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Abstract-Establishing correspondences between image fea­
tures is a fundamental problem in many computer vision tasks. 
It is traditionally viewed as a graph matching problem, and 
solved using an optimization procedure. In this paper, we propose 
a new approach to solving the correspondence problem from 
a coding/decoding perspective. We then present an iterative 
matching algorithm inspired from the turbo-decoding concept. 
We provide an experimental evaluation of the proposed method, 
and show that it performs better than state-of-the-art algorithms 
in the presence of clutter, thanks to turbo-style decoding. 

I. INTRODUCTION 

The problem of finding correspondences between features 
of two images is fundamental to computer vision. Solving 
this problem would be of particular importance to a variety 
of vision tasks. This includes object tracking [1], object 
recognition [2], stereo matching [3] and other tasks. 

The basic idea is simple: given two images m and m', 

where m contains only one object b (the query object), we 
are interested in finding a possibly deformed instance b' of b 
in the image m', knowing that m' might contain other objects 
than the one in question. In order to achieve that, we take two 
sets of local image features V and V' representing m and m', 

respectively. Then, we search a mapping from V to V' that is 
injective. 

While mapping features based on the similarity among their 
descriptor vectors can give good matches in simple cases, this 
does not hold in more difficult situations where image m' is 
cluttered, which is very common in natural scenes. 

Considering geometrical consistency between features in 
addition to their descriptor similarity was suggested as a 
better way to achieve correct matching. For instance, in early 
methods such as RANSAC [4] and ICP [5], a solution is 
accepted only if the matched features in V' are constrained 
to some parametric transformation (e.g. epipolar or affine) 
of their counterparts in V. However, given that non-rigid 
transformations are very common in natural images, applying 
these parametric constraints becomes a limitation in such 
cases. 
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In order to take both feature similarity and their geomet­
rical proximity into account, including the case of non-rigid 
deformations, a class of methods were proposed in the last two 
decades that formulated feature matching as a graph matching 
(GM) problem; two graphs 9 = {V, £}, 9' = {V', £I} are 
constructed on the sets of features V and V' representing the 
graph nodes. Graph edges in £ and £1 are assigned values 
of some measure of geometrical proximity between pairs of 
nodes in V and V', respectively. Then we search the sub-graph 
of 9' that best matches 9 in terms of unary feature similarity 
and pairwise geometric consistency. 

This graph matching problem constrained to an injective 
mapping from V to Vi is known to be NP-hard. A whole 
class of methods proposed to approach it as a Quadratic 
Assignment Problem (QAP) [6]-[8], where an approximate 
solution can be obtained by optimizing a well-defined objec­
tive function. Some of these methods suggested an iterative 
approach to optimizing this objective function such as the max­
pooling matching (MPM) [9], spectral matching (SM) [10], 
re-weighted random walks (RRWM) [11], balanced graph 
matching (BGM) [12]. 

The main contribution of this paper is to propose an iterative 
matching algorithm, which uses turbo decoding principles as 
an inspiration [13], and provides a better matching accuracy 
of features in cluttered images. The turbo concept is used 
to enforce the injective mapping constraint at each iteration. 
Actually, the injective mapping constraint from V to V' implies 
two different constraints: (1) A feature Vi E V is allowed 
to match at most one feature in V' (by the definition of a 
mapping). (2) A feature v� E Viis allowed to match at most 
one feature in V' (injectivity constraint). Unlike conventional 
algorithms, we neither relax these constraints nor we enforce 
them both at the same time. Each iteration of the algorithm we 
propose enforces one of these constraints at a time. It alternates 
between them at each iteration until a good match is obtained. 

The rest of this paper is organized as follows. In section II 
we present the mathematical formulation of the matching prob­
lem in question, and we explain how it relates to coding theory. 
After that, in section III, we introduce our iterative matching 
algorithm inspired from the concept of turbo decoding. An 
experimental evaluation of the performance of the proposed 
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algorithm with a comparison with some of the state-of-the-art 
methods is provided in section IV, along with a discussion of 
the results. Section V is a conclusion. 

II. PROBLEM STATEMENT 

A. Formalism 

In this paper, we follow the graph matching approach (GM) 
to the correspondence problem. The objective is to match a 
query graph 9 = {V,E}, to a sub-graph of 9' = {V', ['}. We 
define an assignment matrix X E {O, 1 }nn' 

as in [10], where 
n = IVI and n' = IV'I. Elements of X are set as follows: 

if feature Vi matches v� , 

otherwise. 
(1) 

We also use an assignment vector x, which is a column­
wise vectorized copy of X. We define a unary affinity function 
Sv( Vi, V� ) to measure the similarity between two feature 
descriptors, and a pairwise affinity function S E (eij, e�b) that 
measures similarity between two edges eij E [ and e�b E ['. 
We use these functions to populate a unary affinity vector 
as Yja =;' Sv (Vi, v� ) , and a pairwise affinity matrix A E 
IR.nn Xnn : 

if i i- j and a i- b, 
otherwise. 

