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Abstract. Finding correspondences between image features is a fun-
damental question in computer vision. Many models in literature have
proposed to view this as a graph matching problem whose solution can
be approximated using optimization principles. In this paper, we propose
a different treatment of this problem from a neural network perspective.
We present a new model for matching features inspired by the architec-
ture of a recently introduced neural network. We show that by using pop-
ular neural network principles like max-pooling, k-winners-take-all and
iterative processing, we obtain a better accuracy at matching features in
cluttered environments. The proposed solution is accompanied by an
experimental evaluation and is compared to state-of-the-art models.
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1 Introduction

Establishing correspondences between two sets of visual features is a funda-
mental problem in computer vision. Solving this problem is essential to many
visual processing tasks. This includes feature tracking [10], object discovery [11],
structure from motion [17], stereo matching [20], image classification [8] and
many other applications. An early class of algorithms consisted in matching fea-
tures based on the similarity of their descriptor vectors. Such similarity can be
obtained using simple metrics such as euclidean or hamming distances for exam-
ple [19]. While such methods are still widely popular, their ability to find correct
matches becomes obsolete in more complex situations such as in the presence
of multiple instances of the object whose features are to be matched, or in the
case of matching two different objects that belong to the same class, or in the
presence of clutter.

Early attempts to address this problem consisted in taking the geomet-
ric consistency between features into account. This includes methods such as
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RANSAC [6] and ICP [2]. These methods assume that the deformations under-
gone by an object are rigid, i.e., they are governed by some form of a parametric
transformation (e.g. planar affine or epipolar). However, these methods are not
adapted to non-rigid transformations which are very common in natural images.

To address non-rigid transformations, a class of models emerged in the last
two decades that applied graph matching techniques (GM) to the correspon-
dence problem [4,12,22]. These methods formulate the matching problem as an
optimization procedure of a well-defined objective function. This function takes
individual feature similarity into account, as well as other geometric constraints
such as pairwise feature affinity measures [12], or even higher order measures [21].
Little effort, however, was devoted to seeking a potential neural network model
for solving the graph matching problem. We think that this is an interesting
question from an algorithmic point of view, as well as for researchers interested
in Marr’s third level of analysis that seeks possible neural mechanisms for imple-
menting vision algorithms [14]. While the present paper addresses this level of
analysis, we do not pretend providing a real bio-mimetic solution. We hope that
our approach be a step forward for vision research seeking biological inspiration.

The main contribution of our work is to introduce an artificial neural network
(ANN) model for addressing the feature correspondence problem. This model
is adapted from the sparse clustered neural network designed by Gripon and
Berrou in [9], which is a generalization of the Palm-Wilshaw neural network [18].
The main advantage of the proposed matching algorithm is its better robustness
against clutter compared to state-of-the-art. However, when no clutter is present,
which is argued to be a less interesting case, the proposed algorithm only gives a
comparable or a less matching accuracy. Another advantage is that our approach
implements a cooperative algorithm, meaning that each neuron needs only to
know about the activity of a few neighboring neurons, which allows for the
algorithm to be run in parallel.

The rest of this paper is organized in four sections. In Sect. 2, a brief overview
of state-of-the-art algorithms proposed for solving the correspondence problem
is presented. The architecture of the neural network along with the algorithm
we propose are presented in Sect. 3. The performance of the proposed model
is evaluated in Sect. 4 and compared to some other algorithms. Section 5 is a
conclusion.

2 Related Work

As mentioned earlier, feature correspondence can be viewed as a graph match-
ing (GM) problem, which is traditionally formulated as a quadratic assignment
problem (QAP) known to be NP-hard. Its solution is usually approximated by
optimizing an objective function with relaxed constraints [12,21,22]. However,
there were some attempts to approximate this optimization procedure by apply-
ing an iterative process without defining an explicit objective to optimize [3–5,7].
These attempts date back to as early as Marr’s cooperative algorithm for solv-
ing the stereo matching problem [14]. It provided an insight on how iterative
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algorithms can be used to tackle difficult vision problems using only local infor-
mation.

Max-pooling matching (MPM) introduced by Cho et al. in [3] is one recent
example of such iterative algorithms. It applies max-pooling to preserve impor-
tant information while discarding irrelevant details making it more robust in
the presence of outliers. Some other methods that use a similar iterative app-
roach include re-weighted random walk matching (RRWM) [4], balanced graph
matching [5] and more [7].

Our approach is similar to MPM in that it applies max-pooling to discard
irrelevant details. Unlike MPM, pooling is not only applied among features of
one image but also in the second one. Another major difference is that the final
discretization step is replaced by a non-linear activation function applied at each
iteration and a winner-take-all (WTA) applied at the end, which is akin to local
inhibition observed among neural assemblies [16].

