
J Stat Phys (2016) 164:105–129
DOI 10.1007/s10955-016-1530-z

A Comparative Study of Sparse Associative Memories

Vincent Gripon1 · Judith Heusel2 · Matthias Löwe2 ·
Franck Vermet3

Received: 16 November 2015 / Accepted: 22 April 2016 / Published online: 14 May 2016
© Springer Science+Business Media New York 2016

Abstract We study various models of associative memories with sparse information, i.e.
a pattern to be stored is a random string of 0s and 1s with about log N 1s, only. We com-
pare different synaptic weights, architectures and retrieval mechanisms to shed light on the
influence of the various parameters on the storage capacity.
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1 Introduction

Starting with the seminal paper [7], Gripon, Berrou and coauthors revived the interest in
associative memory models, see e.g. [1,11–13]. Their approach is motivated by both bio-
logical considerations and ideas from information theory and leads to a neural network that
is organized in clusters of interacting neurons. They state that their model (which we will
refer to as the GB model) is more efficient (see [7]) and has by far a larger storage capacity
than the benchmark model for associative memories, the Hopfield model introduced in [9].
Indeed, their considerations lead to a storage capacity of the order N 2/(log N )2 messages (or
patterns or images; these words will be used synonymously) for their model with N neurons,
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while the standard Hopfield model with N neurons only has a capacity of N/(2 log N ) (see
[4,19]).

However, the standing assumption of the GB model is that for N neurons there are c
clusters of neurons with 1 ≤ c ≤ log N , and each message to be stored has only exactly
one active neuron per cluster. This not only leads to a restriction on the number of storable
messages, but also to them being very sparse (where sparsity is defined by a small number of
active neurons). As amatter of fact, for sparsemessages othermodels of associativememories
have been proposed byWillshaw [24], Amari [10], Okada [20], or [2,8,16]. All these models
have in common that their storage capacity is conjectured to be much larger than that of the
Hopfield model. TheWillshawmodel has also been discussed in a number of papers by Palm,
Sommer, and coauthors ([21–23] e.g.), with the difference that there the focus is rather on
information capacity than on exact retrieval (and thatmany of the techniques are not rigorous).
In [16] it has been rigorously proven for a sparse three-state network, the so called Blume–
Emery–Griffiths model, that the capacity is indeed of the predicted order (even though there,
strictly speaking the degree of sparsity is not allowed to depend on the number of neurons).

A natural question is thus to separate the various factors that can influence the storage
capacity of amodel: the sparseness of themessages, the storagemechanism, and the algorithm
to retrieve the stored patterns. The objective of the present article is to analyze this question.
To this end we will try to give bounds on the storage capacity of theWillshawmodel, Amari’s
version of a sparse 0–1 Hopfield model, and the GB model. In particular, we will see that
all these models achieve a storage capacity of the order of N 2/(log N )2 when the number of
active neurons c satisfies c = a log N for some positive a. Also we will discuss the influence
of model specificities to the absolute constants in the storage capacities.

More precisely, we organize our article in the following way. In the next section, we
describe the three models we aim at studying and formally define what is meant by “storing
a message”. In Sect. 3 we give some insight why an order of N 2/(log N )2 for the number
of stored messages is to be expected in a model with N neurons, of which about only
log N are active. To this end we consider a certain event in the GB model that implies that
a message cannot be retrieved correctly. In the fourth section we state our main results.
These are proved in Sect. 5. Section 6 takes up ideas from Sect. 3 to show, that if the
number of messages is too large, an erased message cannot be completed correctly in the
GB model. Finally, Sect. 7 discusses some dynamical properties of the considered models
and contains some simulations, in particular on the probability to correct an error in several
steps. These probabilities are notoriously difficult to access analytically (see e.g. [5,17,18]).
The simulations give an impression of the advantages and drawbacks of the several models.

2 The Models

We will now present the models that are in the center of our interest in the present paper.
The reference model is always the Hopfield model on the complete graph (i.e. all neurons
are interconnected), with M patterns (ξμ)μ=1,...M = (ξ

μ
i )

μ=1,...M
i=1,...N ∈ {−1,+1}N×M . Here

the so called synaptic efficacy Ji j is given by

Ji j =
∑

μ

ξ
μ
i ξ

μ
j 1 ≤ i �= j ≤ N

and an input σ ∈ {−1,+1}N is transformed by the dynamics
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Ti (σ ) = sgn

⎛

⎝
∑

j �=i

Ji jσ j

⎞

⎠

where sgn is the sign function (and the sign of 0 is chosen at random). This update can happen
either synchronously or asynchronously in i . In [19] it was shown that for unbiased and i.i.d.
random variables ((ξ

μ
i )i=1,...N )μ=1,...M and M = c N

log N with c < 1
2 , an arbitrary message is

stable under the dynamics with a probability converging to one. Of course, this model can be
generalized to i.i.d. biased patterns with expectation a. In [15] the author suggests to replace
the synaptic efficacy by Ji j = ∑

μ(ξ
μ
i − a)(ξ

μ
j − a) and shows that the storage capacity

(in the sense that an arbitrary pattern is a fixed point of the above dynamics) decreases for a
strong bias. More precisely, he gives a lower bound on the storage capacity of the Hopfield
model with biased patterns of the formCp2(1− p)2N/ log N , whereC is an explicit constant
that depends on the notion of storage capacity used and p is the probability that ξ11 equals
+1. Note that this behaviour is amazingly similar to the behaviour of Hopfield models with
correlated patterns, cf. [14]. Another model for biased ±1-patterns was proposed by Okada
[20].

However, if we think of the bias as a certain sparsity of the patterns, it may be more natural
to consider patterns (ξμ)μ=1,...M where the (ξ

μ
i ) still are i.i.d. but take values 0 and 1 where

P(ξ
μ
i = 1) = p is small. We will henceforth consider such patterns and three such models.

2.1 Amari’s Model

The model Amari proposed in [10] is closest in spirit to the Hopfield model. Here we take
Ji j = ∑

μ ξ
μ
i ξ

μ
j andwith this new setting, we consider input spin configurations σ ∈ {0, 1}N

and map their spins to either 0 or 1 with the help of a dynamics. Of course, one should only
map an input spin σi to 1, if the so called local field

∑
j �=i Ji jσ j is large enough, say larger

than a given threshold. To compare Amari’s results to the other models we choose

P(ξ
μ
i = 1) = p = log N

N
.

As a matter of fact, this is the case of extremely diluted patterns, since if p is even smaller,
say p = c/N for some c, with positive probability some of the patterns will entirely consist
of 0’s and will thus be indistinguishable.

We propose the following dynamics, where a spin σi will be 1, if the so called local field

Si (σ ) =
∑

j �=i

Ji jσ j

is large enough, say larger than a given threshold.

Ti (σ ) = �(Si (σ ) − h)

where �(x) = 1{x≥0} and we choose h = γ log N for some γ > 0. Note that this seems
a reasonable choice if we want the (ξμ) to be fixed points of the dynamics. Consider for
example the case ξ1i = 1 we have that

∑

j �=i

Ji jξ
1
j =

∑

j �=i

ξ1j +
∑

μ�=1

∑

j �=i

ξ
μ
i ξ

μ
j ξ1j

and the first term on the right hand side is of order log N . Also note that Amari just considers
the case of a fixed number log N of active neurons per message (which is similar), and states
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that the above model would perform much worse in the case we consider. We will see that
this is not the case.

