in
Section III-A. This is described by Algorithm 2. Algorithm 2 is
equivalent to Alg. 1, except for the following minor differences.
First, only erased groups are decoded. This has no impact on the
analysis of a reliable implementation, but is of some importance
when considering the effect of deviations. Second, the algorithm
terminates as soon as all the erased symbols have been resolved,
or after a maximum of iterations. Furthermore, we allow in-
active vertices to become active again, or in other words, we
remove the guarantee that . As a result, we
are no longer guaranteed that Algorithm 2 will asymptotically
converge to a fixed point; however, the algorithm is still guar-
anteed to terminate because we impose a maximum number of
iterations, , at line 5.
Algorithm 2 uses the following notation: denotes the zero

vector, denotes the Hamming weight of a binary vector ,
and the operator denotes a matrix product where addition is
replaced by logical OR, and multiplication by logical AND. The
set defined on line 2 contains the indices of the erased groups.
When accounting for deviations, it is convenient to divide the
implementation into two components: first the memory storing
the adjacency data , and second the computation units re-
sponsible for updating the state vectors , along with the state
vector memories. For the first component, we use to denote
the bi-adjacency matrices affected by deviations. For the second
component, the deviations occurring in the logic circuits as well
as in the state vector memories are taken into account by adding
a vector to each state vector. For a reliable implementation of
the algorithm, we define , and .
Algorithm 2 operates as follows. The input is given in terms

of the state vectors, which are constructed in a manner equiva-
lent to Alg. 1, by using (3), where is the graph-
ical mapping of the partially erased message . Starting on
line 6, each erased group is then processed as it was in Alg.
1. The scores of each vertex in a group is represented as a
vector of length . On lines 8–9, the score of each vertex
is incremented once for each group in which it has an active
neighbor. We denote by the state vectors before deviations
are taken into account. On lines 10–13, we mark as active all
the vertices that achieve the maximum score. Finally, we sim-
ulate the deviations occurring in the state vectors on line 15.

Upon completion, the algorithm outputs the updated state vec-
tors, and we then use the estimator to obtain the message esti-
mate . The estimator is equiva-
lent to the one used in Alg. 1, and is defined such that for each

, where is an arbitrary index that satisfies .

C. Circuit Blocks
Algorithm 2 can be easily implemented as a digital circuit. To

show this, we briefly describe the main circuit blocks that are re-
quired. The reader can also consult [22] for a more detailed ex-
ample of a possible architecture. Let us start with the computa-
tion of on line 9, which happens times for every
erased group. The operation can be viewed as first applying an
AND mask to entire rows of , followed by an OR operation
on the columns. However, no AND operations need to be per-
formed in practice. If is stored row-by-row in memory,
the indices of the non-zero elements in are the memory ad-
dresses that need to be accessed. Typically, the number of active
vertices in a group will be small (for example, it is 1 for
non-erased groups), and therefore, only a few rows of need
to be retrieved. To complete the matrix product, we compute the
element-by-element OR of the rows that were retrieved.
We then use the result of the computation above to incre-

ment , which can be achieved using counters. Finally, the
maximum score in can be computed using a tree of com-
pare-and-select circuits. This can be simplified if we assume
that the maximum will be equal to one of the highest scores,
and abort the retrieval otherwise. In that case, the comparators
can be replaced with equality checks, implemented using AND
gates.

D. Deviation Model
We can distinguish two types of faults affecting circuits. Per-

manent faults are irreversible and can occur during fabrication
or later on because of wear caused by the circuit’s operation.
Transient faults are caused by temporary fluctuations in some
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operational parameter, or by the interference of external radia-
tion. To model the impact of these faults in a circuit of interest,
we consider that the output of a reliable version of the circuit is
transmitted through a deviation channel. The output of the de-
viation channel then corresponds to the output of the unreliable
version of the circuit. We assume that deviations occur indepen-
dently on each output bit of storage or computational circuits.
Below we show that this is reasonable for the algorithm under
consideration.
1) Deviations in the Adjacency Data: The adjacency data is

