
20169th International Symposium on Turbo Codes & Iterative Information Processing

Assembly Output Codes for Learning Neural Networks

Philippe Tigreat*, Carlos Rosar Kos Lassance*, Xiaoran liang * * , Vincent Gripon*, Claude Berrou*

*Electronics Department, Telecom Bretagne **INRIA Rennes
*name. surname@telecom-bretagne.eu, * *name. surname@inria.fr

Abstract-Neural network-based classifiers usually encode the

class labels of input data via a completely disjoint code, i.e. a

binary vector with only one bit associated with each category. We

use coding theory to propose assembly codes where each element

is associated with several classes, making for better target

vectors. These codes emulate the combination of several

classifiers, which is a well-known method to improve decision

accuracy. Our experiments on data-sets such as MNIST with a

multi-layer neural network show that assembly output codes,

which are characterized by a higher minimum Hamming

distance, result in better classification performance. These codes

are also well suited to the use of clustered clique-based networks

in category representation.

Keywords-Assembly coding; Clustered Clique Networks;

ECOC; Deep Learning; Coding theory; Classification

I. INTRODUCTION

Automatic learning systems are different from storing systems in
that they aim at generalizing to unknown inputs. This happens through
the extraction of the core features of learned data, and works as long
as the unknown data to extrapolate to follows a similar distribution.
The system thus learns a dictionary of features that is targeted to be
well suited for the task at hand, e.g. classitication. These features are
meant to correspond to the most relevant building blocks underlying
the training inputs, that unseen data samples would likely also be
made of.

In supervised Deep Learning networks, an output is calculated
through a pipeline of vector-matrix products between input data and
connection weights, intertwined with non-linear mathematical
operators. Each level of the network is associated with a set of features
that is more and more abstract as one moves towards the upper layers.
During learning, an error is calculated from the difference between the
resulting output and an objective vector specific to the class of the
input. A gradient is then calculated from this error for the whole set of
connection weights, and the hierarchy of features thus gets optimized
through gradient descent for the task of classifying the data-set
examples.

Combining classifiers has been an extensive area of research for a
few decades [1] and several algorithms have been shown to bring
improved decision by leveraging the diversity brought by an assembly
of systems. Among these methods, boosting is a way to combine

This work was supported by the European Research Council under Grant

ERC-AdG2011 290901 NEUCOD

978-1-5090-3401-7116/00 ©2016 IEEE
285

opmlOns of experts by weighting them based on their respective
estimated accuracy. These base classifiers can be ditferentiated using
various strategies, like training them on various subsets of the data or
by providing them with ditferent sub-parts of an ensemble of learned
feature detectors.

Another way to combine classifiers is to split the problem into a
set of binary problems. A base classitier will then focus on classifying
inputs between two of the initial classes, as in One-Vs-One (OVO), or
between one class and the rest as in One-Vs-All (OVA). A way to
implement these strategies is to provide a classitier with objective
vectors that are not always specific of a single class but can be
associated with a set of classes. Much attention is paid here to the
Error-Correcting Output Coding (ECOC) method, which splits a
multi-class problem into several two-way classification problems
between meta-classes. It is shown in [2] that ECOC can reach a better
classification performance on an image data-set as compared to other
multi-class methods.

The approaches presented here are derived from ECOC for multi
class problems. These methods allocate assemblies of output neurons
to the different input classes, with potential overlap between the codes
of two classes. A clustering of the output layer is also applied, with
only one active neuron per cluster for each target vector, and a local
soft-max [3] process applied in each cluster at test time. The soft-max
operator has the effect of normalizing to 1 the sum of energies of
output neurons in each cluster. Experimental results suggest that the
number of classes sharing an output node impacts performance, and so
does the minimal distance between class codes. This finding is
maintained when output codes are repeated so as to ensure that the
ditferent tested networks have very similar numbers of parameters.

The outline of the paper is as follows. Section II provides
theoretical considerations on the advantages of different output codes.
Section III explains the methodology used in training the networks.
Section IV presents experimental results.

