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Abstract-This paper deals with the modelization of synaptic 
pruning in the developing brain, at the informational level. 
Relying on the hypotheses of clique-based memory and Hebbian 

learning, we consider several scenarios to try to understand how 
reliable point-to-point communication may be achieved in the 
cortex whereas at birth, neurons are connected to a multitude 
of other neurons, similar to a connection of broadcast type. It is 
shown that quasi-perfect transfer of information can be obtained 
in a plausible way using simple rules if a mechanism of synaptic 
normalization is implemented at the receiver side. 

I. INTRODUCTION 

At the informational level, the mature brain may be seen as a 

network composed of several hundred modules according to a 

small-world organization [1]. This arrangement as well as the 

setting-up of communication channels between the modules 

is the result of both neurogenesis (genetic programming) and 

cerebral plasticity all along the lifetime. At birth, almost all 

the neurons that will be used during the life are already 

present but the pre-established connections have no cognitive 

signification as learning has not really started out. The brain 

will acquire and memorize myriads of pieces of information 

thanks to the modification of these connections which will be 

reinforced or weakened. Recent experiments [2] have shown 

that synaptic strengths, which are the intensity of connections 

between neurons, may be spread out by a factor of 105 in 

mammalian brains. 

Whereas many studies have been done about the way 

information is materialized and stored in the brain, so far 

little work has been devoted to the problem of communi­

cation between modules. Many questions arise when trying 

to understand this communication: the kind of encoding and 

modulation, the length of messages, the role of oscillations 

and time [3] (for instance, is spiking modelization necessary 

to explain information transfer or is it sufficient to consider 

binary signaling?), the type and level of noise, etc. [4]. In par­

ticular, if we assume that cortical modules actually exchange 

messages in a similar way to telecommunication networks, 

the transmission of a given message must be reproducible, 

that is, the same neurons must be involved in both sides of 

the channel each time it is transmitted. In the first years of 

childhood, the receiving neurons are not fixed and stabilized 

within a module. The supernumerary connections make the 

situation rather broadcast-like than point-to-point transmission 

towards this module and therefore many connections have to 

be discarded to ensure reliable communication. 
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In this paper we are interested in understanding how content 

stored in a local module of the brain, through assemblies of 

neurons, can be mapped to that of another module, despite 

the fact that long distance connections are initally broad. 

The removing or weakening of useless connections, so-called 

pruning in the neuroscience field (see [5], [6] for instance), 

may be analyzed with very simple hypotheses when consid­

ered at the informational level. Relying on clustered clique­

based representation of information [7] and binary signaling, 

we show that pruning can be efficiently implemented using 

three fundamental rules: Winner-Takes-All, Hebbian rule and 

normalization. As already shown in [8] with a more complex 

model, synaptic normalization is essential to the efficacy of 

pruning. 

We first present the neural clique network model in section 

II, which we consider to be the local memory model in 

each module. Then we attack the problem in itself in section 

III: how to structure connections between two such modules 

in order to be able to transfer information with maximum 

efficiency (later defined), while using simple rules to be 

biologically plausible? Finally we offer a conclusion which 

sums up how reliable transmission of data between two cortical 

areas or modules can be achieved, thanks to synaptic pruning. 

II. NEURAL CLIQUE NETWORKS 

Associative memories are devices in which a stored piece 

of information can be addressed from part of it, as opposed to 

classical index-based memories in which an explicit address 

is required. Because of their ability to associate contents, 

they are considered a realistic model for brain memory. The 

most prominent model of associative memories was introduced 

by John Hopfield in 1982 [9], despite the fact that other 

models [10] are known to provide better efficiencies [11]. 

Recently, a novel family of associative memories has been 

proposed [12], [13], termed neural clique networks. This 

model improves existing ones by making use of error correct­

ing techniques inspired by the functioning of the neocortex. 