2.2 The Willshaw Model

The following model was proposed in a celebrated paper by Willshaw [24]. It corresponds
to Amari’s model with the restriction that the efficacy Ji j does not depend on the number of
messages that use neurons i and j but just on whether there is any μ with ξ

μ
i ξ

μ
j = 1. In the

case of the Hopfield model this procedure is known as “clipped” synapses.
Formally, we will now either assume that the (ξ

μ
i ) are i.i.d 0 − 1 random variables with

success probability p = log N
N or we take the M messages to be realized uniformly at random

from all sets of M messages with exactly c = log N active neurons. Both cases are similar,
but the first one is mathematically more convenient, because in this case the images as well
as all their spins are independent. Moreover, in the Willshaw model we choose

Ji j = �

(
∑

μ

ξ
μ
i ξ

μ
j − 1

)
=
{
1 if ∃μ : ξ

μ
i ξ

μ
j = 1

0 otherwise,

for all i, j ∈ {1, . . . , N }. There are two different (yet similar) types of dynamics to be
considered. The first one is the threshold dynamics also considered in Amari’s model. So
again for an input σ ∈ {0, 1}N we set

Ti
(
σ) = �(S̄i (σ ) − h

)

with S̄i (σ ) = ∑
j Ji jσ j and h = γ log N , for some γ > 0. This dynamics is applicable to

both types of patterns (i.i.d. random variables (ξ
μ
i ) or randomly chosen messages amongst

all sets of M messages with exactly c active neurons). For the Willshaw model, we consider
S̄i instead of Si (σ ) = ∑

j �=i Ji jσ j , since simulations support that it improves performance to
modify Si in order to account for self influence of neurons. This modification is well known
and will be referred as “memory effect”.

In the latter case of exactly c active neurons per message and themessages being randomly
chosenmessages amongst all sets ofMmessageswith exactly c active neurons there is another
retrieval dynamics that requires the knowledge of all the S̄i (σ ) for 1 ≤ i ≤ N . In this setting,
for a given input σ ∈ {0, 1}N we compute all the S̄i (σ ) and order them: they will be denoted
by h(1) ≥ h(2) ≥ · · · ≥ h(c) ≥ · · · ≥ h(N ). Then we set all neurons i with S̄i (σ ) ≥ h(c) to 1
and the others to 0. Note that in case of a tie we may obtain more than c 1’s after a step of
the dynamics. This procedure was called “Winner takes all”-algorithm (WTA algorithm, for
short) in [13] in a model that is closely related to the following cluster model.

Similarly, we may as well imagine that c is fixed but we do not know it. In this case
we could just take the most active neurons, i.e. set all neurons with a value S̄i (σ ) lower
than h(1) to 0. Interestingly, if we consider as input a partially erased version ξ̃ μ of a stored
message ξμ, for the one step retrieval we consider theoretically in Sects. 4 and 5, this does
not change anything as long as we consider the memory effect described above, since in this
case h(1) = h(c). This is because h(1) cannot be larger than the number of initial 1’s in the
dynamics input and this upper bound is reached for at least all the neurons that are active in
the message ξμ we are looking for. Considering the performance of the model with several
steps of the retrieval dynamics numerically, however, shows that the above threshold h(c) is
superior to a threshold h(1). As a matter of fact, the dynamics using h(1) as threshold does
not benefit from performing more than one iteration (see Theorem 7.4).
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On the other hand using h(c) allows for improvement over the time. Also note that the
WTA algorithm with h(1) as threshold can be applied in the case where the (ξ

μ
i ) are i.i.d

0 − 1 random variables with success probability p = log N
N , as will be proven in Sect. 4.

2.3 The GB Model

Herewe assume that N = l log l =: l ·c for some l. One tries to storeM messages ξ1, . . . , ξM

in a network with a block structure. The messages are sparse in the sense that each message
ξμ has c active neurons, only, one in each block of l neurons. To take into account the block
structure, we will denote by (a, k) the k-th neuron of the a-th block.

For a �= a′, an edge e = ((a, k), (a′, k′)) is said to be active for the message ξμ if
ξ

μ

(a,k)ξ
μ

(a′,k′) = 1. Let

E ((ξμ)μ=1,...,M
) := {

e : e is an active edge of one of the ξμ
}
.

We can also define the graph associated with or spanned by an arbitrary message ξ0.
This will be the (necessarily complete) graph with all vertices (a, k) such that ξ0(a,k) = 1

and edges e = ((a, k), (a′, k′)) for all a, a′, k, k′, a �= a′ such that ξ0(a,k)ξ
0
(a′,k′) = 1. Then a

message ξ0 is considered to be stored in the model if all edges of this complete graph spanned
by ξ0 are present in the set of edges E((ξμ)μ=1,...,M ).

Similar to the Willshaw model, we define the synaptic efficacy by

W(a,k),(a′,k′) = �

⎛

⎝
M∑

μ=1

ξ
μ

(a,k)ξ
μ

(a′,k′) − 1

⎞

⎠ .

Thus for a �= a′ W(a,k),(a′,k′) = 1 if and only if (a, k) and (a′, k′) are activated simultaneously
in one of the messages (both in the same message). On the other hand, for a = a′ we have
W(a,k),(a,k′) = 1 if and only if k = k′ and there exists μ such that the k’th neuron in block
a is 1. As a matter of fact, this description shows that the major difference to the Willshaw
model is that in the GB model one has a restriction of the location of the 1’s.

With this synaptic efficacy one can associate a dynamics T on ({0, 1}l)c : instead of the
local field Si (σ ) of the preceding models, we define

S(a,k)(σ ) =
c∑

b=1

l∑

r=1

�
(
W(a,k),(b,r)σ(b,r) − 1

)

for σ ∈ ({0, 1}l)c, and the dynamics

T(a,k)(σ ) = �(S(a,k)(σ ) − h).

Here again h is a threshold that needs to be adapted to the tasks we want the network to
perform. E.g., choosing h = c one readily verifies that all stored messages ξ ∈ M =
{ξ1, . . . , ξM } are stable, i.e. we have T (ξ) = ξ. Obviously, this can only go to the expense
of error tolerance of the network.

The dynamics described above is the equivalent of the threshold dynamics in theWillshaw
model. As in the latter model, we can also define a WTA algorithm. This will respect the
local nature of the GB model. To describe it, assume we want to update the values of the
neurons in the a’th cluster σ(a,k), k = 1, . . . , l. For each k = 1, . . . , l we then build
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s(a,k)(σ ) =
c∑

b=1

�

(
l∑

r=1

W(a,k),(b,r)σ(b,r) − 1

)
. (1)

(This is called the SUM-OF-MAX rule in [25]; it accounts for the fact that in each message
there only can be one active connection between two clusters). We then order the s(a, k), k =
1, . . . , l and set the neuron(s) with the largest value to 1 and all others to 0.

3 Wrong Messages and a First Bound on the Storage Capacity

In this section we will approach the question: what could be the right order for the storage
capacity of the above networks?

At first glance, storage capacity may refer to different properties of the network. E.g. from
Sect. 4 wewill ask ourselves: howmanymessages can we store such that they are fixed points
of the network dynamics or how many messages can we register in our network such that
even a certain number of errors can be corrected? On the other hand, in the previous section
we already learned that in the GB model with a threshold dynamics, an arbitrary number of
input messages is stable if we choose the threshold equal to c, the number of active neurons.
It is intuitively clear that this can only have a negative effect on the error retrieval abilities of
the network, if we store too many messages in the network.

An extreme case of such a lack of error tolerance is if we recognize an input as a stored
message even if it is not. This property will be discussed in greater detail for the GB model
and partially for the Willshaw model in this section. The insight we gain will provide us with
an idea of how many messages we can store in the models.

We will prove the following theorem.

Theorem 3.1 Consider the GB model with the threshold retrieval dynamics and threshold
h = c. Take

M = α(log c)l2 = αl2 log log l.

If α > 2, a random message (independent of the stored patterns) will be recognized as a
stored message with probability converging to 1 as l → ∞.