In the following section, we describe our ANN model and specify the details
of the matching algorithm it implements. We use a similar terminology as in [3]
in order to highlight the similarities and differences between the two algorithms,
and to show where the proposed model is positioned relative to the state-of-the-
art.

3 The Proposed Model

Feature correspondence is formulated as the problem of matching a graph G =
(V, E) to a sub-graph of G′ = (V ′, E ′), where E , E ′ are the sets of graph edges,
and V, V ′ are sets of nodes. Graph G represents an object with its features as
nodes in V. The same holds for G′ except that it might be representing a scene
including other objects than the one we are seeking to match.

We define an assignment matrix X ∈ {0, 1}n×n′
, where n and n′ denote the

number of nodes in V and V ′, respectively. We only set Xia = 1 when a feature
vi ∈ V matches another va ∈ V ′. We shall use a column-wise vectorized version
of X that we denote x ∈ {0, 1}nn′

.
We also define a unary similarity function sV (vi, v′

a) to describe similarities
among descriptor vectors of features in V and V ′, and a pairwise similarity
function sE(eij , e′

ab) with eij ∈ E and e′
ab ∈ E ′ as in [3,12]. We use these functions

to define a unary affinity vector yia = sV (vi, v′
a) with y ∈ Rnn′

, and a pairwise
similarity matrix A ∈ Rnn′×nn′

as:

Aia;jb =

{
sE(eij , e′

ab) if i �= j and a �= b.
0 otherwise.

(1)

Notice from (1) that A is a symmetric matrix, and that elements of its main
diagonal are always set to zero. The main diagonal does not hold the unary
similarity values as in most traditional algorithms [3,12]. These values are stored
in the vector y.

The neural network we propose for solving the correspondence problem is
constructed on the graph captured by the affinity matrix A, as in the example
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of Fig. 1. The architecture of this network is adapted from the sparse clustered
network (SCN) [9] which was proposed as a generalization of Palm-Wilshaw
networks [18].

Aia;jb

xia

xjb

row cluster i

row cluster j

column
cluster

a

column
cluster

b

Fig. 1. The architecture of the proposed neural network.

The network grid structure depicted in Fig. 1 corresponds to the 2D config-
uration of the assignment matrix X. As in SCNs, we impose a grouping con-
figuration on the network neurons in the form of clusters; neurons of the same
row are grouped into one cluster, and the same holds for neurons of the same
column. Thus, each neuron belongs to two clusters as shown in Fig. 1. Within
each cluster, a WTA activation constraint is imposed; only one neuron per clus-
ter can be active at the end of the network activity with a binary activation
level (0 or 1) captured by X as in [9]. However, during the network activity,
and before X reaches its final state, this constraint is relaxed into a k-winners-
take-all (kWTA) constraint, and we allow X to temporarily contain real values.
The connections between neurons are captured by the pairwise affinity matrix
A, and as we notice from (1), no connections exists between neurons of the same
cluster (Aia = 0) as in SCNs.

The WTA and kWTA constraints we impose within clusters are meant to
encourage the one-to-one matching constraint between features in V and V ′.
From a biological perspective, this is akin to the local competition among neural
assemblies enforced by short inhibitory synaptic connections [16].

The network activity starts by assigning to each neuron its unary affinity
value (Xia ← yia). Then, within each row cluster, every neuron receives the
max-pooled propagated activity of all other neurons to which it connects as
in [1,3]:

xt+1
ia ← xt

ia

∑
j∈V

max
b∈V′

xt
jbAia;jb, (2)

where the superscript t denotes the current iteration. The activity values within
this cluster are then normalized to their maximum, and a kWTA operation is
applied:

xt+1
ia ←− xt

iah(xt
ia − τ) : a ∈ V ′, (3)

where h(.) is the unit step function and τ ∈ [0, 1] is the kWTA activation thresh-
old. Another iteration is then applied, this time on column clusters. We alternate
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between row-wise and column-wise iterations until the convergence of X or until
a fixed maximum number of iterations it attained. Notice that for row clusters,
max-pooling and kWTA are applied row-wise, while they are applied column-
wise for column clusters.

Finally, an activation threshold is applied, where only neurons with a max-
imal activation value (xia = 1) are kept active while others are deactivated
(xia ← 0). A WTA operation is then applied within every row and column clus-
ter; if more than one neuron is active in a given cluster, they are all deactivated
and no winner is declared. This is equivalent to imposing an ‘at most’ one-to-one
matching constraint from V to V ′. The complete matching process we propose
is described in Algorithm (1).