(2) 

An objective function is defined using the above affinity 
functions: 

x�ia=l 
xjb=l 

This is a known quadratic assignment problem (QAP) that 
can be written in matrix form as: 

f(x) = xT(A + diag(y))x, (4) 

where diag(y) is a square matrix that contains zeros every­
where except on its main diagonal where it holds the vector 

y. The solution to this problem can be expressed as the 
assignment vector x* that maximizes the objective function 

f(x): 

i* = arg max iT (A + diag(y) )i, 
x 

x* =z(i*), 
s.t. x* E {O, l}nn'

, i E [0, l]nn'
, 

and x* represents an injective mapping 

from V to V'. 

(5) 

(6) 

Notice that the constraint on x being discrete is relaxed 
during the optimization process, this relaxed version of the 
assignment vector is denoted i. Notice also that the objective 
function does not enforce the injective mapping constraint 
from V to V' we are seeking. This constraint is usually relaxed 
during the optimization procedure to reduce the complexity of 
the problem. 
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The final continuous assignment vector i* obtained is then 
discretized in (6) after applying a greedy or a Hungarian 
algorithm that enforces injective mapping and the discrete­
value constraints [9], [10], [14]. 

The algorithm we propose follows a different procedure; 
while x is allowed to be continuous during the process, 
the injective mapping constraint is not totally relaxed during 
optimization; they are enforced at each iteration, alternating 
between the mapping constraint and the injectivity one, until 
a satisfying solution is obtained. 

B. Relation to the Coding Theory 

One way to relate the correspondence problem to a cod­
ing/decoding procedure is illustrated in figure l. In this con­
figuration, the query graph 9 is treated as the transmitted 
codeword, and the destination graph 9' as the observation, 
which is viewed as a corrupted version of 9 due to the noisy 
transmission channel. 

Query 
graph 9 

Noisy 
transmission 

channel 

Observed 
graph g' 

Fig. 1: Feature matching viewed as transmission problem. 

The noise in the transmission channel is due to three 
different factors: 

• Spatial deformation of feature locations in V' compared 
to their counterparts in V due to all kinds of rigid and 
non-rigid object transformations. 

• The intrinsic ambiguity of the problem in some cases, 
where more than one matching solution might be pos­
sible. One good example is in the case of matching 
features having an equilateral triangular configuration in 
each image, with a pairwise affinity function SE(. ) that 
only considers relative positions of features. In this case, 
each feature in V can match any feature in V'. 

• The presence of outliers (clutter) which are features that 
do not belong to the objects we are trying to match. 

However, since we are seeking to find a match among graph 
nodes rather than to recover the graph 9 from the observation, 
a better way to build the transmission network is to take a 
ground truth assignment vector x as the transmitted codeword. 
The pairwise affinity matrix A and the unary affinity vector y 
are the observed variables as depicted in figure 2. Our objective 
is then to decode our observations in order to get the vector 
x* belonging to the constrained domain {O, 1 }nn': 

We are particularly interested in what happens inside the 
decoder in figure 2. The most common method in literature 
is to apply an optimization procedure to find i* as in (5). 
Then discretization is applied on that vector as in (6). In the 
next section, we will present our proposed decoding method 
inspired from the turbo decoding concept, and how it differs 
from classical methods. 
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Ground 
Noisy Observations 

truth x 
transmission A,y channel 

Decoded 1 
codeword x' <---------{ Decoder 

Fig. 2: The matching problem viewed as an error correcting 
problem of a codeword received through a noisy transmission 
channel. 

III. METHODOLOG Y 

The architecture of the decoding process we propose is 
depicted in figure 3. Here is a list of all signals manipulated 
and produced by that process: 

• The pairwise affinity matrix A. 
• The unary affinity vector y. 
• Relaxed assignment vectors x E [0, l]nn'. These vectors 

are called relaxed because they do not respect the injec­
tive mapping constraint. 

• Semi-relaxed assignment vectors x E [0, l]nn'. They are 
semi-relaxed because they partially enforce one of the two 
constraints; injectivity or mapping at each time. These 
vectors are sparse; most of their elements are set to zero. 