If α = 2 and as l → ∞, with strictly positive probability a random message will be
recognized as a stored message.

On the other hand, if α < 2 the probability that a random message will be recognized as
stored goes to zero as l → ∞.

We will use positive association of random variables (see e.g. [6]) to prove this theorem.
Recall that a set of real valued random variables X = (X1, X2, . . . , Xn) is positively associ-
ated, if for any non-decreasing functions f and g from R

n to R for which the corresponding
expectations exist we have

Cov( f (X), g(X)) ≥ 0.

Also recall that independent random variables are positively associated and that non-
decreasing functions of positively associated random variables remain positively associated.

For positively associated randomvariableswewill repeatedly apply the following inequal-
ity.

Lemma 3.2 (see [3, Theorem1])Let X1, X2, . . . , Xn be positively associated integer valued
random variables. Then
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A Comparative Study of Sparse Associative Memories 111

0 ≤ P[Xi = 0, i = 1, . . . , n] −
n∏

i=1

P[Xi = 0] ≤
∑

1≤i< j≤n

Cov(Xi , X j ).

Proof of Theorem 3.1 Let ξ0 be a randommessage. Without loss of generality we may (after
relabelling) assume that ξ0(a,1) = 1, for all a = 1, . . . , c. Let G(ξ0) be the event that ξ0 is

stored in the GB model. Its probability P(G(ξ0)) is given by

P
(G(ξ0)

) = P

(
∀a, b ∈ {1, . . . , c}, a �= b, ∃μ ∈ {1, . . . , M} : ξ

μ

(a,1)ξ
μ

(b,1) = 1
)

.

Note that the latter can be rewritten as

P

(
∀a, b ∈ {1, . . . , c}, a �= b : max

μ
ξ

μ

(a,1)ξ
μ

(b,1) = 1

)
.

Now the (ξ
μ

(a,1)) are independent 0−1-valued random variables, and taking their product and

themaximumof these products are increasing functions of them.Thus {maxμ ξ
μ

(a,1)ξ
μ

(b,1), a �=
b} are positively associated (see e.g. [6]), which implies

P

(
∀a, b ∈ {1, . . . , c}, a �= b : max

μ
ξ

μ

(a,1)ξ
μ

(b,1) = 1

)
≥ P

(
max

μ
ξ

μ

(a,1)ξ
μ

(b,1) = 1

)c(c−1)/2

=
(
1 − (1 − 1/ l2)M

)c(c−1)/2

where on the right hand side of the above inequality a and b is an arbitrary pair of distinct
variables.

Choosing M = α log cl2 we see that the right hand side is approximately given by

(
1 − (

1 − 1/ l2
)M)c(c−1)/2 ≈ exp

(
−c2

2
e−α log c

)

which converges to 1 if α > 2, and to e−1/2 if α = 2.
On the other hand, we can also use positive association for an upper bound. We put

Xe = max{ξμ

(a,1)ξ
μ

(b,1), μ = 1, . . . , M} for e = ((a, 1), (b, 1)) and

Z =
∑

e∈V
Xe with V = {((a, 1), (b, 1)), a, b ∈ {1, . . . , c}, a �= b} .

Trivially,

P
[G(ξ0)

] = P[Z = c(c − 1)/2].
On the other hand, the random variables Ye = 1 − Xe are also positively associated integer
valued, and we may use the above lemma to arrive at

P[Z = L] ≤
∏

e

P[Ye = 0] +
∑

e,e′∈V
Cov(Ye, Ye′)

i.e.

P[Z = L] ≤ dL +
∑

e,e′∈V
Cov(Xe, Xe′) (2)

where we set d := (1− (1−1/ l2)M ) and we are left with computing the covariances. To this
end notice that Cov(Xe, Xe′) = 0, if e and e′ are disjoint. So assume that e = ((a, 1), (b, 1))
and e′ = ((a, 1), (b′, 1)) and put M(a, 1) := {μ : ξ

μ

(a,1) = 1} . Then
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E(XeXe′) = P

(
∃μ, ν ∈ M(a, 1) : ξ

μ

(b,1) = 1, ξν
(b′,1) = 1

)

=
M∑

r=0

P

(
∃μ, ν ∈ M(a, 1) : ξ

μ

(b,1)ξ
ν
(b′,1) = 1| |M(a, 1)| = r)P(|M(a, 1)| = r

)

=
M∑

r=0

P

(
∃μ ∈ M(a, 1) : ξ

μ

(b,1) = 1| |M(a, 1)| = r)2P(|M(a, 1)| = r
)

=
M∑

r=0

(
1 − (1 − 1/ l)r

)2
(
M

r

)
(1/ l)r (1 − 1/ l)M−r ,

as on M(a, 1) the events
{
∃μ ∈ M(a, 1) : ξ

μ

(b,1) = 1
}

and
{
∃ν ∈ M(a, 1) : ξν

(b′,1) = 1
}

are independent and have equal probabilities. The expression on the right hand side can be
simplified to give

E(XeXe′) = 1 − 2
M∑

r=0

(
M

r

)
(1/ l)r (1 − 1/ l)M +

M∑

r=0

(
M

r

)
(1/ l)r (1 − 1/ l)M+r

= 1 − 2(1 − 1/ l)M (1 + 1/ l)M +
(
1 − 1/ l)M (1 + 1

l
(1 − 1/ l)

)M

= 1 − 2
(
1 − 1/ l2

)M + (
1 − 2/ l2 + 1/ l3

)M
.

On the other hand,

(E(Xe))
2 = (P(Xe = 1))2 = d2 =

(
1 −

(
1 − 1

l2

)M
)2

.

This yields

Cov(Xe, Xe′) = 1 − 2
(
1 − 1/ l2

)M + (
1 − 2/ l2 + 1/ l3

)M −
(
1 − (

1 − 1/ l2
)M)2

= (
1 − 2/ l2 + 1/ l3

)M − (
1 − 2/ l2 + 1/ l4

)M

= exp
(
M log

(
1 − 2/ l2 + 1/ l3

))− exp
(
M log

(
1 − 2/ l2 + 1/ l4

))

= exp
(−2M/ l2

) (
M/ l3 + O (M/ l4

))
,

after expanding the logarithm and the exponential and taking into account that M( 1l )
3 con-

verges to 0 for our choice of the parameters. Thus for

M = α(log log N )N 2/(log N )2

we obtain because of c = log l ≈ log N .
∑

e,e′∈V
Cov(Xe, Xe′) ≤ α(log log N )c4 exp(−2α log log N )/N

≈ 1

N
α(log log N )(log N )4 exp(−2α log log N )
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Inserting this into (2), we obtain

P[G(ξ0)] = P[Z = c(c − 1)/2]
≤ dL +

∑

e,e′∈V
Cov(Xe, Xe′)

≤ dL + 1

N
α(log log N )(log N )4 exp(−2α log log N )

≤ dL + 1

N
α(log N )(4−2α) log log N

The second summand on the right hand side clearly vanishes. But also dL converges to 0 for
α < 2 (which can be seen as in the first part of the proof). Thus P[G(ξ0)] converges to 0, and
we can remark that P[G(ξ0)] is exactly of order dL for α ∈]1, 2[. �

Remark 3.3 The above computation also justifies a choice of c that is not of constant order.
Indeed, for c being a constant independent of N the same approximation of P[G(ξ0)] by dL

is true. However dL converges to a constant larger than 0, even if M = l2.

A very similar theorem holds true, for the Willshaw model with an intensity of 1s given
by P(ξ

μ
i = 1) = log N

N .

Theorem 3.4 Consider the Willshaw model with i.i.d. messages and coordinates such that
P(ξ

μ
i = 1) = log N

N . Consider the threshold retrieval dynamics with threshold h = c. Take

M = α N2

(log N )2
log log N.