Formally, consider a finite alphabet A. We call message of 

length c over A a vector mE A  c. We denote by mi the 

i-th symbol of m. Neural clique networks are able to store 

messages then retrieve them from part of messages with high 

probability as long as there are not too many stored in the 

network. The retrieval process can be seen as a decoding 

process. 

The idea is to use a neural network made of c parts (or 

clusters) containing f!. = IAII, units each. Therefore it is 

possible to index clusters from 1 to c and units in each cluster 

'The cardinal of A. 
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from 1 to R such that each umt IS uniquely determined by 

a pair (i, j) where 1 ::; i ::; C and 1 ::; j ::; R. We call 

representation of a message m in the neural network the set 

of units {( i, mi ) , 1 ::; i ::; c}. In order to store a message, all 

pairs of units in its representation are connected, embodying a 

clique in the neural network. An already existing connection 

in the network is not strengthened by the accumulation of 

messages: connections are binary. Figure 1 depicts the storage 

procedure in a toy network made of 4 clusters containing 16 

units each. 

• • • • • • • •  

Figure 1. Storing procedure illustration. The pattern to store (with thick edges) 
connects units from 4 clusters of 16 units each (filled circles. filled rectangles. 
rectangles and circles). 

Once multiple messages have been stored, the authors 

propose an iterative procedure that aims at retrieving them 

from part of their content. Formally, let us consider a stored 

message m, from which part of its symbols are missing. The 

units in the representation of m that correspond to the non­

missing symbols are activated. The iterative procedure iterates 

two steps [14]: 

1) Computing a score for each unit in the network. Typi­

cally the score of a unit is the number of activated units 

it is connected to. 

2) Selecting which units to activate for the next step 

depending on their score. Typically selected units are 

those that achieve the maximum score in their cluster. 

Inhibiting neurons other than the highest scoring one amongst 

a group of neurons is also referred to as Winner-Take-All 

(WTA) [15]. This process iterates until a stopping criterion 

is reached (in practice a few iterations are often enough) [13]. 

As an example, a network storing messages of 8 bytes would 

be made of 8 clusters of 256 units each, for a total of 2048 

units. To each byte value and position in the message would 

correspond a single unit. Storing a message of 8 bytes would 

create complete interconnections between the 8 corresponding 

units in the network. Then it is possible to test if a message 

is stored by checking if the corresponding units are fully 

interconnected, or to recover a message from part of its bytes 

using the decoding algorithm. 

It is possible to estimate the error probability in success­

fully retrieving previously stored messages when those are 

207 

uniformly and independently distributed. First, the probability 

that a connection between units (i,j) and (i',]') (i i= it) 
exists, called density, is [13]: 

d = 1 - (1 - R-2)M , 

where M is the number of stored messages. Then, considering 

connections to be independent (proved bounds have been 

introduced in [16]), what the authors argue to be a reasonable 

assumption as supported by simulations, this density leads to 

the error probability of retrieving a message when Ce of its 

symbols are missing [13]: 

From this equation, it is seen that for a given Ce and Pe, 
with C and R tending to infinity, the number M of messages 

stored grows quadratically with R if R is small compared to 

d-c. 
Neural clique networks are known to perform better than 

other existing models [16]. Noticeable improvements have 

been proposed in order to allow storage of sparse mes­

sages [17] and temporal sequences [18]. 

Biologically, each unit of a neural clique network is con­

sidered to be a minicolumn [17] which is a group of dozens 

of neurons with a few axons going outside the network [19]­

[21]. As such, in the following of the paper we refer to the 

units of the neural networks as neurons. In the neural clique 

network model, they correspond to one of the few neurons of 

the minicolumn with connections outgoing from the network 

or incoming from outside the network. 

III. SYNAPTIC PRUNING 

In this section we offer a biologically plausible way to 

achieve one-to-one communication between neurons of two 

neural networks, in order to be able to transmit data efficiently. 

There are several ideas involved including Hebbian Learn­

ing, Winner-Take-All and synaptic normalization, which are 

gradually introduced in order to show their influence. During 

the process, the connection weights between the two networks 

naturally become binary from their initial floating value. 