II. CODING THEORY
Prior to experimenting with assembly codes as output for neural

networks, a theoretical analysis can provide insights about which

assemblies should perform better.
Consider a classifier with P classes to identify. The simplest way

to make the classifier express its decision is to assign a single output
node (the so-called grandmother cell) to each class. We propose to

replace these P nodes with n= (�) nodes representing all the

combinations (or assemblies) of m classes among P. Let us detine the

20169th International Symposium on Turbo Codes & Iterative Information Processing

coding rate R of

IOg2(p) and n:

log2(p)
the corresponding code as the ratio between

R= (�) . (1)

To calculate the minimum Hamming distance, let us consider any
two classes among P. The number of assemblies that contain neither

one nor the other is (p � 2) and the number of assemblies that

contain both is

(
P-2) . The minimum Hamming distance of the
m-2

,;:::g

!:H; :�H:'��r
o

l�' (2)

The product of R and dmin, called the merit factor F, is deduced as:

2 m (p -m) log2 (p)
F=Rdmin (P-l)P

(3)

and its maximal value is obtained for m = P/2:

Plog2(P)
F max 2(P_I)

. (4)

The corresponding minimum distance may be expressed as:

(dmJmax = (p � 1) � (5)

For instance, with P = 10 (e.g. for MNIST classification), the best
code involves quintuplet assemblies and offers a minimum distance
of 140 with n = 252. If quintuplets are replaced with couples, the
parameters become: dmin = 16 and n = 45. Note that the classical
output code (one node per class), still with P = 10, has a minimum
distance of 2 with n = 10.

. '

•

•

m classes among P

/

•

•

•

•

•

•

c

Figure 1. The output layer of the classifier is organized in c clusters,

each one having I nodes. These I nodes represent disjoint

combinations of m classes among P with I = Plm.

Now we propose that the n assemblies are distributed among c

clusters such that each class appears once and only once in each
cluster. Therefore, there are' = P/m nodes in each cluster, assuming
that P is a multiple of m (Fig. 1). This structure has two advantages.
Firstly, it complies exactly with the clustered clique-based associative
memory proposed in [4] which offers the possibility to store a
number of patterns proportional to F (for larger sought diversities, the
sparse scheme proposed in [5] may be contemplated). However, the

2

286

optimal value I = 2 (as deemed by the optimization of F) is too low
for a clique-based implementation and a trade-off has then to be
found. For instance, , = 5 (that is, m = 2) seems a good choice for P =

10. The second advantage is that a cluster containing disjoint
assemblies and therefore probabilities, through the soft-max principle
[6], may be rigorously used for both learning and testing.

Ill. METHODOLOGY

3.1. MNJST

MNIST [7] is a data-set of grey-scale images of handwritten digits
that is widely used in deep learning. The data-set is made of 60000
images targeted for training and 10000 test examples. Many published
works use the first 50000 examples from the training set to actually
train the network, saving the last 10000 examples to perform cross
validation. Some papers however present networks trained on the
whole set of 60000 training images, as is the case in [8]. Here the
50000/1 0000 split of the training set is used for the experiments of
section 4.1, whereas in sections 4.2 and 4.3 the networks are trained
with all 60000 examples.

3.2. SVHN

SVHN [9] is a data-set made of color images of digits captured in
real-world situations, e.g. house numberings. It contains 73257
training images and 26032 test images. We use 60000 examples from
the train set to actually train our networks, and the remaining 13257
serve for cross-validation.

3.3. Assembly codes

Couple cells are a method we introduce for encoding the class
using a distributed code. Each cell no longer reacts to a single class
but is specific of a couple of classes. Hence since the experiments are
performed on data-sets with 10 classes, there are 45 possible couplings
a given output neuron can be associated with. The whole set of 45
couplings is used here. Moreover, it is possible to partition these 45
couplings into 9 clusters of 5 couple cells where each individual class
is represented exactly once in each cluster. This way the soft-max
methodology can be applied inside of every cluster, between 5
competing hypotheses that are mutually exclusive.

Quintuplets are yet another code where each neuron is associated
with a combination of classes, this time 5 among 10. The same
approach as for the couples is used, by using all 252 possible
quintuplets and partitioning them into 126 clusters each containing 2
complementary quintuplet cells.