If α > 2 a random message with c active neurons (independent of the stored patterns)
will be recognized as a stored message with probability converging to 1 as l → ∞.

If α = 2 and as l → ∞, with strictly positive probability a random message will be
recognized as a stored message.

On the other hand, if α < 2 the probability that a random message will be recognized as
stored goes to zero as l → ∞.

The proof is almost identical to the proof of the previous theorem. We therefore omit it.

4 Stability and Error Correction

In this section we will try to give lower and sometimes also upper bounds on the number of
patterns we can store in the various models, such that the given messages are stable under
the dynamics of the network and errors in the input can be corrected.

We saw that in the GB model and the Willshaw model, slightly more than N 2/(log N )2

already suffice to supersaturate the networks. We will therefore always assume that M =
αN 2/(log N )2.

We start with Amari’s model.

Theorem 4.1 Suppose that in Amari’s model with threshold h = γ log N (γ < 1 to be
chosen appropriately), we have that M = αN 2/(log N )2. Then, if α < e−2 for any fixed μ,
we have

P
(∀i : Ti (ξμ) = ξ

μ
i

) → 1

as N → ∞.
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Moreover, for any error rate 0 < ρ < 1, if γ < 1 − ρ is chosen appropriately and

α < (1 − ρ)e−(1+ 1
1+ρ

), for any fixed μ, and any ξ̃ μ obtained by deleting at random ρ log N
of the 1’s in ξμ, we have:

P

(
∀i : Ti (ξ̃μ) = ξ

μ
i

)
→ 1

as N → ∞.
Finally, if M > − log(1 − e−1)N 2/(log N )2

P
(∀i : Ti (ξμ) = ξ

μ
i

) → 0

as N → ∞.

It is interesting to observe that the previous theorem also gives a result on the Willshaw
model with a threshold dynamics.

Corollary 4.2 In the Willshaw model with i.i.d. random variables ξ
μ
i , threshold h =

γ log(N ), γ < 1 and M = αN 2/(log N )2 for α < e−2 we have for any fixed μ

P
(∀i : Ti (ξμ) = ξ

μ
i

) → 1

as N → ∞.
Moreover, for any error rate 0 < ρ < 1, if γ < 1 − ρ is chosen appropriately and

α < (1 − ρ)e−(1+ 1
1+ρ

), for any fixed μ, and any ξ̃ μ obtained by deleting at random ρ log N
of the 1’s in ξμ, we have:

P

(
∀i : Ti (ξ̃μ) = ξ

μ
i

)
→ 1

as N → ∞.
Finally, if M > − log(1 − e−1)N 2/(log N )2

P
(∀i : Ti (ξμ) = ξ

μ
i

) → 0

as N → ∞.

In computer simulations the threshold dynamics in the Willshaw model is outperformed
byWTA.Our theoretical results are by now limited to the question of the stability ofmessages
and one step of the retrieval dynamics.

Theorem 4.3 Consider the Willshaw model with i.i.d. messages and coordinates such that
P[ξμ

i = 1] = c
N , where c = log(N ). Consider the WTA dynamics with threshold h(1) and let

M = αN 2/(log N )2. Then for α < − log(1 − e−1) we have for any fixed μ

P
(∀i : Ti (ξμ) = ξ

μ
i

) → 1

as N → ∞.
This bound is sharp: For α > − log(1 − e−1) we have for any fixed μ

P
(∃i : Ti (ξμ) �= ξ

μ
i

) → 1

as N → ∞.
Finally, if ρ log N, 0 ≤ ρ < 1 of the initial 1’s of message ξμ are erased at random to

obtain ξ̃ μ, we can prove the following result:
For α < − log(1 − e−1/(1−ρ)) we have for any fixed μ

P

(
∀i : Ti (ξ̃μ) = ξ

μ
i

)
→ 1

as N → ∞.
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Again, this bound is sharp: For α > − log(1 − e−1/(1−ρ)) we have for any fixed μ

P

(
∃i : Ti (ξ̃μ) �= ξ

μ
i

)
→ 1

as N → ∞.

Remark 4.4 For mathematical convenience, we assumed in Th. 4.3 that the stored messages
are independent, with i.i.d. coordinates (ξ

μ
i ) such that

P[ξμ
i = 1] = c

N
.

We can naturally expect the same results in the case where exactly c neurons are active in
each stored message, but properties of independence are lacking to prove such results in this
situation.

A very similar statement holds for the GB model with the WTA algorithm.

Theorem 4.5 In the GBmodel with independent messages withWTA dynamics (which again
is called T ) let M = αl2/c2. Then for α < − log(1 − e−1) we have for any fixed μ

P

(
∀(a, c) : T(a,c)(ξ

μ) = ξ
μ

(a,c)

)
→ 1

as N → ∞.
If ρ log N of the initial 1’s of a message ξμ are erased at random to construct ξ̃ μ, we

obtain: For α < − log(1 − e−1/(1−ρ)) we have for any fixed μ

P

(
∀(a, c) : T(a,c)(ξ̃

μ) = ξ
μ

(a,c)

)
→ 1

as N → ∞.

5 Proofs

This section contains the proofs of the results in the previous section. We start with Theorem
4.1.

Proof of Theorem 4.1 Recall the situation of the theorem. We choose h = γ log(N ) with
γ ∈ (0, 1). Then, for each δ ∈ (0, 1),

P
(∃1 ≤ i ≤ N , Ti (ξ

1) �= ξ1i
)

≤ P
(∣∣ log(N ) −

∑

j

ξ1j

∣∣ ≥ (1 − δ) log(N )
)

+ P

⎛

⎝
{
∃1 ≤ i ≤ N , Ti (ξ

1) �= ξ1i

}
∩
{∣∣∣ log(N ) −

∑

j

ξ1j

∣∣∣ < (1 − δ) log(N )
}
⎞

⎠

and the first term disappears as N → ∞ due to the law of large numbers, since the ξ
μ
i are

Bernoulli random variables with success probability p = log N/N .
Let δ > γ . If

∣∣∣ log(N ) −
∑

j

ξ1j

∣∣∣ < (1 − δ) log(N ),
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we have that
∑

j ξ
1
j > δ log(N ), and for each i with ξ1i = 1, we obtain

Si (ξ
1) =

∑

j �=i

Ji jξ
1
j = ξ1i

∑

j �=i

ξ1j +
∑

j �=i

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥

∑

j �=i

ξ1j ≥ δ log(N ) − 1 ≥ γ log(N ),

for N large enough, i.e. Ti (ξ1) = 1.
On the other hand, for each i with ξ1i = 0, we get

P

⎛

⎝{Ti (ξ1) �= ξ1i } ∩ {ξ1i = 0} ∩
{∣∣∣ log(N ) −

∑

j

ξ1j

∣∣∣ < (1 − δ) log(N )
}
⎞

⎠

≤
�(2−δ) log(N )�∑

k=�δ log(N )�
P

⎛

⎝

⎧
⎨

⎩
∑

j �=i

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

⎫
⎬

⎭ ∩ {ξ1i = 0} ∩
{∑

j

ξ1j = k
}
⎞

⎠

=
�(2−δ) log(N )�∑

k=�δ log(N )�
P

⎛

⎝

⎧
⎨

⎩
∑

j

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

⎫
⎬

⎭ ∩ {ξ1i = 0}
∣∣∣
∑

j

ξ1j = k

⎞

⎠ · P
⎛

⎝
∑

j

ξ1j = k

⎞

⎠ ,

since for j = i , the term ξ1j
∑M

μ=2 ξ
μ
i ξ

μ
j is equal to 0.