We study this process in the context of neural clique 

networks, but it is similarly applicable to any two neural 

networks, or layers of neural networks, as long as the Winner­

Take-All operation on the target network is available during the 

process. The motivation is to be able to transmit information 

as-is from a local module of a brain area to that of another, 

and enable communication between those two modules. This is 

helpful in architectures composed of multiple neural networks, 

as each group of networks can communicate efficiently with 

others and separate long-distance communication from local 

computation. 

A. Communication Model 

Consider two modules A and 8, both individually behaving 

as neural clique networks. They are comprised of C clusters 
containing R neurons each, behaving in the same way as 

individual clusters from neural clique networks in the sense 
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that they provide a Winner-Take-All mechanism, referenced 

later in this paper as WTA. WTA allows only one neuron 

per cluster to be active at any given time, the neuron that 

is stimulated the most. 

Let us denote Ca, a E {I, . . .  , c} the clusters of A and c� , bE 
{I, ... , c} the clusters of 5. 

A neuron Ua,i, i E {l, . . .  , Ji} of Ca is originally connected 

to multiple neurons of c/" the corresponding cluster in 5. 
It isn't connected to other clusters of 5, as the biological 

counterpart's axon has a spreading limit. The connections 

have random weights between 0 and 1 following a truncated 

Gaussian distribution centered in 0.5. 

When considering a single pair of corresponding clusters 

of A and 5, the neurons from those clusters are denoted 

ui,i E {I, . . .  ,Ji} and Vj,j E {I, . . .  ,Ji}. The connection weight 

between those neurons is denoted wi,j. 
Our goal is, from those initial conditions, to be able to 

transfer cliques from A to 5 with minimal loss in performance. 

We will measure performance by seeing whether cliques 

transferred from A to 5 offer the same erasure-recovering 

properties, and to which extent. 

In order to achieve our goal, we want to transform the 

initially varied, broadcast connections between clusters into 

point-to-point connections where one neuron of a cluster of A 
is only connected to one neuron of the corresponding cluster 

of 5. Then, data can be transferred or copied from A to 5 
more efficiently. 

Uo =-----------:::2 Vo 

U3 =-----------'� V3 

Figure 2. Original state: multiple point to point connections. The figure 
only shows 4 neurons of a pair of corresponding clusters Cl and c� . The 
connections have each different random weights between 0 and l. 

B. Same size clusters 

We use the principle of Hebbian Learning [22] by which 

connections that are used are reinforced and connections that 

prove not useful have their weight decreased. We also take a 

pair of clusters, Cl and c� as examples, but we can generalize 

the same operations to all clusters. 

We activate a neuron Ui from Cl. All neurons from c� are 

stimulated depending on the weight of their connection to 

Ui. Let's call Vj the neuron from c� that has the strongest 

connection to Ui. Because we apply WTA to c� , only Vj 
is activated while the other neurons of c� stay silent. Thus, 

because of Hebbian Learning the connection between Ui and 

Vj is strengthened while the connections between Ui and the 

other neurons of c� are weakened. By repeating this a number 

of times, Ui is only connected to Vj, and by extending this to 

other neurons of Cl each neuron from Cl is associated with 

one neuron from c� . 
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However, as seen in Figure 3, a neuron of c� can be 

associated with multiple neurons of Cl, and some neurons of 

c� are associated with no neurons of Cl at all. The probability 

for a neuron of c� to not be associated with any neuron of Cl is 

(1 - :D £, and as such only approximately Ji ( 1 - (1 - i) £) 
neurons of c� are connected to neurons of Cl. 

Figure 3. Example of non-optimal association between Cl and c� , where 
multiple neurons of c� may be associated with one neuron in Cl. 

For example with Ji = 256, there are only 63% of neurons 

used in c� , while the other neurons have no functionality 

whatsoever. 