represented by the bi-adjacencymatrices , whichmust be
stored in amemory. Integrated circuit memories such as SRAMs
can suffer from both permanent and transient faults [23], [24].
One way to deal with permanent faults is by identifying bad
parts of the memory circuit and re-mapping these parts on spare
circuits. The testing and re-mapping can be performed indepen-
dently and in a manner that is transparent to the algorithm, and
therefore need not concern the algorithm designer. However,
there is a cost for including redundant memory elements and
for the logic that performs the re-mapping. Another way to deal
with a faulty memory, and which is suitable both for permanent
and transient faults, is to encode the data to be stored with an
error correction code, which can then be decoded with a faulty
decoder [25], [26]. However, this adds complexity and reduces
flexibility by imposing a constraint on the number of bits that
can be read or written simultaneously, which must be a multiple
of the code size. Therefore, providing fault tolerance directly at
the algorithm level is likely to be more efficient.
We first consider that the memory storing is affected

by permanent faults. The associative memory is used in two
phases. First, we generate and store the message set , which
fixes . We model the deviations by saying that is
transmitted through parallel binary deviation channels with
output , where is the number of bits used to represent

, defined in (2). Since we assume that deviations occur
independently on each bit, the parallel channels are indepen-
dent. Once has been stored, and with fixed, we per-
form a number of retrieval operations.
A common deviation model for permanent faults, which was

found to be accurate for more than 50% of SRAM defects [23],
is the “stuck-at” model, where a defective 1-bit circuit has either
a fixed output of 0 (stuck-at-0) or 1 (stuck-at-1). Each binary
deviation channel is therefore a channel with input and output
such that

,
(4)

Since faults are permanent, consecutive uses of a given binary
channel in a given fabricated device are not independent. How-
ever, if we assume that messages are independent and uniformly
distributed, the knowledge of deviations occurring in the de-
coding of one message does not affect the probability of suc-
cessfully retrieving another message. Therefore it is equivalent
to consider that any message to be retrieved is the first message
to be retrieved, and that each of the binary channels is only
used once. If the stuck-at-0 and stuck-at-1 events are equiprob-
able and the channel is only used once, the transmission can be

equivalently modeled using a binary symmetric channel (BSC)
defined as

, (5)

where .
If the bits of are transmitted using (5), we obtain

(6)

where is an indicator matrix of deviation events, defined
as a random matrix of size , where each element is an
independent Bernoulli random variable with .
For each with , we only store one of or .
Therefore, when considering faults, the identity
remains valid.
The impact of transient faults occurring in the memory is

similar to permanent faults if we assume that a transient fault
on a bit cell permanently changes the value of that cell. The
only difference is that transient faults can occur at any point in
time (but note that this is also the case of permanent faults that
are due to aging). To simplify, we assume that the faults occur
only between invocations of the retrieval algorithm. In that case,
the new deviations can be modeled by re-transmitting
through a BSC before every message retrieval operation, with
every channel use independent of the previous ones. However,
it is easily shown that successive transmissions through a BSC
can be reduced to a single transmission through a BSC (with a
different cross-over probability). Therefore, the deviationmodel
for transient faults is the same as for permanent faults, although
increases over time when faults are transient.
Under this model, the performance of the associative memory

is a function of two random variables, namely and the
partially erased message . We expect several messages to be
retrieved from the memory, and we are interested in the av-
erage performance over all messages retrieved. It follows that
the performance should be defined as an expectation over .
On the other hand, is only sampled once, and we are
therefore interested in the performance for a particular realiza-
tion of . Nonetheless, the approach taken for the anal-
ysis in Section IV is to consider the expected performance over

. This is motivated by simulation results that show that
the performance for various realizations of is very con-
centrated around the mean.
2) Deviations in the State Vectors: We also consider

the possibility of observing deviations on the state vectors
. In addition to modeling faults occurring

in the memory storing the vectors, we argue that this can also
serve as an approximate model for faults occurring in the logic.
To maintain a simple model, we would like to assume that
individual bits are being affected independently by deviations.
Fortunately, most of the operations in Algorithm 2 do generate
each bit of the new state vectors independently. The only
exception is the operation on line 10. If a deviation occurs
on for some group, it could in turn cause multiple cor-
related deviations in the state vector of that group. Therefore,
our model is only valid if the operations are implemented
reliably.