The first two important factors considered to choose assembly
codes are usability in a clique-based architecture and the merit factor.
Alongside with the grandmother cell (our baseline), couples of classes
(best trade-off cliques/merit factor) and quintuplets of classes (best
merit factor, but larger output network) are tested. But only comparing
these parameters is not enough, because one could argue that couples
and quintuplets work better because they have a larger number of
parameters for the last layer of the neural network. To avoid this we
also train networks using repeated codes to reach output length of
equal or comparable size. This repetition allows us to make a fair
comparison between networks with virtually the same number of
parameters in spite of using different output codes. Couples of classes
have an interesting characteristic, in that there are plenty of different
possible ways to partition 45 couple cells into 9 clusters, each
featuring the 10 classes. Therefore it is possible to design an output
layer of 1260 couple cells parted in 252 clusters where no cluster
configuration is repeated twice.

20169th International Symposium on Turbo Codes & Iterative Information Processing

During the training phase the categorical cross-entropy is used as
the loss function. For classification a majority voting is done where
each active output node votes for its associated set of classes. The
assembly codes are summarized in table 1.

Assembly Code n m I c F dmin
Grandmother cell 10 1 10 1 0.66 2

(lG)

Couples (l C) 45 2 5 9 l.l8 16

Quintuplets 252 5 2 126 1.84 140
(lQ)

Grandmother cell 250 1 10 25 0.66 50
* 25

(25G)

Couples * 6 270 2 5 54 1.18 96
(6C)

Grandmother cell 1260 1 10 126 0.66 252
* 126
(126G)

Couples * 28 1260 2 5 252 1.18 448
(28C)

Quintuplets * 5 1260 5 2 630 l.84 700
(5Q)

Special Couples 1 1260 2 5 252 1.18 448
(SC)

Table 1: Summary of the tested assembly codes.

Assembly Code * number: Code repeated number times.
': 252 non-repeated clusters

3.4 Neural network settings

For tests, the neural networks used are multi-layer perceptrons.
Two architectures of network are used, one that is shallow and the
other deep. The shallow network has only 1 hidden layer, while the
deep network has 5 hidden layers. The results are presented by the
mean and standard deviation over 10 executions with different weight
initialization, noise and image order.

In sections 4. 1 and 4.2 the neural network is shallow and its only
hidden layer is composed of 2000 feature units. Training lasts for 200
epochs with a constant learning rate of 0. 1. The model "baseline +
noise" from [8] is chosen as a base for the deep network used in
sections 4.3 and 4.4. This is a network that gets close to the current
state-of-the-art in the task of permutation-invariant MNIST. It has 6
layers, where the first 5 of them are fully connected layers (with sizes
1000-500-250-250-250) and the last one is an output layer. At each
connection layer, between the input and the activation, a batch
normalization [11] and a Gaussian noise with mean 0 and standard
deviation 0.3 are used. To finish the connection layer, a rectifier
activation is used. The output layer has the length of the output code.
A batch normalization is applied between the input and the activation
and as in the case of the shallow network it uses a per-cluster soft-max

3

287

activation. The number of parameters of each network is given by the
formula: 1000*(input length) + 750000 + 250*(n). This means:
1534000+250*(n) for MNIST and 3822000 + 250*(n) for SVHN.
This deep network has 150 epochs to learn where it optimizes the
weights with the ADAM optimizer [10], using an initial learning rate
of 0.002 that has an annealing phase of 50 epochs where the learning
rate decays linearly to O.

IV. RESULTS

4.1. Experimenting with codes

Assigning the same number of output nodes to the different
classes may not be ideal for a real-world data-set. Following this idea,
it may be interesting to allocate different amounts of the output
material to the different combinations of classes, as for instance the
distributions of examples can be more correlated in a subset of classes
than on average in the whole data-set.

An experimental scheme inspired from the quintuplet
configuration is tested, with 252 output neurons parted in 126 clusters
of size 2 where a soft-max is applied. Instead of rigorously associating
an output cell with each possible quintuplet however, 10 binary output
codes are generated following a binomial distribution. This
distribution is modulated to make vary the average number of ones in
the output codes. Used as output for a shallow network, the average
number of ones has an impact on classification performance, as shown
by figure 2.

3.0 ,---""T""""-----r--r--..,.......-�-........,.--�-�-___,

2.8

� 22
� .
l" e 2.0
a;

1.8

1.6

1.4

1.
t.';-1-�0;;':. 2;------;;0:':;.3----;;'0.74 ---;O;";.5 :------;;"0.';:-6-�0,... 7;------;;0'::.8--0::".9;;------,-11.0

proportion of Is in output codes

Figure 2: Influence of the proportion of ones in the output target
vectors on classification error rates.