This yields

P

⎛

⎝{Ti (ξ1) �= ξ1i } ∩ {ξ1i = 0} ∩
{∣∣∣ log(N ) −

∑

j

ξ1j

∣∣∣ < (1 − δ) log(N )
}
⎞

⎠

≤ max�δ log(N )�≤k≤�(2−δ) log(N )� P

⎛

⎝
∑

j

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

∣∣∣
∑

j

ξ1j = k

⎞

⎠ ·

�(2−δ) log(N )�∑

k=�δ log(N )�
P

⎛

⎝
∑

j

ξ1j = k

⎞

⎠

≤ P

⎛

⎝
∑

j

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

∣∣∣
∑

j

ξ1j = �(2 − δ) log(N )�
⎞

⎠ ,

since the quantity
∑

j ξ
1
j

∑M
μ=2 ξ

μ
i ξ

μ
j is increasing with

∑
j ξ

1
j , and themaximum is attained

for k = �(2 − δ) log(N )�.
Without loss of generality, (2 − δ) log(N ) ∈ N and ξ1j = 1, 1 ≤ j ≤ (2 − δ) log(N );

ξ1j = 0, j > (2 − δ) log(N ). Then, for each t > 0,

P

⎛

⎝
∑

j

ξ1j

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

∣∣∣
∑

j

ξ1j = (2 − δ) log(N )

⎞

⎠

= P

⎛

⎝
(2−δ) log(N )∑

j=1

M∑

μ=2

ξ
μ
i ξ

μ
j ≥ γ log(N )

⎞

⎠

≤ e−tγ log(N )
E exp

⎛

⎝t
(2−δ) log(N )∑

j=1

M∑

μ=2

ξ
μ
i ξ

μ
j

⎞

⎠
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= e−tγ log(N )

⎡

⎣E exp

⎛

⎝t
(2−δ) log(N )∑

j=1

ξ2i ξ2j

⎞

⎠

⎤

⎦
M−1

= e−tγ log(N )
(
1 − p + p

(
1 − p + pet

)(2−δ) log(N )
)M−1

≤ e−tγ log(N )
(
1 − p + pep(e

t−1)(2−δ) log(N )
)M−1

≤ exp
[
−tγ log(N ) + (M − 1)p

(
ep(e

t−1)(2−δ) log(N ) − 1
)]

= exp
[−tγ log(N ) + (M − 1)p

(
p(et − 1)(2 − δ) log(N ) + O(log(N )p2)

)]

= exp
[−tγ log(N ) + Mp2(et − 1)(2 − δ) log(N ) + O(M log(N )p3)

]
,

using 1 + u ≤ eu for all u ≥ 0, expanding the exponential and assuming t to be small.
Assuming M = αN 2/ log(N )2, we obtain that the last line is equal to

exp
[−tγ log(N ) + Mp2(et − 1)(2 − δ) log(N ) + O(M log(N )p3)

]

= exp
[−tγ log(N ) + α(et − 1)(2 − δ) log(N ) + O(log(N )2/N )

]

= exp
[
log(N )(−tγ + α(et − 1)(2 − δ))

]
(1 + o(1)).

The function −tγ + α(et − 1)(2 − δ) takes its minimum at t = log(γ /(α(2 − δ))).
We aim at showing

P

⎛

⎝∃1 ≤ i ≤ N , Ti (ξ
1) �= ξ1i

∣∣∣
∣∣∣ log(N ) −

∑

j

ξ1j

∣∣∣ < (1 − δ) log(N )

⎞

⎠ → 0.

Following the lines above, this probability can be estimated by

P
(∃1 ≤ i ≤ N , Ti (ξ

1) �= ξ1i

∣∣ ∣∣ log(N ) −
∑

j

ξ1j

∣∣ < (1 − δ) log(N )
)

≤ P
(∃1 ≤ i ≤ N , ξ1i = 0, Ti (ξ

1) �= ξ1i

∣∣∑

j

ξ1j = (2 − δ) log(N )
)

≤ N · exp [log(N )(−tγ + α(et − 1)(2 − δ))
]

≤ N · exp [log(N )(−γ log(γ /((2 − δ)α)) + α(2 − δ)(γ /(α(2 − δ)) − 1))
]

= N · exp [log(N )(−γ log(γ /((2 − δ)α)) + γ − α(2 − δ))
]

and we need

γ log(γ /((2 − δ)α)) − γ + α(2 − δ) > 1,

which is fulfilled if

α <
γ

2 − δ

1

e1+1/γ .

So for each α < e−2, we can find a threshold h = γ log(N ) such that

P
(∃1 ≤ i ≤ N , Ti (ξ

1) �= ξ1i
) → 0.

This proves the first part of the theorem.
For the second part notice that any fixed ξμ will have almost log N 1’s such that we can

delete ρ log N many of them and the statement of the theorem makes sense. The rest of the
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proof of part two consists of choosing h now as a value slightly smaller than (1 − ρ) log N
and repeating the above arguments. Indeed, call ξ̃1 a configuration obtained from ξ1 when
deleting ρ log N 1’s. Then, as above, the local field Si (ξ̃1) splits into a signal term and a
noise term:

Si (ξ̃
1) =

∑

j �=i

ξ̃1j Ji j = ξ1i

∑

j �=i

ξ̃1j +
∑

j �=i

ξ̃1j

∑

μ≥2

ξ
μ
i ξ

μ
j .

In comparison to the first part of the proof the ingredient
∑

j �=i ξ̃
1
j of the signal term is

decreased to a size of (1− ρ) log N , while the noise term
∑

j �=i ξ̃
1
j

∑
μ≥2 ξ

μ
i ξ

μ
j is treated in

a similar fashion as in part one and is typically of order α(1 − ρ)(log N ).
For the third statement of the theorem we will make use of an observation that is also

useful in the proof of Theorem 4.3 and will actually be shown in this context: For a message
(without loss of generality ξ1) with active neurons ξ11 = . . . = ξ1c = 1 and ξ1i = 0 for all
i ≥ c we show that for M large enough, i.e. M = αN 2/(log N )2 and α > − log(1 − e−1)

with probability converging to 1, there exists an i ≥ c + 1 such that for all j ≤ c there is a
μ ≥ 2 such that ξμ

i ξ
μ
j = 1.

After borrowing this statement from the proof of Theorem 4.3 we can proceed as follows:
Taking into account that with overwhelming probability c is larger than (1− δ) log N for any
δ > 0 and N large enough, we see that in Amari’s model for such an i ≥ c + 1

Ti (ξ
1) = �

⎛

⎝
∑

j �=i

Ji jξ
1
j − γ log N

⎞

⎠

= �

⎛

⎝
∑

j≤c

Ji j − γ log N

⎞

⎠

≥ �((1 − δ) log N − γ log N ) = 1

if we choose 1−δ > γ . As we can choose δ > 0 arbitrarily small, with any threshold γ log N
with γ < 1 such a neuron will not be recovered correctly.

Proof of Corollary 4.2 The only thing one has to observe is that for each i with ξ1i = 1 we
again have Ti (ξ1) = 1, because again

∑
j ξ

1
j ≥ γ log(N ) for any γ < 1.

On the other hand for each i with ξ1i = 0 we have that the probability that ξ1i is turned into
a 1 by the dynamics and thus not recovered correctly is given by P(

∑
j Ji jξ

1
j ≥ γ log(N )).

Now,
∑

j

Ji jξ
1
j <

∑

j

ξ1j

∑

μ≥2

ξ
μ
i ξ

μ
j

and the right hand side is the quantity considered in the previous proof. Thus the bound
obtained in the previous proof is also a bound for theWillshaw model with threshold dynam-
ics.

