
Nearest Neighbour Search
Using Binary Neural Networks

Demetrio Ferro
Polytechnic of Turin, Electronics

and Telecommunications dpt.
Turin, Italy

ferro.demetrio@gmail.com

Vincent Gripon
Télécom Bretagne, Electronics dpt.

UMR CNRS Lab-STICC
Brest, France

vincent.gripon@telecom-bretagne.eu

Xiaoran Jiang
INRIA, Centre Rennes

Bretagne Atlantique
Rennes, France

xiaoran.jiang@inria.fr

Abstract—The problem of finding nearest neighbours in terms
of Euclidean distance, Hamming distance or other distance metric
is a very common operation in computer vision and pattern
recognition. In order to accelerate the search for the nearest
neighbour in large collection datasets, many methods rely on the
coarse-fine approach.

In this paper we propose to combine Product Quantization
(PQ) and binary neural associative memories to perform the
coarse search. Our motivation lies in the fact that neural network
dimensions of the representation associated with a set of k vectors
is independent of k. We run experiments on TEXMEX SIFT1M
and MNIST databases and observe significant improvements in
terms of complexity of the search compared to raw PQ.

I. INTRODUCTION

Nearest Neighbour Search is a common task required in
different fields of application. Its definition is: “Given a col-
lection of data points and a query point in a multidimensional
metric space, find the data point that is closest to the query
point” [1], where closeness of vectors is typically measured in
terms of Euclidean distance, but still it applies with different
distance metrics.

The geometrical solution consists of computing distances
for all of the data points and retrieving the closest one.
The issue involved with exhaustive Nearest Neighbour (NN)
search is that its computational cost grows linearly with
the cardinality and the dimensionality of the search space.
Along the years, many techniques which aim to reduce the
complexity have been proposed.

A possible approach is multi-dimensional indexing, aiming
to build data structures optimized for queries such as KD-trees
[2]. It was proven that it does not provide great enhancements
when the search space dimensionality increases [3]. Another
prominent way to reduce the search time is resorting to
the Approximate Nearest Neighbour (ANN) techniques. The
idea is to retrieve an approximate version of the exact NN,
which matches true solution with fixed, high probability,
not always unitary. One of the most widely adopted ANN
techniques is Euclidean Locality Sensitive Hashing (E2LSH)
[4]. Based on simple assumptions, it is able to achieve good
performances. Relying on structured quantizers, it may not
be sensitive enough to the distribution of real data [5]. The
introduction of unstructured quantizers and clustering methods
such as k-means leads to vector quantization techniques which

perform much better since they are trained with real data [6].
However, using a lot of quantization cells over high dimension
space may be a very challenging task both in terms of memory
usage and computational cost.

Product Quantization (PQ) is a semi-structured quantization
strategy which allows us to choose the number of vector space
dimensions to be quantized jointly, in order to produce a large
set of quantization cells from several small subsets [7]. Still it
aims to preserve the quality of quantization, hence to reduce
the Mean Square Error (MSE), in order to try working at good
Rate-Distortion conditions [8]. Recently it was shown that it is
possible to exploit the properties of Willshaw Neural Networks
(WNNets) (binary associative memories) [9], [10] to accelerate
the search over sparse, binary vector spaces [11].

The aim of this work is to try enhancing the PQ tech-
nique using clustered neural associative memories introduced
recently [12], [13]. The main idea is to accelerate the query
stage by selecting a subset of search space points which are
likely to include the NN thanks to a bunch of associative
memories based on neural networks. This approach is often
referred to as coarse-fine search.

The outline of this paper is as follows. In Section II are
introduced related works and notations, Section III presents
our methodology, Section IV discusses our experiments and
the conclusion is given in Section V.

II. RELATED WORKS

For the purpose of accelerating PQ queries resorting to
the associativity of binary neural networks, in this section
is provided a general overview of the two main techniques
reference and recalls to the tools used.