We see here that the error rate is maximal when there are less than
10% of ones in the output codes. It decays with higher values down to
a minimum reached when there are around 60% of ones. Above that
proportion, the error rate raises again.

The minimal distance is obtained when generating as many ones
as zeros on output as shown on figure 3, whereas the classifier
performs better with output codes made of 60% up to 80% of ones.
The error rate is also about 1.7 times lower for 90% of ones as
compared to the case with 10% of ones, while the minimal distance is
the same in both cases. This asymmetry is due to the way the class
label is selected at test time, where a majority voting procedure is
applied in which each output unit getting a value of I increments the
score of all classes it is associated with. In this setting, the higher the
number of ones in the output targets, the more connection weights end
up being involved in the decision process at test time. The classifier

20169th International Symposium on Turbo Codes & Iterative Information Processing

thus makes use of a finer features-output mapping in this case. With
too many ones however, e.g. 90%, the distance between codes
becomes too low which affects performance.

130,---.---_,----,_--�--_,----,_--�--_.--_,

120

llO
" � 100

�
'i5 � 90

E
� 80

"
ro 70 �

60

50

40
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

proportion of Is in output codes

Figure 3: Measured mean Hamming distance between generated
class codes depending on the proportion of ones.

4.2. MNlST - Shallow Network

The first test with the assembly codes defined in section 3.3,
applies the shallow network to the MNIST data-set. The goal of this
test is to compare the assemblies in similar settings, rather than
achieving a competitive result to the state-of-the-art. The results
indicate that Quintuplets are better than Grandmother cells and also
that Couples are better than Grandmother cells, but it is inconclusive
in the comparison between Couples and Quintuplets (less than two
misclassified images of difference on average between the best
networks of the two assemblies).

6.0

5.5

5.0

� 4.5

� 4.0

.l!i 3.5
"
rn
" :;: 3.0

2.5

2.0

iii iii
iii iii
f f
t t
iii iii
iii iii
f f
iii iii
iii iii

•

Number of parameters in millions

Figure 4: Results summary for a shallow network

on the MNIST data-set

4.3. MNIST - Deep Network

IG
25G
126G
SC
lC
6C
28C
10
50

Another test is conducted on the MNIST data-set, now trying to
emulate the results from [8]. It is summarized in figure 5. Despite
respecting the hierarchy of Quintuplets 2: Couples 2: Grandmother
cells, the results are too close to take any conclusions (less than one
image on average between 5Q and l26G).

4

288

0.90

0.88

0.86

� 0.84

� � 0.B2

<U :;:
0.80

0.78

0.76

0.0

iii 'Ii
iii iii
! !
t t
iii !
iii iii
! !
iii iii
iii iii

0.5 1.0 1.5 2.0 2.5

Number of parameters in millions

Figure 5: Results summary for a deep network

on the MNlST data-set

4.4. SVHN - Deep Network

IG
25G
126G
sc
lC
6C
28C
10
50

Finally, applying the deep network to the SVHN data-set allows
us to obtain more significant results than the ones obtained over
MNIST. SVHN is more difficult to classifY and has been less
extensively studied. The results respect the hierarchy drawn from
coding theory in section 2 (Quintuplets 2: Couples 2: Grandmother
Cells), with an average distance of 0. 11 % (� 26 images) between the
worst quintuplets network and the best couples network and 0.33% (�

85 images) between the worst quintuplets network and the best
grandmother cells.

15.8

15.6

� 15.4

�
"

t; E 15.2
"
rn
" :;:

15.0

14.8

Number of parameters in millions

Figure 6: Results summary for a deep network

on the SVHN data-set

iii iii IG
iii iii 25G
f f 126G
t t SC
iii ! lC
iii iii 6C
f f 28C
iji iji 10
iii iii 50

On both MNIST and SVHN. these results show the interest of
the quintuplets code which gives better performance than most other
output codes for a comparable number of parameters. The only case
where a code outperforms the quintuplets is the "special couples"
(SC) code of non-repeated couple cells clusters, which beats 5Q on
MNIST. It is also worth noting that the non-repeated couples perform
better than the repeated 28C on both data-sets.