As the capacity of neural clique networks is quadratic 

compared to the number of neurons in a cluster, there is a great 

loss of capacity in 5 if it only learns data from clusters of A. 
As such in a network with 256 neurons per cluster, there is a 

capacity loss of more than 60% for 5 when learning cliques 

from A2. Moreover, in addition to there being less neurons 

available, there is also correlation introduced by neurons from 

c� sharing a neuron in Cl. 

C. Larger target clusters 

We try another model where the clusters from 5 are 

originally of size r . Ji with r E JR, r � 1, as opposed to 

being the same size as clusters from A. 
The probability for a neuron of c� to not be associated with 

any neuron of Cl is (1 - -h) R. In Figure 4 the average number 

of neurons in c� connected to at least one neuron in Cl for 

Ji = 256 is shown as a function of r. This figure shows that 

relatively small values of r lead to one-to-one mappings for 

a large proportion of input neurons, but obtaining it for all 

neurons is not achieved even for large values of r. This fact 

motivates for improved strategies in the following subsections. 

After the association is done, we can remove or use the non­

connected neurons from c� for something else, thus alleviating 

the cost of having more neurons. This is similar to biology 

where neurons that are not used are pruned or reallocated. 

That way, although the clusters from 5 initially contain more 

material than those of A, in the end approximately the same 

amount of material (neurons) is used in both modules. 

D. Cliques performance 

In the previous subsection we focused on measuring how 

close to one-to-one the obtained mappings were. Regarding 

our motivation, it is more interesting to look at the impact of 

this process on information retrieval. Specifically, we stress 

2As 0.632 = 0.3969, the maximum capacity of B compared to A is a bit 
less than 40%. 
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Figure 4. For e = 256, the average final number of neurons of c~ connected 
to Cl depending on the initial ratio r of the size of c~ compared to that of 
Cl· 

the probability to retrieve a clique in 5, considering these 
cliques have been transferred from A through our proposed 
lossy communication scheme. 

We first proceed with Hebbian learning to structure the 
connections between A and 5. We then transfer cliques onto 
5 using the point-to-point connections between the clusters of 
both modules. 

Specifically, for each clique, we activate it in A , which will 
then activate the corresponding neurons in 5 depending on the 
connections between A and 5. We maintain that state in A 
for several iterations. Plasticity, and more specifically Hebbian 
learning, creates the local connections in 5, thus providing it 
with the same error-correcting properties as A. 

We then perform a test: we only activate part of the neurons 
of a previously learned clique in 5, and see if the clique can be 
recovered in the network. Multiple values of r are considered. 
The test is also performed in A as reference. 

1.0 

original 
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:: 0.5 
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Number of learnt messages (M) 

Figure 5. For e = 256 and C = 8, the error rate in retrieving half-erased 
messages from cliques learned from A in B. original shows the error rate in 
A. 
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From Figure 5, it is seen that to obtain acceptable perfor­
mance in 5 compared to A at least 20 times the original 
material is needed, wh ich is a lot to ask for. Despite that, there 
is still a significant loss of performance. We can surmise that 
there is a more guided behavior than mere random Hebbian 
Learning where biology is concerned. It is worth noting that 
the rate of Hebbian learning has no influence on the results in 
the present conditions, as for any neuron of A, the neuron of 
5 with the strongest connection to it will never change . 

E. Limited spreading 

We introduce a modification to our model: instead of 
initially having each neuron from one cluster connected to 
each neuron from the corresponding cluster, we introduce a 
parameter s E fij* which is the number of neurons of 5 a 
neuron from A is initially connected to. 

Limiting the number of connections to a reasonable initial 
value reduces the material used and the complexity of the 
problem. As such, the initial condition is that a neuron of A 
is connected to s random neurons of 5 with weights following 
a (truncated) Gaussian distribution between 0 and 1, centered 
in 0.5. Results previously obtained, including Figure 5, do not 
change by introducing this parameter. 

F Normalization 

We introduce normalization [8] as weH as a learning rate c, 
wh ich we now use for both the Hebbian learning process and 
the normalization process. 