A. Exhaustive Search

Consider a set X ⊂ Rd of N vectors x with dimension d.
Given a query vector x0 ∈ Rd, the problem of finding the NN
consists of retrieving the closest x = NN(x0) ∈ X in terms
of Euclidean distance dE(·):

NN(x0) := argmin
x′∈X

dE(x
′,x0). (1)

In the general case the complexity of the search is O(N ·d)
and is tight [14]. That is why the predominant way to solve

mailto:ferro.demetrio@gmail.com
mailto:vincent.gripon@telecom-bretagne.eu
mailto:xiaoran.jiang@inria.fr

NN by reducing complexity is to resort to ANN techniques.
These techniques are twofold: a) they act on the number of
elements N or b) they act on reducing dimension d.

B. Product Quantization

PQ [7] is a state-of-the-art method to solve ANN, acting as
follows: the search space is split over m lower-dimensional
orthogonal subsets, over which k Voronoi quantization
regions are built. The d-dimensional Euclidean Distance
computation is performed as the sum of m distances between
the (d/m)-dimensional vectors. In the following subsections
are explained the details of its principles.

1) Splitting and Quantization: Each vector x ∈ X is
split into m partitions, by means of a split operator ui :
Rd → Rd/m, such that {u1(x), u2(x), . . . , um(x)} belong to
orthogonal subspaces {U1,U2, . . . ,Um} of the search space
X .

For each of the possible N ·m different vector splits ui(x),
a quantization function qi(·) : Ui → Ci is applied, in order to
map it into the closest centroid ci,ji ∈ Ci, where Ci is the ith

quantization grid obtained by k-means clustering.
The PQ stage consists of applying the quantization set of

functions q(·) = (q1(·), q2(·), . . . , qm(·)):

[u1(x), . . . , um(x)]
q(·)
→ [c1,j1 , . . . , cm,jm]. (2)

The quality of the quantization, measured through the Mean
Square Error (MSE), relies on the large cardinality of the
centroids grid: |C| = |C1 × C2 × · · · × Cm| = km. In other
words, PQ performs quantization of vectors on the cartesian
product of centroids.

2) Distance Computation: The PQ technique allows
approximating Euclidean distance computation using the
lower dimensional distances computed over search subspaces
{U1,U2, . . . ,Um} at quantization stage. The d-dimensional
distance is computed as the sum of m distances over (d/m)-
dimensional vector partitions.

As introduced in [7], it is possible to adopt Symmetrical or
Asymmetrical Distance Computation (SDC or ADC respec-
tively). In both cases, the error introduced is upper-bounded
by the quantization MSE. Since the distance distortion of the
asymmetrical version is generally lower, in this work we focus
on the case of ADC. Note that adapting our proposed solution
to computing SDC is straight-forward.

The asymmetric approximation of Euclidean distance d̂E(·)
is expressed as:

d̂E(x,x0)
2 =

m∑
i=1

dE(qi(ui(x)), ui(x0))
2. (3)

In order to accelerate the computation of distances, the values
dE(qi(ui(x)), ui(x0)) can be stored in a [k×m] matrix to be
used as a lookup table.

Solving the ANN search task by means of this approxima-
tion consists of finding:

N̂N(x0) = argmin
x′∈X̄

d̂E(x
′,x0). (4)

whose complexity stands in quantization O(k · d) and ADC
O(m ·N), consider hence O(k · d+m ·N).

In order to accelerate PQ search, we propose to use binary
associative memories, described in the following section.

C. Binary Associative Memories

Willshaw Neural Networks are binary associative memories
[9], [10] which can be used to measure how likely a query
vector is compared to a collection of stored ones [11]. This
lets us have a neuro-inspired approach aiming to solve the NN
search. Recently, a new version of Willshaw neural networks
have been proposed [12], [13] that achieve better performance
by making use of the specific structure of stored vectors. It
is this modification of Willshaw networks we consider in this
approach.

Consider the set Z ⊂ Zd′

2 of N vectors z, to be the binary,
sparse search space where we search for a d′-dimensional
query vector z0 ∈ Zd′

2 .