• The final assignment vector x*. The assignment described 
by this vector respects both the mapping and the injec­
tivity constraints. 

A 

y 

Fig. 3: The architecture of the proposed decoder. 

Decoder units 

Each decoder unit takes two inputs: the observation A and 
either the unary affinity vector y, or a semi-relaxed assignment 
vector x. The vector y is only taken by the first decoder in 
the first iteration. In all subsequent iterations, the vector x 
is used instead. The output of each decoder unit is a relaxed 
assignment vector x. This vector is computed as a max-pooled 
weighted sum of elements in A as follows: 

Xia +- Xia '" maXXjbAiajb. � bEV' ' 
jEV 

(7) 

This equation is applied by the first decoder. Notice that 
pooling is applied on elements in V' as in [9]. The second 
decoder applies max-pooling on elements in V: 

(8) 
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The operation applied by each of these decoders is akin 
to the power method used in spectral matching (SM) [10] 
to find the first eigen vector of matrix A. Max-pooling is 
added to discard irrelevant details while preserving necessary 
information as in [9]. 

kWTA units 

Each k-winner take all (kWTA) unit takes a relaxed as­
signment vector x as its input, and produces a semi-relaxed 
assignment vector x as an output. The first kWTA unit is only 
concerned about the mapping constraint. It 'encourages' the 
vector x to respect that constraint without strictly enforcing it. 
In other words, it reduces the number of matches in Va E V' 
that a single feature Vi E V can take. This is done by applying 
a kWTA operation as follows: 

maxaEV' Xia 
Xia +- Xiah(Xia - T ) , 

ViEV, aEV', 

(9) 

(10) 

where h(. ) is the unit step function and T is the kWTA 
activation threshold. 

The second kWTA units applies a similar operation for the 
injectivity constraint to reduce the number of features in V 
mapped to a single feature in V': 

Xia +- Xiah(Xia - T ) , 

ViEV, aEV'. 

(11) 

(12) 

Notice that the max function in (11) is applied across 
elements of V, while in (9), it is applied accross elements 
of V'. The output x of the second kWTA unit is used in the 
next iteration as an input to the first decoder unit. This iterative 
process stops when the vector x converges. At this point, the 
vector x will be used as an input to the WTA unit in order 
to compute the final output x*. However, since a theoretical 
guarantee for convergence is yet to be proved, we typically fix 
a maximum number of allowed iterations beyond which the 
process terminates. 

WTA unit 

The winner-takes-all (WTA) unit takes a semi-relaxed as­
signment vector x as an input and produces the final assign­
ment vector x* E {O, l}nn', which respects the injectivity 
mapping constraint. The first step is to zero all values in x 
that do not equal one, which is the maximal values in x: 

x* +- <5Xia 
w I ' 

Vi E V, a E V', 
(13) 

where <5 is the Kronecker delta. After that, each non-zero value 
Xia is set to zero if there exists at least one non-zero value 
of the form Xik or Xka different from Xia. By applying this 
procedure, the resulting assignment vector x is guaranteed to 
respect the injective mapping constraint. 
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IV. RESULTS AND DISCUSSION 

We use experimental evaluation to assess the performance A 
----->I 

A 
of our algorithm. A typical evaluation method used in feature 
matching literature is accomplished using synthetic datasets. y y 
We create two sets P and pI containing points in lR 2. Graphs 
9 and g' are created using P and pI, respectively. Each set 
contains two types of points: inliers and outliers. Inliers are 
points representing features that we are seeking to match. 
Outliers, on the other hand, are points that represent features 
that describe clutter or noise that we wish to ignore during the 
matching process. 

We randomly generate nin inliers with coordinates sampled 
uniformly from the interval [- 1 , +1], and we add them to P. 

(a) (b) 

We then add a Gaussian noise N (0, (J2) to each of these inliers A 
--------'----->I before adding them to the set P'. After that, we add nout 

outliers generated from the same distribution as the inliers to y 
each of P and P'. 

The unary affinity function is considered to be always 
constant Sv(Pi, p�) = 1 , while the pairwise affinity function 
is defined as follows: 

SE(eij, e� b) = exp( -lllpi - Pj II - Ilp� -p�III)· (14) 

Using a constant Sv(. ) represents a difficult case where 
matching depends only on the geomterical consistency of 
features. We set the kWTA threshold T = 0.98, which we 
found to give the best accuracy. Convergence of the algorithm 
is attained after 5 - 10 iterations in most cases. Therefore, the 
maximum number of allowed iterations is set to 10. 