The Hebbian learning process is as such: Let Ui be an active 
neuron from A and Vj the corresponding neuron in 5 with the 
strongest connection to Ui . Then, W i ,j = W i, j + c(l - W i, j) 

and Vk i- j , W i, k = w i, k(l - c). 
The normalization process is symmetrical to the Hebbian 

learning process: Vk i- i , Wk ,i = wk ,i (l - c). It can be 
described biologicaHy as the receiving neuron favouring one 
synapse in particular, the one just activated, by reducing the 
weights of the other synapses according to the learning rate c. 

A rate of c = 1 corresponds to a fast, or instant selection 
of the strongest connection, discarding the other connections 
from both sides and creating abilateral, unique point-to-point 
connection. 

As the normalization process is gradual and neurons from 
a same cluster in A can now affect each other's connections 
as they are connected to common neurons in 5, we do the 
normalization and Hebbian learning process by activating 
cliques from A one after the other. When the connections 
are stabilized, wh ich doesn't need multiple iterations over the 
whole number of cliques, we then transfer the cliques from A 
to 5 . 

Table I shows the impact of different learning rates when 
r = 1 for a standard neural clique network, the results have 
been obtained by performing 40000 tests for each value of the 
learning rate c. The number of useful neurons is the average 
number of neurons in 5 per cluster that participate in learning 
cliques from A. We see that the learning rate has a decisive 
impact on the performance, with higher learning rates offering 
much better performance. 
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E Useful neurons in B (per cluster) Error rate for 15000 cliques 
0.1 173.28 0.999 
0.2 202.63 0.916 

0.3 222.59 0.552 
0.5 244.57 0.070 

0.99 251.68 0.024 

Table I 
IMPACT OF TH E LEAR NING RATE E O N PERFORMANC E FOR NETWORKS O F 

8 CLUSTERS OF 256 NEURO NS E ACH, WITH S = 20 AND r = l. 

l.0r;::::=======:::::;------r----::? ..... -.".-"""":;l;::=a=--, 
original 

0.9 

0.8 

0.7 ........ 

0.6 

0 .3 

0 .2 

0 .1 

r=l, slow learning 
r=l, fast learning 
r=2, slow learning 

Number of learnt messages (M) 

Figure 6. For C = 256 and c = 8, shows the error rate in retrieving half­
erased messages from cliques learned from A in B. original shows the error 
rate in A. Slow learning corresponds to E = 0.2. Fast learning corresponds to 
E = 0.99. Each neuron of Ais initially connected to S = 20 random chosen 
neurons of B from the corresponding cluster. 

Simulations with normalization and connections initially 
reduced in range are performed and shown in Figure 6, where 
A is a neural clique network with 8 clusters of 256 neurons 
each. As seen, normalization achieves much better results than 
simple Hebbian learning wh ich is shown in Figure 5. With 
slow normalization and r = 5 or fast normalization and r = 2, 
the goal is achieved as the performance is the same as in the 
original network, which is denoted by the dashed curve. 

Lirnited spreading helps to reduce complexity and be more 
plausible biologically but the parameter s = 20 in fact reduces 
performance, slightly better performance would be obtained 
with initially fully interconnected neurons (s = rC). 

IV. CONCLUSION 

We have studied how reliable communication can be estab­
lished in the brain between two cortical areas, and shown how 
two neural networks can stabilize point-to-point connections 
from one network to another. Non-trivial remote neuron pair­
ing is attained by the use of simple local rules such as Hebbian 
learning [22], normalization [8] and clusterized Winner-Take­
All. They are used to transform initially broad connections to 
focused, point-to-point connections. Those three rules achieve 
reliable synaptic pruning, and with an initially slightly more 
dense destination cortical area wh ich can later be pruned of its 
useless neurons, perfect transmission of data can be achieved 
between two similar neural networks. The impact of using 
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different normalization processes such as Sinkhorn 's [23] on 
performance can be studied in a future work. 
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