834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 4, FEBRUARY 15, 2016

We also limit ourselves to considering transient deviations,
that are sampled at every iteration . In addition to modeling
transient faults, transient deviations can also represent the effect
of permanent variations in the logic, which may or may not be
sensitized, depending on the signal transitions taking place. For
example, if as a result of manufacturing variations, a logic gate
reacts too slowly to changes in its inputs [27], this defect will
only cause a deviation when the inputs are changing. If they are
stable, no deviation occurs. However, permanent faults in the
state vector memory have to be excluded.
Recall that the deviations on the state vectors are represented

by the vectors . Each vector is an
indicator of deviation events on individual bits of state vector ,
at iteration , and each element is obtained by sampling an
independent Bernoulli random variable, such that

.

IV. RETRIEVAL PERFORMANCE

When the network is used as an associative memory, we are
interested in retrieving a previously stored message given a par-
tially erased version , where of the symbols have been
erased. To assess the retrieval performance, we will consider
the probability that an erased symbol is retrieved correctly
after decoding iterations, and also the probability that the
entire message is retrieved correctly after decoding iterations.
Throughout the analysis, we assume that the stored messages

are i.i.d. uniform. The uniform distribution is of particular in-
terest for the analysis of an implementation with permanent
storage faults because it yields the worst retrieval performance.
This is because a non-uniform message distribution implies that
the probability that a particular graph edge is present is also non-
uniform. Therefore, given the knowledge of which storage ele-
ments are faulty (which can be obtained easily using a standard
memory built-in self-test), it could be possible to change the
mapping of memory elements to graph edges such that stuck-
at-1 elements are associated with edges that are more likely to be
present, and stuck-at-0 elements with edges that are more likely
to be absent, thereby improving the retrieval performance.

A. Deviation-Free Case
Denote by the number of messages to store. Note

that during the storing process, each message to store adds—or
does not modify if it already exists—one edge between every
pair of symbol groups.
Let us fix a pair of vertices from distinct groups. The proba-

bility that a message obtained using i.i.d. uniform random vari-
ables adds the edge between them while being stored is trivially

.
Thus, the probability that this edge is added to the graph after

storing i.i.d. uniform messages is2:

(7)

The existence of edges is not independent since a message
adds multiple correlated edges while being stored. However, for

and , we can assume that they are indepen-

2See details in proof of Theorem 1.

dent, as motivated by simulation results and by the following
theorem.
1) Theorem 1: We assume that contains uniform i.i.d.

messages such that and . Select any
two distinct pairs of vertices in the graph. Denoting the
probability that an edge exists for both pairs, we have that

(8)

and therefore the existence of two distinct edges can be asymp-
totically regarded as independent.

Proof: See Appendix.
Unfortunately, Theorem 1 does not extend in a straightfor-

ward way to cover the mutual independence of the existence of
more than two edges, but it nonetheless serves to provide addi-
tional support for the assumption.
Let us now fix a message in the set of stored messages, and

erase symbols uniformly at random to obtain a partial
message . Note that when no symbols are erased (i.e., ),
the input is a fixed point of the algorithm iterations,
and so . The probability of retrieving correctly
using Algorithm 1 can be bounded from below by considering
the case where the algorithm is used for a single iteration. This
is clearly a lower bound since .