1) Learning Stage: In order to apply the associative
memory model, let us partition the set Z into L subsets
{Z1,Z2, . . . ,ZL} completely disjoint, such that Z = ∪Ll=1Zl

and Zl ∩ Zl′ = ∅ for l 6= l′, with same cardinality |Zl| = n,
hence |Z| = N = n ·L. Note that this setting forces N to be a
multiple of n, which is only required to ease the mathematical
presentation of our proposed solution. If it is not the case, then
the parts Zl should be balanced to avoid large differences in
their sizes.

Each of the L subsets trains a different Willshaw Network,
whose connection matrix is defined as:

W(Zl) = max
z∈Zl

(z · zT). (5)

2) Scores Computation: Once all of the networks have
learnt the input database vectors, given a query vector z0, for
each network W(Zl) is computed the score s(z0,Zl), which
measures the likelihood of the vectors stored in the lth network
to be NNs.

s(z0,Zl) = zT0 ·W(Zl) · z0. (6)

Let {W l
i,j}d

′

i,j=1 be the coefficients of the matrix W(Zl),
{zi}d

′

i=1 the elements of query vector z0. Since the adjacency
matrix W(Zl) is always square and symmetrical, it is pos-
sible to consider upper triangular matrix product. The above
quadratic form becomes:

s(z0,Zl) =
d′∑
i=1

z2
i ·W l

i,i + 2
d′∑

i,j=1

j>i

zi · zj ·W l
i,j . (7)

As suggested in [11], the (zi, zj) coefficients product may
be computed only for the non-zero terms W l

i,j 6= 0. As a

Coarse PQ Fine PQ

ui(x)

1

.

.

.

i

.

.

.

mc

ci,ji

ai z

ui(x0) ci,ji

λi,h z0

u′i(x)

1

.

.

.

i

.

.

.

.

.

.

.

.

.

mf

c′i,ji
dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

dE(·)

u′i(x0)

Preprocessing
Stage: Select
z ∈ Zl

Neural Networks
Learning Stage:
W (Zl)

Computation of
the score Stage:
s(z0,Zl)

Selection of
highest scores
{l1, ..., lL0

}

ADC over more
likely subsets
d̂E(x, x0)

N̂N(x0)

Real Vectors

Binary Vectors

Fig. 1. Block scheme of the introduced technique.

result, computational cost of solving the above equation can
be evaluated as O(p1 · d′2), where p1 is the mean value of
unitary weights in the upper triangular matrix of all W(Zl)
for l ≤ L:

p1 =
1

L

2

d′(d′ + 1)

L∑
l=1

d′∑
i,j=1

j≥i

W l
i,j . (8)

As a further observation, note that the score is maximum
if z0 ∈ Zl, whereas it is low and close to zero if the query
vector z0 /∈ Zl. Note also that the score may be high even in
this second case if the network is overfilled.

The selection of the search space points which are more
likely to include the NN is then performed by picking the
indices of the L0 ≤ L networks which have highest scores of
likelihood for the query vector.

The complexity of a query states in solving the quadratic
form O(p1 ·d′2 ·L), and further exhaustive Euclidean Distance
computation O(L0 · n · d′), in the overall consider it to be
O(p1 · d′2 · L+ L0 · n · d′).

III. METHODOLOGY

The technique shown here aims to accelerate PQ with
clustered associative memories for NN search, by acting on the
granularity of the quantization, with a coarse-fine approach.

In Figure 1 is reported an overall block scheme which shows
the steps through the proposed ANN search solution. First,
it is foreseen to run a Coarse PQ: the input data x ∈ X
are split over mc orthogonal sections, over each of them is

applied k-means to retrieve kc centroids. In order to work with
binary networks, each of the centroids is labelled by a sparse
binary vector of dimension kc, extracted from the canonical
basis of Zkc

2 . Merging the labels associated with the centroids
of each section implements a binary mapping of the search
set quantization points. Once the search set is labelled, it is
possible to train neural networks with binary vectors. At query
time, the vector x0 is split and mapped into a vector of real
value, containing similarity measures between the split of the
query input and each of the possible kc centroids. The score
computation is then done for the similarity vector, under the
assumption that the networks which are more likely to contain
its NN achieve higher scores. Again it is possible to retrieve
the L0 ·n more likely vectors, leading to a cardinality reduction
of the search set.