Algorithm 1. Proposed matching algorithm.
input : Pairwise affinity matrix A, Unary similarity vector y
output: Assignment vector x
x ←− y
repeat

foreach i ∈ V do
foreach a ∈ V ′ do

xt+1
ia ← xt

ia

∑
j∈V maxb∈V′ xt

jbAia;jb

xt+1
ia ←− xt+1

ia

maxa∈V′ xt+1
ia

: a ∈ V ′

xt+1
ia ←− xt+1

ia h(xt+1
ia − τ) : a ∈ V ′

xt
ia ←− xt+1

ia

foreach a ∈ V ′ do
foreach i ∈ V do

xt+1
ia ← xt

ia

∑
b∈V′ maxj∈V xt

jbAia;jb

xt+1
ia ←− xt+1

ia

maxi∈V xt+1
ia

: i ∈ V
xt+1
ia ←− xt+1

ia h(xt+1
ia − τ) : i ∈ V

until x converges OR last iteration attained
xia ← δxia

1 : i ∈ V and a ∈ V ′ #δ is the Kronecker delta.
WTA: Zero all rows and columns in X with
more than one non-zero element.

To sum up, the network behavior consists in each neuron adding up its input
signals, which are the max-pooled weighted activities of other neurons. Then,
a non-linear activation function is applied to this neuron, taking into account
the activity level of other members of its cluster. This is akin to the classic
accumulate-and-fire neuron model of McCulloch-Pitts [15].

4 Experimental Evaluation

In order to evaluate our model, we compare its matching accuracy against a
number of state-of-the-art models on a synthetic benchmark. Synthetic datasets
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are typically used for assessing performance of matching algorithms because they
allow better control of test parameters.

The synthetic dataset is built as follows. Two graphs G = {V, E} and G′ =
{V ′, E ′} are constructed, where V,V ′ ⊂ R2 and E , E ′ ⊂ R. Then, nin points
that we call inliers are generated from a uniform random distribution on [0, 1]2,
and are added to V. These inliers are also copied to V ′ after the addition of
a Gaussian noise N (0, σ2). After that, we add nout outliers, generated from
the same uniform random distribution [0, 1]2, to each of V and V ′. Pairwise
similarities are computed as follows:

sE(eij , e′
ab) = exp(−∣∣‖vi − vj‖ − ‖v′

a − v′
b‖

∣∣). (4)

Unary similarities are always set to one sV (vi, v′
a) = 1 so that points are

matched using only their pairwise geometric information. The kWTA activation
threshold is set to τ = 0.98 in all of our experiments. We noticed that in most
cases, convergence is attained after 5 to 10 iterations. However, as in [3], a
theoretical guarantee for convergence is not yet proved but is worth exploring.

Fig. 2. Experimental comparison of the proposed model’s accuracy with several state-
of-the-art models on a synthetic dataset. In (a), no outliers are present, and the stan-
dard deviation σ of the Gaussian noise is varied. In (b) and (c), the number of outliers
is varied for a fixed value of σ. The same number of outliers shown on the horizontal
axis is added to both sets V and V ′.

We compare our model to MPM [3], RRWM [4], IPFP [13] and SM [12]. We
are only interested in finding matches between inliers in V and V ′, outliers are
used to represent clutter. We use the models’ mean accuracy as a convenient
performance criterion. Accuracy is measured as the ratio of the number of cor-
rect matches to the total number of inliers. Comparisons results are shown in
Fig. 2. We notice that in the presence of outliers, our model’s accuracy becomes
significantly better than other models’ as the number of outliers increases. This
is an interesting property since clutter and deformation are ubiquitous in natural
images. This robustness is due to the max-pooling and the kWTA operations
that we apply to reduce the effect of false matches on the final result. Notice
also that accuracy of our model is still higher than MPM’s and SM’s when no
outliers are present, but lower than that of RRWM and IPFP. However, as stated
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in [3], comparing accuracies in the absence of outliers is a less realistic situation
as outliers are almost always present in natural images, and robustness against
clutter is essential in such situations.

5 Conclusion and Future Work

In this paper, we proposed a new approach for treating the feature correspon-
dence problem using artificial neural network. We compared our model to state-
of-the-art algorithms, and showed that it enjoys a higher robustness to outliers
thanks to the application of max-pooling and kWTA operations, and to alter-
nating rows and columns during iterations. This robustness to outliers is an
essential property for matching objects in cluttered scenes. Further development
of our model will include searching for a better way of choosing final matches
than zeroing rows and columns of the assignment matrix containing more than
one winner. We think that it is a simple but a brutal procedure that might be
excluding some good matches. We shall also test the performance of the model
in the context of natural images, which would give a more precise evaluation of
the advantage of using this neural network model for solving the correspondence
problem.
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