Remark 5.1 Of course, the previous proof underestimates the storage capacity of the Will-
shaw model with threshold dynamics. However, the difference between Ji j and

∑
μ≥2 ξ

μ
i ξ

μ
j

is not that huge. Indeed, for M = αN 2/(log N )2 the latter is close to a Poisson random vari-
able with parameter α and we will see in the next theorem, that even with a better performing
dynamics we only reach a bound of α ≤ 0.45.
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We continue with the Willshaw model with WTA dynamics.

Proof of Theorem 4.3 We start with proving the third statement of the theorem. This will
automatically yield the first part by setting ρ to 0.

Using the same method as in the proof of Theorem 4.1, we can restrict the proof to the
cases where c1 neurons in the message ξ1 are active, with c1 ∈ [(1 − ε1)c, (1 + ε1)c], for
some small ε1 > 0. Assume that f of the “1”-bits in ξ1 are erased and k = c1 − f “1”s are
known. Without loss of generality, we can assume that ξ1i = 1 for i ≤ c1 and ξ1i = 0 for
i ≥ c1 + 1.

Let ξ̃1 ∈ {0, 1}N be a version of ξ1 corrupted as described above, such that ξ̃1i = 1 for
i ≤ k and ξ̃1i = 0 for i ≥ k + 1. We have trivially that,

hi (ξ̃
1) =

k∑

j=1

Ji j ,

and thus hi (ξ̃
1) = k for all i ≤ c1. Therefore y = T (ξ̃1) will satisfy yi = ξ1i for all i ≤ c1.

Thus recalling the WTA we see that y �= ξ1, if there exist i ≥ c1 + 1, such that for all
j ≤ k there exists μ ≥ 2 such that ξμ

i ξ
μ
j = 1.

The probability of the latter event can be bounded as follows. Consider

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1]

≤ N
M−1∑

l=0

∑

I⊂{2,...,M}
card(I )=l

P[∀ j ≤ k : ∃μ ≥ 2, ξμ
N ξ

μ
j = 1|ξμ

N = 1 ⇔ μ ∈ I ]P[ξμ
N = 1 ⇔ μ ∈ I ]

≤ N
M−1∑

l=0

∑

I

P[∀ j ≤ k : ∃μ ∈ I, ξμ
j = 1]P[ξμ

N = 1 ⇔ μ ∈ I ]

= N
M−1∑

l=0

(
M − 1

l

)(
1 −

(
1 − c

N

)l)k ( c

N

)l (
1 −

( c

N

))M−l−1

= N
M−1∑

l=0

(
M − 1

l

) k∑

i=0

(
k

i

)
(−1)i

(
1 − c

N

)il ( c

N

)l (
1 −

( c

N

))M−l−1

= N
k∑

i=0

(
k

i

)
(−1)i

(
1 − c

N
+ c

N

(
1 − c

N

)i)M−1

by elementary transformations.
Now we expand the term in the brackets and use the bound 1+ x ≤ ex for all x to obtain

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1]

≤ N
k∑

i=0

(
k

i

)
(−1)i

(
1 − i

( c

N

)2 + i(i − 1)

2

( c

N

)3 + O
(
i3
( c

N

)4))M−1

≤ N
k∑

i=0

(
k

i

)
(−1)i exp

(
−iM

( c

N

)2 + M
i(i − 1)

2

( c

N

)3 + O
(
Mi3

( c

N

)4))
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= N
k∑

i=0

(
k

i

)
(−1)i e−iM( c

N )
2
(
1 + M

i(i − 1)

2

( c

N

)3 + O
(
Mi3

( c

N

)4))

≤ N
(
1 − e−M( c

N )
2)k + MN

( c

N

)3 k∑

i=0

(
k

i

)
(−1)i e−iM( c

N )2 i(i − 1)

2

+N (1 + e−M( c
N )2)kO

(
Mk3

( c

N

)4)

= N (1 − e−M( c
N )2)k + MN (

c

N
)3e−2M( c

N )2 k(k − 1)

2
(1 − e−M( c

N )2)k−2

+ N (1 + e−M( c
N )2)kO

(
Mk3

( c

N

)4)
.

If we choose

M = α

(
N

c

)2

and k = (1 − ρ) log(N ) for some ρ ∈ [0, 1[

we arrive at

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1]

≤ N (1 − e−α)(1−ρ) log(N ) + αe−2α(log N )3(1 − e−α)(1−ρ) log N−2

+ (1 + e−α)(1−ρ) log(N )O(
(log N )5

N
).

If (1 − ρ) log(1 − e−α) < −1, i.e. α < − log(1 − e−1/(1−ρ)), the first term converges to 0
and the two last terms also vanish for N → ∞. This gives

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1] → 0

as desired.
It remains to prove the reverse bound on the storage capacity. The considerations are

similar to what we did above. Now assume that M ≥ α( Nc )2 for some α > 0 and again that
ξ1 has entries ξ1i = 1 for i = 1, . . . c1 and ξ1i = 0 for i > c1.

Again consider

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1]

= 1 − P

[ ⋂

i≥c1+1

{∃ j ≤ k : ∀μ ≥ 2, ξμ
i ξ

μ
j = 0}

]

= 1 − P{ξμ
j , j≤k,μ≥2}

N∏

i=c1+1

P{ξμ
i ,μ≥2}

[
∃ j ≤ k :

∑

μ≥2

ξ
μ
i ξ

μ
j = 0

]

by independence after conditioning (and the P{ξμ
j } denote the probabilities with respect to

the corresponding random variables). Now

P{ξμ
i ,μ≥2}

[
∃ j ≤ k :

∑

μ≥2

ξ
μ
i ξ

μ
j = 0

]
= 1 − P{ξμ

i ,μ≥2}
[
∀ j ≤ k :

∑

μ≥2

ξ
μ
i ξ

μ
j ≥ 1

]
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Let X j := ∑
μ≥2 ξ

μ
i ξ

μ
j . We observe by similar arguments as in Sect. 3 that the (X j ) are

positively associated with respect to P{ξμ
i ,μ≥2}. Therefore, for i ≥ c1 + 1,

P{ξμ
i ,μ≥2}[∀ j ≤ k : X j ≥ 1] ≥

k∏

j=1

(
P{ξμ

i ,μ≥2}[X j ≥ 1]
)

which gives

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1]

≥ 1 − P{ξμ
j , j≤k,μ≥2}

N∏

i=c1+1

⎛

⎝1 −
k∏

j=1

(P{ξμ
i ,μ≥2}[X j ≥ 1])

⎞

⎠

To compute the right hand side take e.g. i = N . Then for all j ≤ k,

P{ξμ
N ,μ≥2}[X j ≥ 1]) = 1 − P{ξμ

N ,μ≥2}

⎛

⎝
M∑

μ=1

ξ
μ
N ξ

μ
j = 0

⎞

⎠

= 1 −
∏

μ:ξμ
j =1

P{ξμ
N ,μ≥2}

(
ξ

μ
N = 0

)

= 1 −
(
1 − c

N

)Wj
,

where Wj := ∑M
μ=1 ξ

μ
j . With overwhelming probability

Wj ∈
[
(1 − ε)

Mc

N
, (1 + ε)

Mc

N

]

for all N large enough, for all j ≤ k. More precisely, for all ε > 0, k = C log(N ), with
C > 0,

P

[
∀ j ≤ k : Wj ∈

[
(1 − ε)

Mc

N
, (1 + ε)

Mc

N

]]
≥ 1 − 2C log(N )e− Mcε2

2N .

This justifies that we can restrict to these cases, and putting things together, we obtain for
M = α( Nc )2 that

P[∃i ≥ c1 + 1,∀ j ≤ k : ∃μ ≥ 2, ξμ
i ξ

μ
j = 1] ≥ 1 −

(
1 − (

1 − e−α
)k)N−k1

.