Let us first consider the probability that a given
erased symbol is successfully retrieved after one iteration.
Recall that we generate an estimate of the message using

, where is a function that, for
each symbol group , selects an arbitrary vertex from the set
of active vertices, and returns the associated symbol value.
Therefore, we have that , where represents
the number of active vertices in the group. By definition, all
active vertices achieve the maximum score , which in
the first iteration is . Also, since correct
vertices—that is those corresponding to —will remain
in , we can write , where represents
the number of spurious vertices that remain activated. Since
non-erased groups contain a single active vertex, and since
edges are assumed to be independent, a spurious vertex remains
activated with probability . Therefore, is given by

(9)

Because edges are assumed independent and subsets of edges
that target each erased symbol in the first iteration are disjoint,
the probability that the complete message is retrieved success-
fully after the first iteration is simply

(10)

The expression for was confirmed to match simulation
results. The curve for and 1 iteration in Fig. 2 provides
an example for the case of , and .

B. With Deviations in the Adjacency Data
We now consider the effect of deviations on the matrices

on the retrieval performance, as described by (6). Because we
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Fig. 2. Message error rate as a function of the number of stored messages,
for a network with , when the bi-adjacency matrices
are affected by deviation with prob. . Solid curves represent ana-
lytical results.

have , we can equivalently model the deviations in
terms of the graph model. For each pair of vertices, if an edge
exists, we remove it with probability , and if no edge exists,
we add one with probability .
As mentioned in Section III.D1, we simplify the analysis

by considering the expected performance over all realizations
of . In other words, we study a typical faulty memory.
Let and represent respectively the symbol
and message retrieval probability for a particular realization

of the storage deviations. To motivate our approach, we
performed Monte-Carlo simulations to measure the mean
and standard deviation of and . For every
data point shown in Fig. 2, we sampled 200 realizations of the
storage deviations. For each of these realizations, the error rate
was measured by averaging over 100,000 message retrieval
attempts. The results show that the performance is very con-
centrated. In fact, for all the data points, , such that
the interval is too small to be visible at the
scale of the Figure. Therefore, we allow ourselves to write
instead of and instead of .
As in Section IV-A, we consider the probability that a

given erased symbol is retrieved after one iteration. Because of
the deviations on the edges, the correct vertex is not guaranteed
to achieve the maximum score. Let be the score achieved by
the correct vertex , and let denote the event that at least one
incorrect vertex in the group achieves a score higher than .
Note that if occurs, the probability of identifying the correct
vertex is 0. Whereas in the reliable case we had ,
we now have

(11)

where denotes the negation of event .

Let us now expand each of the three expressions in (11). First,
the probability that the correct vertex achieves a score of
for is given by

(12)

On the other hand, using the edge independence assumption,
the probability that any other vertex is connected to the active
vertex of a non-erased group is ,
and the probability mass function of the score of incorrect
vertices is therefore

(13)

The scores of vertices are independent because each vertex is
associated with a distinct set of messages. The probability that
the correct vertex is in the active set when is then

(14)

Finally, the probability of selecting the correct vertex from the
active set when the retrieval has not failed and when
is given by

(15)

where is the probability that a spurious vertex remains in the
active set when and occur, given by

(16)

Note that (16) can be evaluated easily based on (13).
As previously, the message retrieval probability can be

obtained using (10).
Fig. 2 shows the message retrieval performance when mes-

sages are composed of 8 symbols of 8 bits each (i.e., ),
and half the symbols are erased. Simulation results for a single
iteration confirm the analytical expressions. Even when the de-
viation probability is as high as 1%, the retrieval performance
remains reasonably close to that of a reliable implementation.
At , the difference in performance with a reliable
memory becomes negligible (for this reason the curve is not
shown in the figure).