Finally, the selected points are processed with a Fine PQ
stage to run with more accuracy the ANN search. This implies
a second split of the search set over mf orthogonal sections,
and the computation of kf quantization points. Further details
and explanations are reported in the following subsections.

A. Centroids Labelling

In the coarse PQ stage, it is built a grid of mc splits and kc
centroids for each split. Consider the generic centroid ci,ji ∈
Ci, where i ∈ [1,mc], ji ∈ [1, kc]. In order to work with binary
networks, each vector partition ui(x),∀i ∈ [1,mc],∀x ∈ X ,
is associated to a kc-dimensional vector ai, extracted from the
canonical binary basis A ⊂ Zkc

2 containing all zeros except

00001

00100

00010

00010

00001

00100

01000

01000

10000

00001

00100

10000

01000

00100

10000

01000

01000

00010

10000

00001

00010

00100

10000

00001

00010

ui(x0)
ci;h

ci;ji

Fig. 2. Labelling rule b(·) for d = 10, kc = 5,mc = 5.

for the ji-th position.

[c1,j1 , c2,j2 , . . . , cmc,jmc
]→ [a1,a2, . . . ,amc]. (9)

e.g. if the centroid c1,j1 = q1(u1(x)), associated to the first
split of the quantized vector u1(x), is the j1-th among the kc
set by coarse k-means clustering, it will be labelled as:

1 2 ... j1 ... kc−1 kc

a1 = [0, 0, . . . , 1, . . . , 0, 0].
(10)

Applying this labelling rule to all of the mc space partitions,
it is possible to build the vectors z ∈ Z ⊂ Zdc

2 , defined by the
concatenation of all the ai, i = 1, . . . ,mc, so that dc = kc ·mc.

z = [a1 || a2 || . . . || amc
]. (11)

By defining b : Rd → Zdc
2 as the labelling rule performing

the just introduced criteria, consider hence z = b(x).
As reference, Figure 2 is a graphical representation of

labelling rule application, relative to a simplified case.
The binary vectors z ∈ Z obtained in this way, are used to

train the Willshaw type associative memories, by applying the
learning rule defined in subsection II-C1.

B. Preprocessing for Allocation

The selection of the vectors to allocate in each neural
network has direct impact on the ration of ones in the
connection matrices, considered here by the factor p1.

For the specific structure of the training vectors, the value
of p1 can be bounded as:

mc(mc + 1)

dc(dc + 1)
≤ p1 ≤ 1− kc − 1

dc + 1
. (12)

The lower-bound is reached when all of the stored vectors
are identical, (i.e. their mutual Hamming distance is zero), and
the upper-bound is reached when all of the possible different
vectors are stored (i.e. their mutual Hamming distance is

ui(x)
ci;h

ci;ji

t

Fig. 3. Quantization point t for d = 10, kc = 5,mc = 5.

maximal and equals 2 ·mc). In the first case, the number of 1s
in the upper triangular matrix equals mc(mc +1)/2, whereas
in the second case it is dc + k2

cmc(mc − 1)/2.
Let us suppose that the lth learning set is composed of n

binary label vectors Zl := {z(1), z(2), . . . , z(n)}.
For the specific structure of the label vectors, it is possible

to derive a tighter approximation for p1 as a function of n:

p1(n) ≈
2 · α(n) +mc(mc − 1)k2

c · β(n)
dc(dc + 1)

. (13)

where α(n) and β(n) come from the following considerations:
- α(n) is related to the average number of learnt vectors

associated to different quantization points c ∈ Ci within
each search space partition Ui, i ∈ [1,mc], i.e. the average
Hamming weight wH(·) of the OR operation applied to
all of the learnt labels;

α(n) = wH(z(1) ∨ z(2) ∨ ... ∨ z(n)) (14)

- β(n) is an approximation obtained as the average num-
ber of connections in the upper triangular side of the
matrix W(Zl), trained by n independent and uniformly
distributed vectors, [13].