The right hand side converges to 1 if
(
1 − (

1 − e−α
)k)N goes to 0, which is the case if and

only if

N log
(
1 − (

1 − e−α
)k) ≈ −N

(
1 − e−α

)k

= −N exp
(
k log(1 − e−α)

)

= −N 1+(1−ρ) log(1−e−α) → −∞.

This is true if 1 + (1 − ρ) log(1 − e−α) > 0, which is true if and only if

α > − log(1 − e−1/(1−ρ)).

This finishes the proof. �
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Remark 5.2 Note that the previous proof reveals that not only we have upper and lower
bounds on the storage capacity of the Willshaw model with WTA dynamics, but also that
these bounds match. Such matching bounds can very rarely be proven. The only other model
we are aware of where this is the case, is the Hopfield model (see [4,19]).

Proof of Theorem 4.5 The decisive observation here is that the GB model is “almost” a
Willshaw model. As a matter of fact, as stated already in the description of the model in
Sect. 2, the only difference is, that in the GB model there is a restriction on the location of
the 1’s. However, if we analyze the proof of Theorem 4.3, we find that the dynamics is in a
sense ”non-spatial”, i.e. a neuron is getting signals from all the other neurons in both of these
models. Thus this detail does not influence the proof.

This observation, however, also raises the question, whether we can also prove the third
statement in Theorem 4.3 for the GB model. It is, indeed, natural to conjecture that a similar
statement holds true. However, in the proof of part 3 of Theorem 4.3 we make use of positive
association. This property enters the proof in the Willshaw model, because with our setting
we are having increasing functions of i.i.d. random variables (the spins ξ

μ
i ), that are indeed

positively associated. In the GB model, the extra condition that each pattern has exactly one
1 in each of the blocks implies that for each fixed μ the random variables ξ

μ

(a,k) are no longer
independent. Hence we do not have positive association. �


6 The Wrong Message Revisited: A Limit of all Reconstruction Techniques

In this section we return to the question addressed in Sect. 3. There we showed that in the
GB model with M too large a wrong message will be recognized with large probability as a
correct one, which limits the confidence we can have into our associative memory.

A very similar consideration shows that we cannot reconstruct erased messages in the GB
model, if M is too large. Indeed, in the GB model suppose we delete at random a proportion
of (1− ρ)c of active bits of a given message. If the remaining bits can be completed in more
than one way to a message that is recognized by the system (N.B. not necessarily a message
that is stored in the network), there is no way whatsoever, a reconstruction algorithm could
find the correct message with probability one.

Using ideas from Sect. 3 one can prove a theorem on the probability to complete an erased
message by a message on a given set of neurons. To formulate it, suppose that a message
ξ1 is stored in the network. Without loss of generality ξ1(a,1) = 1 for all clusters 1 ≤ a ≤ c

and all the other bits are 0. Assume we keep the ξ1(a,1) = 1 for the clusters 1 ≤ a ≤ ρc,
0 < ρ < 1 and set all other neurons to 0. Then for each cluster ρc + 1 ≤ a ≤ c we choose a
neuron (a, i), 2 ≤ i ≤ l and set it to 1. Let G be the event that the message ζ having 1’s in
position (a, 1), 1 ≤ a ≤ ρc and (a, i) for ρc + 1 ≤ a ≤ c is recognized by the system as a
stored message.

Theorem 6.1 Suppose that in the GB model we store M = αl2 log c messages. Then P(G)

tends to 0 if and only if α < 2.

Proof We only sketch the proof here as it is almost identical to the considerations in Sect. 3.
Other than there, we already know ρc bits of ζ are correct. Hence we only need to find

messages that are active on the remaining r(c, ρ) := ρ(1−ρ)c2+(1−ρ)c((1−ρ)c−1)/2 =
c2
2 (1 − ρ2) − 1

2c(1 − ρ) edges.
Positive association bounds thus P(G) by (1 − (1 − 1

l2
)M )r(c,ρ) =: d r(c,ρ) from below.

The same exponential inequality as in Sect. 3 also shows an upper bound for P(G) by d r(c,ρ)
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plus a vanishing term. Replacing (1 − 1
l2

)M by c−α we thus see that d r(c,ρ) is of order

exp(− c2−α

2 (1 − ρ2)) and therefore goes to zero, if and only if, c2−α(1 − ρ2) → ∞.

Remark 6.2 Similarly to Theorem 3.1, we get that P(G) is well approximated by d
c2
2 (1−ρ2),

when the latter goes to 0, for α ∈]1, 2[. This is not the case for α ∈]0, 1[, since the additive
error term in the upper bound vanishes, but slower than d

c2
2 (1−ρ2).

7 Dynamical Properties of the Models

An interesting question is the convergence of the proposed dynamics. Recall that we distin-
guish two types of dynamics: a) fixed threshold ones where h is fixed a priori and b) varying
threshold ones where h is updated at each iteration of the dynamics (e.g. WTA). Note that in
all cases we consider the memory effect described in Sect. 7.1.

Let us first consider the Willshaw model.

7.1 Willshaw Model

In this section we show the following results:

(1) Choosing a fixed h forces convergence of the dynamics,
(2) Choosing a varying h can lead to oscillations in the dynamics,
(3) Choosing the threshold h(1) as defined in Sect. 2, performance does not benefit from

iterating more than once the dynamics.

Note that the major interest of varying thresholds is that they lead to better performance
as illustrated in Sect. 7.3. There thus exists a tradeoff between performance and convergence
guarantees for the Willshaw model.

Theorem 7.1 Choosing a fixed threshold h forces the dynamics to converge.

Proof Let us consider an input pattern ξ̃ μ where some 1s have been erased. Denote cμ =
‖ξ̃ μ‖0 to be the number of 1’s in ξ̃ μ. Then it is immediate that if h > cμ the dynamics
converges in one iteration to a null vector.

On the other hand, let us introduce the sequence
(
ξ̃ μ(t)

)

t≥0
:

ξ̃ μ(0) := ξ̃ μ

ξ̃μ(t + 1) := T
(
ξ̃μ(t)

)
and for all t ∈ N,

and the sequence (aμ(t))t≥0 such that a
μ(t) = {i, ξ̃μ

i (t) = 1} for all t ∈ N0.

We now can show the following proposition:

Proposition 7.2 If h ≤ cμ, the sequence (aμ(t))t≥0 is nondecreasing with respect to inclu-
sion.

Proof Let us proceed by induction.
First we have trivially that aμ(0) ⊆ aμ(1). This is due to the fact that ∀i, j ∈ aμ(0),

Ji j = 1.
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t = 0 t = 1 t = 2k, k ≥ 1 t = 2k + 1, k ≥ 1

Fig. 1 Illustration of the oscillation of the dynamics when using WTA with the Willshaw model. Here the
model contains N = 5 neurons and the number of 1s in stored messages is c = 2

Then let us suppose that for some t we have aμ(t) ⊆ aμ(t + 1). By definition, ∀i ∈
aμ(t + 1), we have #{ j ∈ aμ(t), Ji j = 1} ≥ h, where # denotes the cardinality operator.

Since aμ(t) ⊆ aμ(t + 1), it also holds that #{ j ∈ aμ(t + 1), Ji j = 1} ≥ h and we
conclude that aμ(t + 1) ⊆ aμ(t + 2).

A direct corollary is that (aμ(t))t≥0 converges.

Theorem 7.3 Choosing a varying h can lead to oscillations in the dynamics of the Willshaw
model.

Proof To illustrate this property, we propose an example where N = 5 and c = 2.We choose
the threshold h(1) as defined in Sect. 2. Let us consider that:

(
ξμ
)
1≤μ≤6 =

⎛

⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎜⎝

1
1
0
0
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
0
1
0
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
0
0
1
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
1
0
0
1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
0
1
0
1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
0
0
1
1

⎞

⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎠
.