C. With Deviations in the State Vectors
In order for the retrieval algorithm to output the correct mes-

sage with certainty, it is necessary that only one vertex be active
in each erased group, and that these active vertices correspond
to the correct symbols. Therefore, it could seem that the algo-
rithm is very sensitive to deviations in the state vectors, since
any deviation in the state vector of any erased group will prevent
from retrieving the message with certainty. However, starting
from a state vector that maps to the correct symbol, most devi-
ations on the vector are detectable. Recall that vectors rep-
resent the state vectors before taking deviations into account.
Assuming , a deviation is undetectable if and only if
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, which implies that a deviation occurs on
the active bit, while exactly one other deviation occurs on one
of the inactive bits. We call this event , which happens with
probability . Usually, this will be
much smaller than the symbol error probability . For
example, for .
Therefore, some simplemodifications to the algorithm can in-

crease its fault tolerance when deviations occur in the state vec-
tors. First, we can “freeze” state vectors that achieve a weight of
one. This amounts to repeating line 2 of Alg. 2 at every iteration
of the loop. Such a modification is reasonable in the context of
an unreliable implementation because it simply corresponds to
outputting some symbols before all the symbols have been re-
trieved. Second, we have the option of increasing the number of
iterations.
We can obtain an approximation for the message retrieval

probability by considering that we use a reliable implementation
until the termination condition becomes true at iteration ,
and that state vector deviations can occur only for iterations
. We also assume that .
We first consider the probability that a given symbol

is retrieved within iterations after the reliable implementation
terminates , such that the total number of decoding iter-
ations is . A symbol is retrieved successfully in iter-
ations if its state vector converges to the correct symbol within
additional iterations (event “GC”), or if the state vector does

not converge within iterations (event “NC”), but the estimator
makes the right guess (event “EST”):

GC EST NC NC (17)

At each iteration there are three possible outcomes: incor-
rect convergence (event ), correct convergence (event ), or
no convergence (event ). was stated above,

, and . In the case the decoder
does not converge, we must consider the number of active
vertices in the group. Since we assume that , the fact
that can only be due to deviations in the current iteration.
The event probabilities in (17) are given by

GC

NC

EST NC

where

(18)
Since deviations are independent, the probability of retrieving

a message in additional iterations is .
Therefore, denoting by the number of iterations before a re-
liable implementation terminates, the probability of suc-
cessfully retrieving a message in the presence of state vector
deviations is approximated by

(19)

Fig. 3. Message error rate as a function of the number of stored messages,
for a network with , when the state vectors are affected
by deviations. The error rates are averaged over retrieval attempts. The solid
curves represent the semi-analytical evaluation of (19) based on simulations of
a reliable implementation.

For is given by (9) and (10). We rely
on simulations to evaluate for .
Fig. 3 shows an example of the message retrieval perfor-

mance for , and half the symbols erased. We first
note that the analytical approximation is fairly accurate. When

, the performance loss is minimal, even when using
the same number of iterations as the reliable implementation.
When the iteration limit is fixed at 4, the performance degrades
rapidly for values above . This is expected due to the
simplicity of the fault tolerance mechanism. However, it is im-
portant to note that this simplicity also means that no complexity
is added to the implementation, and that therefore the fault tol-
erance shown here comes for free. Finally, as demonstrated by
the curve for and 10 iterations, the memory can
tolerate slightly larger deviation rates by increasing the number
of iterations.

V. STORAGE EFFICIENCY
A Figure of merit that is often quoted for an associative

memory is its capacity, that is the amount of information that
can be stored in the network as defined by the entropy, and
given in terms of the number of vertices in the graph. The
neural network model considered in this paper can be shown
to allow the storage of uniformly distributed messages
when . However, in practice, it is more impor-
tant to compare the information that the memory can store
and retrieve with the amount of storage material required to
represent it, which we refer to as storage efficiency. Capacity
alone is not a proper measure of efficiency, since messages
are stored by the graph edges, and not by the vertices. From
(2), the storage required for the proposed memory is
bits. Since the entropy of uniformly generated messages is3

3Assuming that no repetition occurs in , which is true with high probability
(see also details in proof of Theorem 1). We use this assumption throughout the
section.
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bits, it is not possible to store mes-
sages with without increasing the storage requirement.
Doing so would imply that the information is represented with
fewer bits than the entropy, which by Shannon’s source coding
theorem cannot be done losslessly.
The capacity remains a useful property of the memory, since

a greater capacity allows storing more messages without in-
creasing the size of the network. We note that the model used
in this paper can be used to store any number of messages by
adding a pre-processing step before storing the messages. Sup-
pose that one wants to store messages of symbols in an
alphabet of size .We can pre-process messages by grouping tu-
ples of symbols, to obtain messages made of
symbols in an alphabet of size . The network is then able to
store a quadratic number of such messages, that is

. In order to allow the retrieval of partially erased mes-
sages in the initial space, the retrieval process described in this
paper must be extended to allow the initial set of active vertices
to contain more than one active vertex per symbol group.