β(n) = 1−
(
1− 1/k2

c

)n
. (15)

For the lower-bound, consider α(n) = mc, β(n) = 1/k2
c ,

(or, equivalently, set n = 1), whereas for the upper-bound
consider α(n) = dc, β(n) = 1, (or let n→∞).

For any fixed n such that n � k2
c , the factor β(n) can be

approximated as β(n) ≈ n/k2
c . In this case, since both α(n)

and β(n) grow linearly with n, it is suggested to use many
networks trained by a small number of vectors.

Both in terms of performance and computational
complexity, a good allocation strategy should try to keep the
value of p1 as low as possible. It is hence suggested to use
an allocation strategy which tries to keep the lowest possible

Network Index l = 1; : : : ; L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

20

40

60

80

100

120

140

160

180

200

Number of Stored Vectors in Zl

Average Number of Stored Vectors

Fig. 4. Number of stored Vectors in each memory.

mutual Hamming distance label vectors.

The strategy used here has a greedy approach which tries
to pick L different vectors, from here on named first training
vectors, to be learnt by each of the associative memories.
Then all of the N − L = (n − 1)L leaving data points
are stored in the memory whose first training vector has
minimum Hamming distance.

With the idea of being sensitive to the data distribution, the
selection of the first training vectors takes into account the set
of all of the unique quantization points t ∈ C = C1×· · ·×Cmc ,
to which data points are associated. Figure 3 reports a simple
exemplification of one of the possible points t set by a Coarse
PQ stage. First of all, set the index lt = 0, that is the index
of the learning set to be populated by data points quantized
as t. Then, for each of the unique quantization points, it is
supposed to execute the following steps:

- Compute nt = |Xt|, where Xt is defined as:
Xt := {x ∈ X : q([u1(x), u2(x), . . . , umc

(x)]) = t},
the set of (undistinguishable) data points quantized as t.

- Choose randomly, a number νt = bnt · L/Nc of vectors
x in the set Xt, to initialize progressively the learning
sets Zl,∀l ∈ [lt + 1, lt + νt].

- Update the index lt = lt + νt.

At the end of the iteration, since
∑
t∈C

νt ≤ L, the number

of indices chosen may not be large enough, it is performed an
extra random choice among the not chosen data points.

As shown in Figure 4, running this technique over
N = 106 vectors, the number of stored vectors in each
of the L = 104 networks is fairly distributed with mean

Neural Network Index l = 1; : : : ; L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
co

re
s
s(

z
0
;Z

l)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Score of the l-th Network, s(z0;Zl)

Highest Scores s(z0;Zli); i = 1; : : : ; L0

Score s(z0;Zl) : b(NN(x0)) 2 Zl

Fig. 5. Scores of each memory to include the NN(x0).

n = 102.

C. Similarity Measure

At run time, the query vector undergoes coarse PQ, to
be mapped into a set of centroids. This time, instead of
labelling the centroids in a binary fashion, let us try to find
a soft rule which is more sensitive to the distance among
quantization points. Consider the generic centroid ci,h ∈ Ci,
and the minimum distance one qi(ui(x0)) = ci,ji ∈ Ci where
i ∈ [1,mc], h, ji ∈ [1, kc].

Let us define the value λi,h ∈ [0, 1] ⊂ R as follows:

λi,h(x0) =
dE(ci,ji , ui(x0))

2

dE(ci,h, ui(x0))2
, (16)

which measures similarity for the query vector partition to be
quantized in one of the kc possible centroids. Note that instead
of using dE(·), one may choose a different metric depending
on the application. It is applied to each of the centroids and
to each of space partitions to build z0 ∈ Rdc :

z0 = [λ1,1(x0), . . . , λ1,kc(x0)||
. . .

||λmc,1(x0), . . . , λmc,kc(x0)],
(17)

which is a soft version of likelihood scores computation
reported in section II-C2.

In Figure 5 it is possible to see how the score computation
relies a high score when the tested memory stores data points
which are very close to the NN(x0), whereas the score is lower
when the data points are further.