We first evaluate the performance of the proposed model in 
the presence of outliers. We refer to the proposed model by 
the term 'turbo matcher' to emphasize the turbo-style decoding 
used. In all of our experiments, performance is measured in 
terms of accuracy, which is the percentage of the number of 
correct matches to the total number of inliers. 

80 
� 70 
� 60 
� 
B 50 
u 

\; " , 
" 

: -., 
« 40 ................ L .......... �.�.< .. 

30 =15+outlie;:: > � o 
n'= 15+ outliers 20 d�O.04 

Turbo matcher 
MPM 
RRWM 

o 5 10 15 20 25 30 
number of outliers 

Fig. 4: A comparison among models' accuracy in the presence 
of outliers. The number of outliers is varied for a fixed value 
of (J. The same number of outliers shown on the horizontal 
axis is added to both sets V and V'. 

In the first experiment, we fix the number of inliers to 
nin = 15 in both sets V and V', the standard deviation of 

229 

(c) 

Fig. 5: Other possible configurations of decoder and kWTA 
units. In (a) and (b), only one decoder and one kWTA units 
are used. In (c), both decoder units and kWTA units are used, 
but no alternation between constraints is involved. 

the Gaussian noise to (J = 0.04, and we vary the number of 
outliers in both sets as shown in figure 4. The accuracy of 
the proposed model is then compared to some state-of-the­
art matching algorithms including MPM [9], RRWM [11], 
IPFP [14] and SM [10]. We notice that the accuracy of 
the turbo matcher surpasses state-of-the-art by a significant 
margin, even when the number of outliers is twice the number 
of inliers. This robustness to outliers is a very interesting 
property since outliers in the form of clutter and noise are 
omnipresent in natural images. 

In a second experiment, we evaluate the performance gain 
offered by the alternating double-decoder scheme of figure 3. 
In other words, we try to answer the question of whether 
alternating between decoders is behind the performance gain 
we observe, or there exists other configurations that give a 
comparable performance. In order to do that, we compare the 
turbo matcher with three alternate configurations illustrated 
in figure 5: (1) in the absence of decoder#l and kWTA#l, 
(2) in the absence of decoder#2 and kWTA#2, (3) without 
alternation between the two constraints. In the later test case, 
two separate iterative phases are run consecutively. The first 
one includes decoder#l and kWTA#l which 'encourages' 
the mapping constraint. The second phase includes only 
decoder#2 and kWTA#2, and 'encourages' the injectivity 
constraint. 
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Fig. 6: Performance gain offered by turbo-style decoding. We 
show how turbo-style alternation between decoders gives a 
better accuracy than using only one decoder or using both 
decoders consecutively rather than in an alternating fashion. 

Figure 6 shows that enforcing both the mapping and the 
injectivity constraints, whether in an alternating or a non­
alternating fashion gives a better accuracy than using only one 
decoder unit with its associated kWTA unit. However, turbo­
style alternating between decoder units gives a better accuracy 
than enforcing constraints separately without alternation. 

The final experiment consists in fixing the number of inliers 
to 30 with no outliers. The parameter (J is then varied. The 
accuracy of the turbo matcher is evaluated, and compared to 
state-of-the-art for each value of (J. We notice in figure 7 that 
the turbo matcher gives a rather modest accuracy in this case 
outperformed by both IPFP and RRWM. However, as stated 
in [9]: while a better performance in the absence of outliers 
might be interesting in some situations, it is not a sufficient 
property from a practical point of view, since outliers are 
always present in natural images. In such cases, robustness to 
outliers is an indispensable property for matching algorithms 
to be equipped with. 

90 n�30 
n'=30 

� 80 Nooutliers 
>­u 
� 70 
u u 
« 

60 

50 

0.00 

Turbo matcher 
MPM 
RRWM 
IPFP 
SM 

0.02 0.04 0.06 
Gaussian noise a 

0.08 

Fig. 7: A performance comparison in the absence of outliers. 
The standard deviation (J of the Gaussian noise is varied, and 
accuracy is evaluated at each step. 

230 

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented a new way to view the fea­
ture correspondence problem as a coding/decoding procedure 
inspired by turbo principles. We showed that by using an 
iterative approach that enforces each of the problem constraints 
separately but in an alternating fashion, we obtain a better 
performance in the presence of outliers. In future work, it 
would be interesting to suggest a theoretical analysis of the 
convergence of the proposed iterative algorithm. It would also 
be interesting to provide a performance evaluation of the turbo 
matcher on natural images, and to propose a more elaborate 
way of enforcing the injective mapping constraint in the WTA 
unit. 
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