A. Efficiency Definitions
The information provided by the memory when retrieving a

message can be expressed in information-theoretic
terms as the mutual information between the memory output

and the stored message , which we denote . A
message is retrieved from the memory by providing a partially
erased message , which provides information on the
stored message. As is commonly done in the literature on Will-
shaw networks (see e.g., [28] and references therein), we base
our efficiency definition on the new information provided by the
memory, given by .
If we assume that symbol errors in the retrieval occur inde-

pendently and that an incorrectly retrieved symbol can take any
of the incorrect values with equal probability, then the re-
trieval of an erased symbol can be modeled as transmitting

through a non-binary symmetric channel with an alphabet
of size . For a symbol error probability , the capacity of
this channel is given by

(20)

in bits per channel use, and this capacity is achieved with uni-
formly distributed inputs [29].
If we consider the retrieval of all stored messages, the

new information provided by the memory can be expressed
as , where is the mutual
information between the set of stored messages and the set
of retrieved messages, and similarly is the mutual
information between the set of stored messages and the set
of partially-erased messages. The information in the par-
tially-erased messages is simply

(21)

and since the location of the erased symbols is known at retrieval
time, we have

(22)

where as previously denotes the probability of retrieving
an erased symbol in iterations.

We then define the storage efficiency for as

(23)

where is given by (2). An upper bound can be easily derived
for . Since messages in are uniformly distributed, the
entropy of the set is . Clearly, it is
only possible to retrieve messages correctly with a high prob-
ability if . Since we also have , it
follows that . The multiplication by in (23) serves to
make the upper bound independent of to allow comparing
memories with different fractions of erased symbols. Note that
the typical efficiency definition used for Willshaw networks
does not include this normalization.
Another efficiency definition that has been proposed recently

[30]normalizes the information provided by the memory to the
entropy of the network representation . However, such a
definition implies the use of a compression mechanism when
storing the graph representation, which increases retrieval
complexity. Furthermore, when the storage device is unreliable,
using compression without error correction coding would likely
decrease the robustness of the implementation. Therefore, for
our purposes the definition in (23) is more appropriate.
In some applications, it might be required to discard retrieved

messages that are not entirely correct. Assuming that there exists
an application-specific way of identifying messages that have
been incorrectly retrieved, such a situation corresponds to trans-
mitting the messages through an erasure channel with erasure
probability . In this case, we have

, and we call the resulting efficiency the
message-wise efficiency, defined as

(24)

where the information was scaled by as in (23), so that
.

We consider the maximum efficiency that can be achieved
by the memory. For a fixed and , the efficiency varies in
terms of . We denote the maximum efficiency in by

, and similarly the maximummessage-wise efficiency
by .

B. Efficiency With Adjacency Deviations
Wefirst consider the storage efficiency when deviations occur

in the adjacency data with probability . The maximum effi-
ciency depends on and we write it as and . For a
single iteration of the algorithm, we can evaluate by com-
bining (11) and (23) and optimizing numerically. Doing so re-
veals that for a fixed , the efficiency varies in terms of . There-
fore we can look for the value of that maximizes the efficiency
when the proportion of erased symbols remains :

(25)

Note that because of the way is defined, we restrict to even
values. The results for three values of are shown in Fig. 4.
We see that efficiency increases with , and that the value
of that maximizes the expression tends to increase slightly
with . We can compare the efficiency obtained by the -partite
AM at with that of auto-associative Willshaw networks,
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Fig. 4. The solid curves show the storage efficiency for a single iteration of the
retrieval algorithm, maximized in terms of and of , with , and
even. The dashed curves show the value of that maximizes . From top to
bottom, the curves correspond to , 256, and 64.