D. Retrieving the solution

After the computation of the scores s(z0,Zl),∀l =
1, . . . , L, one may select the L0 ≤ L highest peaks. In Figure

5 are reported the scores calculated for a certain query vector.
Corresponding simulation parameters are L = 104, n = 102,
kc = 32 and mc = 2. The L0 = 10 highest peaks illustrated
in red are supposed to contain the exact NN.

Consider l1, l2, . . . , lL0 , as the indices corresponding
to the highest scores. First, retrieve the learning sets
{Zl1 ,Zl2 , . . . ,ZlL0

} which contain the most likely partitions
of Z . By doing this, it is possible to get back the most likely set
of vectors x ∈ X over which fine ADC computation with the
vector x0 is run. Let us denote X0 = ∪L0

i=1Xli , where Xli are
the the equivalent partitions matching the index partitioning
of Z defined in subsection II-C1. This leads to the solution of
the NN search over a subset of the search space with lower
cardinality, since |X0| = L0 · n ≤ N .

The complexity of a query has to take into account two
quantization layers O((kc + kf) · d), scores computation
O(p1 · d2

c · L) and ADC over X0, O(L0 · n · mf). Consider
hence an overall cost of O((kc+kf)·d+p1 ·d2

c ·L+L0 ·n·mf).

Compared to the cost of using just a Fine PQ technique, it is
possible to note that the cardinality reduction |X0| ≤ |X | has a
direct impact on the computational cost, provided that coarse
quantization and scores computation cost is much smaller than
the Fine PQ one:

kc · d+ p1 · d2
c · L+ L0 · n ·mf � L · n ·mf . (18)

IV. EXPERIMENTS

The method was evaluated both for retrieving the exact
NN in a set of recalls and for classification. NN search
was performed over TEXMEX SIFT1M (N = 106) local
descriptors dataset from IRISA [15], whereas NN search
for classification was performed over MNIST (N = 60000)
handwritten digits dataset from NIST [16].

In Figure 6 are reported Performances vs Computational
Cost scaled to Fine PQ (exhaustive PQ search) Cost for NN
search. Over the abscissa, it is reported the overall computa-
tional cost Normalized to the one of running just Fine PQ:

kc · d+ p1 · d2
c · L+ L0 · n ·mf

L · n ·mf
. (19)

In this first case, it is possible to note that the technique is
able to provide complexity reduction up to 10 times, provided
by search space cardinality reduction (L0 = L/10), without
affecting the performance of Fine PQ applied to the whole
data set, reported as the asymptotic trend of the performance
on the right of the plot, known from the state-of-the-art.

In Figure 7 are reported Performances vs Computational
Cost scaled to Fine PQ Cost for Classification. Here is possible
to notice that the performance does not grow monotonically
and that it assumes high values even when the cardinality
reduction is very large (|X0| � |X |). Besides this, note that
in this case scores computation have a higher impact on the
overall cost.

In the above figures it is possible to appreciate how,
compared both to Exhaustive NN search and raw PQ (with

parameters kf , mf), the proposed technique represents a good
trade-off between complexity reduction and accuracy of the
solution.

V. CONCLUSIONS

We proposed a method to accelerate approximate nearest
neighbour search by combining Product Quantization and
binary neural associative memories for the coarse step. Our
simulations on datasets TEXMEX SIFT1M and MNIST show
that this neuro-inspired approach significantly outperforms the
traditional PQ in terms of computational complexity with a
limited impact on accuracy.

At first sight it seems complicated to merge binary neural
networks with nearest neighbour search as the latter typically
needs distance metrics to be computed. Coarse PQ acts as
a perfect proxy here, as it projects real valued vectors to
centroids which can be likened to values in a discrete alphabet.
As a further observation, note that once the number L of
networks to train is set, the choice of the parameters for coarse
PQ is crucial. Whilst they have a linear impact on the size of
the memories, they let cardinality of all possible messages to
store grow with kmc

c .
Future work includes a) getting rid of the fine search stage,

b) cascading (hierarchical) associative memories for better
performance, c) proposing refined allocation strategies for a
better choice of learning sets and d) performing simulations
on harder datasets (e.g. GIST1M, SIFT1B).