Consider the input:

ξ̃ μ(0) =

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠
.

One can easily check that:

(
ξ̃μ(t)

)

0≤t≤4
=

⎛

⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
1
1
1
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
0
0
0
1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

0
1
1
1
0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
0
0
0
1

⎞

⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎠
,

and thus ξ̃ μ(4) = ξ̃ μ(2).

The same dynamics is illustrated in Fig. 1.
More generally, using the threshold h(1) as defined in Sect. 2, the performance of the

model does not benefit from using more than one iteration, as expressed in the following
theorem:
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Theorem 7.4 Consider a Willshaw network where the threshold is chosen as the maximum
of the achieved scores (h(1)). Choose as input a partially (but not completely) erased version
ξ̃ μ of a stored message ξμ. Then the dynamics converges if and only if it converges in one
step. In particular, it can only converge to ξμ if it does so in one iteration.

Proof Let us use the same notations as in the proof of Theorem 7.1. We denote by h(1)(t)
the value of the threshold at step t .

Let us discuss two cases:

(1) In the first case it holds for all i and j that ξ̃
μ
i (1) = 1 and ξ̃

μ
j (1) = 1 implies that

Ji j = 1. In other words: All activated neurons after one iteration are connected one to
another. In this case one can easily check that

h(1)(1) = card({i, ξ̃μ
i (1) = 1})

and thus we have for all t ≥ 1 that ξ̃ μ(1) = ξ̃ μ(t).
(2) There are i ′ and j ′ such that ξ̃

μ

i ′ (1) = 1 and ξ̃
μ

j ′(1) = 1 but Ji ′ j ′ = 0, i.e. there are
activated neurons that are not interconnected.
Note that by construction of J we then cannot have that ξ̃ μ(1) = ξμ. We fix such a pair
i ′ and j ′. By construction of J , we have for all i and j that ξμ

i = 1 and ξ
μ
j = 1 implies

that Ji j = 1. As a direct consequence, we obtain that

h(1)(0) = card({i, ξ̃μ
i (0) = 1})

and therefore all neurons activated at step 0 are connected to all neurons activated at
step 1 (note also that {i, ξμ

i = 1} � {i, ξ̃μ
i (1) = 1}). Thus we obtain

h(1)(1) = card({i, ξ̃μ
i (1) = 1}).

Consequently, ξ̃ μ

i ′ (2) = 0 and ξ̃
μ

j ′(2) = 0 which leads to ξ̃ μ(1) �= ξ̃ μ(2). We conclude

that the neurons activated in ξ̃ μ(2) are those connected to all neurons in ξ̃ μ(1). In
particular we obtain {i, ξ̃μ

i (0) = 1} ⊆ {i, ξ̃μ
i (2) = 1}.

Similarly we have that h(1)(2) = card({i, ξ̃μ
i (2) = 1}).

We then observe that there cannot be a neuron active at step 3 that is not active at step
1, as the neurons activated at step 3 are connected to all neurons activated at step 2 and
thus to all neurons activated at step 0. We conclude that for all t ≥ 1 we have that

ξ̃ μ(2i − 1) = ξ̃ μ(2i + 1) and ξ̃μ(2i) = ξ̃μ(2i + 2),

together with ξ̃μ(1) �= ξ̃ μ(2).

�

7.2 GB Model

Interestingly, the specific GB structure can be exploited in order to provide good performance
and to ensure at the same time convergence of the dynamics. This is thanks to the previously
mentioned SUM-OF-MAX rule (see Equation (1)). Recall the SUM-OF-MAXdynamic rule:

T(a,k)(σ ) = �(s(a,k)(σ ) − h(a)), where h(a) = max{s(a, k), k = 1, . . . , l}.
This rule can be advantageously combinedwith amodification of the inputwhen retrieving

a partially erased image. This modification consists in activating all neurons in clusters where
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no neuron is active. Then we have trivially h(a) = c for all a and this modification is such
that the set of active neurons is non-increasing with iterations of the dynamics.

Here is a rapid sketch of the proof of this result: to be activated using the SUM-OF-MAX
rule, a neuron has to be connected to at least one activated neuron in each cluster. In particular
it has to be connected to an activated neuron in its own cluster. Due to the specific structure
of the GB model, the only connection a neuron may have with a neuron in its own cluster
is with itself. Therefore, to be activated, a neuron has to already be activated at the previous
step of the dynamics.

We refer to this algorithm as “SOM” in Fig. 2.

7.3 Simulations

In order to compare the performance of the three above mentioned solutions, we run several
simulations. We consider that the number of 1s in each message is c for the Willshaw model.

We propose to use three different families of algorithms: a) fixed threshold ones where h
is determined a priori, b) varying threshold ones where h can be modified at each iteration
and c) exhaustive search where solutions are looked for using a brute-force approach. This
last option allows us to compare the different models intrinsically, thus removing any bias
from chosen retrieval dynamics.

For case a) we define h as the number of 1s in the input pattern. This value appears to
be optimal for most cases we simulated. For case b) we use the winner-takes-all algorithm
previously described in which we select h so that the number of 1s in the obtained vector
is minimum and at least c. For case c) we use an exhaustive search of potential candidates
and select randomly one of them. Note that for Amari’s model we select the clique (or one
of the cliques) that achieve the maximum sum of inner edge weights. Finally, for each case
we also plot the obtained curves when using SUM-OF-MAX with the GB model for easier
comparison of performance.

We depict the evolution of the error rate for a given problem as a function of the number
of stored patterns. This measure is not totally fair as:

• A stored pattern with c 1s using the Willshaw model or Amari’s one made of N neurons

has entropy log2
((N

c

))
whereas with the GB model its entropy is lesser: C log2 (l).

• The number of possible connections in aWillshawmodel or Amari’s one with N neurons
is larger than that using a GB model with the same number of neurons. Moreover in the
Amari model each connection can take up to M distinct values.

In order to account for these differences, we propose to depict also the evolution of the
error rate as a function of the efficiency of the model, defined as the ratio between the entropy
of the set of stored patterns and the number C of bits required for straightforward encoding
of the used synaptic weights. The latter value C depends on the model parameters: for an
Amari model made of N neurons and storing M patterns, it is equal to:

CAmari =
(
N

2

)
log2(M + 1) .

For the Willshaw model it becomes:

CWillshaw =
(
N

2

)
.
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Fig. 2 Comparison of performance of Amari, Willshaw and GB models (with proposed dynamics and SUM-
OF-MAX (SOM)). For all simulated point, there are N = 2048 neurons (grouped in c = 8 clusters of l = 256
neurons for the GB model), stored messages contain exactly c = 8 1s each and the objective is to retrieve
a previously stored pattern when 4 out of the initial 8 1s in stored messages are missing. Each point is the
average of 100.000 tests. Figures in first column depict the evolution of the error rate as a function of the
number of stored patterns. Figures in second column depicts the evolution of the error rate as a function of
efficiency. First line correspond to fixed threshold dynamics, second line to varying threshold strategies and
third line to exhaustive ones

For the GB model, it depends on the parameters c and l and becomes:

CGB =
(
c

2

)
l2 .
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The results are depicted in Fig. 2. Some remarks about these results:

• No matter what algorithms are used, the performance of the methods clearly indicates
that GB performs better thanWillshaw that performs itself better than Amari’s networks.

• The only difference between Amari’s networks and Willshaw’s is the fact the former
use weighted connections instead of binary ones. Our simulations clearly indicates that
weights offer no gain in performance.

• It appears clearly that fixed threshold algorithms perform worse than varying threshold
ones.
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