taking into account the scaling factor that we introduce in the
definition of . For all the examples shown in Fig. 4, the -partite
AM with a single retrieval iteration has a larger efficiency than
the asymptotic efficiency of Willshaw
networks with single-iteration retrieval [9], and also a larger
efficiency than the best result reported in [28] using multiple-
iteration retrieval .
The efficiency can be greatly improved by using more than

one decoding iteration. In that case, we evaluate based
on simulation results. Results for , and
half the symbols erased are shown in Fig. 5. Note that the effi-
ciency at for a single retrieval iteration is close to the
optimum. Comparing with Willshaw networks, we see that the
efficiency of a reliable implementation of a -partite AM with

and 4 iterations is larger than the so-called
learning bound for the efficiency of Willshaw networks, given
by [17], which is independent of the
retrieval algorithm. For this example, increasing the number of
iterations beyond 4 has little effect.
For the case of and 4 iterations, the argument of
at is , and the corresponding symbol

retrieval probability is . Both and de-
crease as increases, a trend observed in all the examples.
As can be expected, the efficiency is lower if we require com-

plete messages. For clarity, these curves are shown for
only. Under unreliable storage, we see that large devi-

ation rates can be tolerated at the expense of a small reduction
in the maximum efficiency. For example, when goes from
0 to 0.04, the memory with looses 30% of
its efficiency (or 36% when measured message-wise). On the
other hand, for a 65 nm CMOS process, tolerating an error rate
of 4% in an SRAM can reduce energy consumption by close to
one order of magnitude [31]. As process variations increase in
smaller technologies, the ratio of energy savings to error rate
becomes even more favorable.
Associative memories can also be built using a standard

memory array that represents directly, equipped with a

Fig. 5. (solid curves) or (dashed curves) as a function of the deviation
parameter affecting the bi-adjacency matrices. For all curves, and

. The argument of and is found using a resolution of 100
messages, and retrieval error rates are averaged over trials. Also shown is
the efficiency of a brute-force memory and the capacity of the binary symmetric
channel scaled by some constants.

brute-force search to perform retrieval. This alternative imple-
mentation approach, which we refer to as the brute-force (BF)
memory, provides a point of comparison for the fault tolerance
of the proposed memory. Contrary to the graph-based memory,
under a reliable implementation the retrieval performance of
the BF memory is only limited by potential ambiguities in

, that is, by the possibility that there are multiple messages
that have the same non-erased symbols as the probe . This
event is very unlikely for the values of , and considered
here. Therefore we assume that a reliable implementation can
retrieve all stored messages perfectly. If individual bits from the
memory are flipped with probability , an erased symbol can
only be retrieved if no deviations occur in storing the known
part of the message. If that is the case, a retrieved symbol
provides bits of information about the stored
symbol, where
is the capacity of the binary deviation channel. Therefore,
and since the BF memory stores a direct representation of the
messages, its efficiency is

(26)

where as in (23) and (24) the new information provided by the
memory is scaled by .
We see in Fig. 5 that the proposed associative memory main-

tains a good efficiency as increases, whereas the efficiency
of the brute-force memory quickly goes to 0. Of course, this
lackluster fault tolerance of the brute-force memory is not its
only drawback, the main one being that a brute-force retrieval
involves many more memory accesses than a graph-based re-
trieval method such as Algorithm 2. The brute-force memory
could use an error correction code to increase its fault tolerance,
but in addition to increasing the retrieval complexity, this can
pose the problem of also providing fault tolerance in the error
correction decoder.
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Fig. 6. (solid curves) or (dashed curves) as a function of the deviation
parameter affecting the state vectors. For all curves, and .
The argument of and is found using a resolution of 100 messages,
and retrieval error rates are averaged over trials.