ACKNOWLEDGMENTS

This work has been funded in part by the European Research
Council under the European Union’s Seventh Framework
Programme (FP7 / 2007 - 2013) / ERC grant agreement n
290901 NEUCOD.

REFERENCES

[1] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is ”nearest neighbor” meaningful? In Catriel Beeri and Peter
Buneman, editors, Database Theory - ICDT’99, volume 1540 of Lecture
Notes in Computer Science, pages 217–235. Springer Berlin Heidelberg,
1999.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. In Communications of the ACM, pages 509–517, 1975.

[3] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In Proceedings of the International Conference on Very Large
DataBases, pages 194–205, 1998.

[4] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Commun. ACM,
51(1):117–122, January 2008.

[5] Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive
hashing: a comparison of hash function types and querying mechanisms.
Pattern Recognition Letters, 31(11):1348–1358, August 2010.

[6] David Nister and Henrik Stewenius. Scalable recognition with a
vocabulary tree. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume
2, CVPR ’06, pages 2161–2168, Washington, DC, USA, 2006. IEEE
Computer Society.

[7] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product Quan-
tization for Nearest Neighbor Search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(1):117–128, January 2011.

[8] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Searching with
quantization: approximate nearest neighbor search using short codes and
distance estimators. Research Report RR-7020, August 2009.

Computational Cost (Normalized to Fine PQ)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
ea
re
st

N
ei
gh

b
ou

r
S
ea
rc
h
P
er
fo
rm

an
ce
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L0 = 1

L0 =
L

1000

L0 =
L

100

L0 =
L

40
L0 =

L

20
L0 =

L

10
L0 =

L

5

Recall@1
Recall@2
Recall@5
Recall@10
Recall@20
Recall@50
Recall@100

Fig. 6. NN Search, TEXMEX SIFT Descriptors.

Computational Cost (Normalized to Fine PQ)
0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31

C
la
ss
ifi
ca
ti
o
n
P
er
fo
rm

a
n
ce
s

0.88

0.9

0.92

0.94

0.96

0.98

1

L0 = 1

L0 =
L

1000

L0 =
L

100

L0 =
L

20
L0 =

L

10

Recall@1
Recall@2
Recall@5
Recall@10
Recall@20
Recall@50
Recall@100

Fig. 7. Classification, MNIST handwritten digits.

[9] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-
holographic associative memory. Nature, 222:960–962, June 1969.

[10] Richard N. A. Henson and David J. Willshaw. Short-term associative
memory. Proc INNS World Congress on Neural Networks, 1995.

[11] Chendi Yu, Vincent Gripon, Xiaoran Jiang, and Hervé Jégou. Neural
associative memories as accelerators for binary vector search. In
Proceedings of Cognitive, March 2015. To appear.

[12] Vincent Gripon and Claude Berrou. A simple and efficient way to store
many messages using neural cliques. In Proceedings of IEEE Symposium
on Computational Intelligence, Cognitive Algorithms, Mind, and Brain,
pages 54–58, Paris, France, April 2011.

[13] Vincent Gripon and Claude Berrou. Sparse neural networks with large
learning diversity. IEEE Transactions on Neural Networks, 22(7):1087–
1096, July 2011.

[14] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98,
pages 604–613, New York, NY, USA, 1998. ACM.

[15] Laurent Amsaleg and Hervé Jégou. Texmex - datasets for approximate
nearest neighbor search, July 2010.

[16] Yann LeCun and Corinna Cortes. Mnist - database of handwritten digits.

	Introduction
	Related works
	Exhaustive Search
	Product Quantization
	Splitting and Quantization
	Distance Computation

	Binary Associative Memories
	Learning Stage
	Scores Computation

	Methodology
	Centroids Labelling
	Preprocessing for Allocation
	Similarity Measure
	Retrieving the solution

	Experiments
	Conclusions
	References