20169th International Symposium on Turbo Codes & Iterative Information Processing

V. CONCLUSIONS AND PERSPECTNES

A way to represent categories in multi-class problems is
presented, that departs itself from the usual "grandmother cell"
approach. Experimental results show that an assembly of neurons
representing meta-classes can do a better job as output for a neural
network. On the widely studied MNIST data-set, we use as starting
point a multi-layer perceptron network that is close in performance to
the state-of-the-art, and show that the proposed assembly codes can
improve its accuracy. Furthermore, these results are in accordance
with predictions drawn from coding theory in that a higher minimal
Hamming distance between code words typically results in a better
training of the classitier. The comparison also holds when code
repetition is used to adjust the lengths of the outputs, so that all
compared networks have about the same number of parameters.

However one of the goals underlying this work is to combine deep
neural networks with clustered clique-based associative memories,
and the quintuplet contiguration which gives the best results here
would not be a good tit for this use. Indeed, even if it has a good
minimal distance, the resulting clique patterns would have too many
nodes in common. In this lO-class case, couple cells would be a good
trade-off with a high minimal Hamming distance and a good
suitability with Clustered Cliques Networks. Similar trade-off's may
also be found for higher-dimensional classitication problems.

A prospect of our ongoing work is also to be able to classify data
sets with a high number of classes. This way the compression power
of the clustered clique code may be exploited, which allows to support
a big dictionary of code words with a limited amount of material while
keeping a good word recognition ability. The assembly output deep
learner presented is a first step in this direction. Sets of images of
words are a very interesting application case as it can have tens of
thousands of categories.

ACKOWLEDGEMENT

The authors would like to thank NVIDIA for providing us with a
free graphics card allowing to speed up computations for the
experiments performed during this work. The software developed to
perform the simulations presented here was based on libraries Theano
[12] and Keras [13].

REFERENCES

[1] S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann,
"Review of classitier combination methods," In Machine Learning in

5

289

Document Analysis and Recognition, Springer Berlin Heidelberg, pp.
361-386, 2008.

[2] M. A. Bagheri, G. A. Montazer, and S. Escalera, "Error correcting
output codes for multiclass classification: application to two image
vision problems," In Artificial Intelligence and Signal Processing

(AISP), 2012 16th CSI International Symposium on, IEEE, pp. 508-

513,2012.

[3] 1. S. Bridle, "Probabilistic interpretation of feedforward
classification network outputs, with relationships to statistical pattern
recognition," In Neurocomputing, Springer Berlin Heidelberg, pp.
227-236,1990.

[4] V. Gripon and C. Berrou, "Sparse neural networks with large
learning diversity", IEEE Trans. Neural Networks, vol. 22, n° 7, pp.
1087-1096, July 2011.

[5] B. Kamary Aliabadi, C. Berrou, V. Gripon and X. Jiang, "Storing
sparse messages in networks of neural cliques," IEEE Trans. Neural

Networks and Learning Systems, vol. 25, nO 5, pp. 980-989, May
2014.

[6] J. 1. Arribas et J. Cid-Sueiro, "A model selection algorithm for a
posteriori probability estimation with neural networks" IEEE Trans.

Neural Networks, vol. 16, nO 4, pp. 799-809, July 2005.

[7] Y. LeCun, C. Cortes, and C. J. Burges, "The MNIST database of
handwritten digits," 1998.

[8] M. Pezeshki, L. Fan, P. Brake I, A. Courville, and Y. Bengio,
"Deconstructing the Ladder Network Architecture," arXiv preprint

arXiv:1511.06430_ 2015.

[9] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
"Reading digits in natural images with unsupervised feature learning,"
In NIPS workshop on deep learning and unsupervised feature

learning, Vol. 2011, Granada, Spain, p.4, 2011.

[10] D. Kingma, and J. Ba, "Adam: A method for stochastic
optimization," ar Xiv preprint ar Xiv: 1412. 6980, 2014.

[11] S. Ioffe, and C. Szegedy, "Batch normalization: Accelerating
deep network training by reducing internal covariate shift," arXiv

preprint ar Xiv: 1502. 03167., 2015.

[12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, 1. Goodfellow, A.
Bergeron, and Y. Bengio, "Theano: new features and speed
improvements," arXiv preprint arXiv: 1211.5590,2012.

[13] F. Chollet, "Keras: Theano-based deep learning library," Code:
https:llgithub. comlfchollet. Documentation: http://keras. io. , 2015.