Another point of comparison for the fault tolerance of the
proposed memory is the following scenario. Ignoring any com-
plexity aspect, a simple way to tolerate storage faults is to pro-
tect the data to be stored using an error-correction code, thus
abstracting away the unreliability of the data storage from the
retrieval algorithm. Let us consider an ideal scenario where we
are able to use a code that achieves the capacity of the
deviation channel. We first decode the code, and then use the
now reliable implementation of the retrieval algorithm to obtain
the erased symbols. The efficiency of such a scheme is
then at most , and similarly in the mes-
sage-wise case. It is important to note that this scenario does not
necessarily represent the optimal efficiency because a reliable
implementation does not perform optimal information storage
(i.e., ). As shown in Fig. 5, the efficiency of the pro-
posed associative memory is close to this ideal benchmark, in-
dicating that it is very robust to storage faults.

C. Efficiency With State Vector Deviations

Fig. 6 shows the maximum storage efficiency achieved by
the memory in terms of the state vector deviation channel pa-
rameter. All curves use . We first see that as can be ex-
pected, the message-wise efficiency for degrades
faster than for , which is due to the fact that a larger number
of erased symbols increases the likelihood that deviations will
prevent the algorithm from converging. This dependency on
is removed when we consider .
For , the memory can function with almost no effi-

ciency degradation up to . As discussed earlier, a few
additional iterations allow achieving slightly larger values at
a given efficiency. For example, at , the memory with

and tolerates a deviation rate of
when using 4 iterations, but can reach when
using 6 iterations. We also observe that the number of stored
messages that maximizes the efficiency and the corresponding

retrieval probability both decrease as increases, similarly to
the case of adjacency deviations.

VI. CONCLUSION
We studied the fault-tolerance of an associative memory

based on a previously introduced -partite graph model [10].
We presented a detailed implementation strategy and a model
describing how circuit faults can introduce deviations in the
algorithm. These deviations can be grouped into those affecting
the representation of the graph’s adjacency relationships, and
those affecting the state of the retrieval algorithm.
Based on a performance analysis of the faulty algorithm, we

showed how structural parameters can be chosen to optimize the
storage efficiency of the memory in the presence of deviations
on the adjacency data. We also showed that there is little degra-
dation in the storage efficiency of the memory even when 1%
of the adjacency storage is affected by deviations. Furthermore
the algorithm can tolerate deviation probabilities on the order
of on the algorithm state for some realistic structural pa-
rameters. This fault tolerance is achieved without adding any
complexity to the retrieval algorithm.
Our results therefore show that these associative memories

can lend themselves to efficient circuit implementations with
reduced safety margins.

APPENDIX

Proof of Theorem 1: We assume the set of stored mes-
sages to be uniform i.i.d. In order to simplify this technical
proof, we first point out that it is asymptotically equivalent to
sample messages uniformly at random with or without re-
placement. As a matter of fact, the probability not to have a
repetition when drawing messages i.i.d. uniform at random
among possible ones is

since .
Let us denote by the adjacency matrix element

indicating whether an edge exists between the -th vertex of
group and the -th vertex of group . Fix
. By construction of , we have :

The expression above represents the edge density, denoted
by . Let us now fix two edges and
where . We thus have:

.
Denote by the joint event “

”. We first consider the case where
and are mutually distinct. We have:

(27)
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Since the storedmessages are i.i.d., we directly obtain:
.
Let us now consider the case where two edges originate from

the same group, that is , with mutually distinct.
Note that the other configurations can be obtained from this one
by reordering (or relabeling) the indices. Introduce the event
“ ”. We obtain:

By considering similar reasoning to that which lead to the
formula for , we obtain that . Under
the assumption and , we obtain:

. To prove this result, we consider two cases: a)
and b) . In case a), we obtain easily that
and . Thus . In case
b), is eventually larger than a non-zero constant, and since

tends to zero, we conclude that . And thus
.

For the lower bound, we use (27) and introduce
:

We conclude that for all cases:

Therefore, the existence of two distinct edges can be asymptot-
ically regarded as independent.
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