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Abstract. Thanks to their state-of-the-art performance, deep neural
networks are increasingly used for object recognition. To achieve the
best results, they use millions of parameters to be trained. However,
when targetting embedded applications the size of these models becomes
problematic. As a consequence, their usage on smartphones or other re-
source limited devices is prohibited. In this paper we introduce a novel
compression method for deep neural networks that is performed during
the learning phase. It consists in adding an extra regularization term
to the cost function of fully-connected layers. We combine this method
with Product Quantization (PQ) of the trained weights for higher sav-
ings in storage consumption. We evaluate our method on two data sets
(MNIST and CIFAR10), on which we achieve significantly larger com-
pression rates than state-of-the-art methods.

1 Motivation

Deep Convolutional Neural Networks (CNNs) [1,2,3,4] have become the state-
of-the-art for object recognition and image classification. As a matter of fact,
most recently proposed systems are using this architecture [5,6,4,7,8,9]. With
this global trend arise questions on how to to import CNNs on embedded plat-
forms [10], including smartphones, where data storage and bandwidth are lim-
ited. Today the size of a typical CNN is often too large (typically hundred of
megabytes for vision applications) for most smartphone users. The purpose of
this paper is to propose new techniques for compressing deep neural networks
without sacrificing performance.

In this work we focus on compressing CNNs used for vision, although our
methodology is not taking any advantage of this particular application field and
we expect it to perform similarly on other types of learning tasks. A typical state-
of-the-art CNN [5,7,8] for visual recognition contains several convolutional layers
followed by several fully connected layers. For the most challenging datasets,
these layers may require hundred of millions of parameters to be trained in
order to be efficient.

These parameters are overparameterized [11] and we aim at compressing
them. Note that our motivation is mainly to reduce the model size rather than
speeding up the computation time [12].

Compressing deep neural networks has been the subject of several recent
works. In [12] and [13] the authors use compression methods for speeding up
CNN testing time.
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More recently, some works focus on compressing neural network specially to
reduce storage of the network. These works can generally be put into two dif-
ferent categories: some of them focus on compressing the fully connected layers
and others on compressing the convolutional layers. In [14] the authors focus on
compressing densely connected layers. In their work, they use signal processing
vector quantization methods [15,16] such as k-means or Product Quantization
(PQ). In [17] the authors focus on compressing the fully connected layers of a
Multi-Layer Perceptron (MLP) using Hashing Trick, a low cost hash function to
randomly group connection weights into hash buckets, and set the same value to
all the parameters in the same bucket. In [18] the authors propose compressing
convolutional layers using a Discrete Cosinus Transform applied on the convo-
lutional filters, followed by Hashing Trick, as for the fully connected layers.

An interesting point showed by [14] is that in a typical sate-of-the-art CNN,
more than 90% of the storage is taken up by the densely connected layers,
whereas about 90% of the running time is taken by the convolutional layers. This
is why, in order to compress the size of a CNN, we mainly focus on compressing
the densely connected layers.

Instead of using a post-learning method to compress the network, our ap-
proach consists in modifying the regularization function used during the learning
phase in order to favor quantized weights in some layers – especially the output
ones. To achieve this, we use an idea that was originally proposed in [19]. In order
to compress furthermore our obtained networks, we also use PQ as described in
[14] afterwards. We perform some experiments both on Multi-Layer Perceptrons
(MLP) and Convolutionnal Neural Networks.

In this paper, we introduce a novel strategy to quantize weights in deep
learning systems. More precisely:

– We introduce a regularization term that forces weights to converge to either
0 or 1, before using the product quantization on the trained weights.

– We show how this extra term impacts performance depending on the depth
of the layer it is used onto.

– We experiment our proposed method on celebrated benchmarks and compare
with state-of-the-art techniques.

The outline of the paper is as follows. In Section II we discuss related work.
Section III introduced our methodology for compressing layers in deep neural
networks. In Section IV we run experiments on celebrated databases. Section V
is a conclusion.

2 Related Work

As already mentioned in the introduction, the densely connnected layers of a
state-of-the-art CNN usually involve hundreds of millions of parameters, thus
requiring an important storage that may be hard to obtain in practice. Several
works have been published on speeding up CNN prediction speed. In [20] the
authors use tricks of CPUs to speed up the execution of CNN. In [21], the authors
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show that carrying the convolutionnal operations in the Fourrier domain may
lead to a speed-up of 200%. Two very recent works, [12,13], use linear matrix
factorization methods for speeding up convolutions and obtain a 200% speed-up
gain with almost no loss in classification accuracy.

The previously mentionned works mainly focus on speeding up the CNN
feedforward operations. Recently, several works have been devoted to compress-
ing the CNN size. In [11], the authors demonstrate the overparametrization in
neural network parameters. Indeed, they show that only 5% of parameters are
enough to accurately predict the 95% remaining ones. These results motivate
[9] to apply vector quantization methods to benefit from redundancy and com-
press the network parameters. This compression allows them to obtain results
similar to those of [11]: they are able to achieve a compression rate of about 20
without sacrificing accuracy. In their paper, they tackle the model size issue by
applying PQ on the trained weights. They are able to achieve a good balance
between storage and test accuracy. For the ImageNet challenge ILSVRC2012,
they achieve a 16-24 compression rate for the whole network with only 1% loss
on accuracy, using a state-of-the-art CNN.

In [17], for the first time a learn-based method is proposed to compress neural
networks. This method, based on Hashing Trick, allows efficient compression
rates. In particular, they show that compressing a large neural network may
be more efficient than directly training a smaller one: in their example they
are able to divide the loss by two using a eight times larger neural network
compressed eight times. The same authors also propose in [18] to compress filters
in convolutional layers, arguing that the size of the convolutional layers in state-
of-the-art’s CNN is increasing year after year. Using the fact that learned CNN
filters are often smooth, their Discrete Cosinus Transform followed by Hashing
Tricks allows them to compress a whole neural network without loosing too much
accuracy.

3 Methodology

In this section, we present two methods for compressing the parameters in CNN
layers. First we introduce the PQ method from [14], and then we introduce our
proposed learn-based method.

3.1 Product Quantization (PQ)

This method has been extensively studied in [14]. The idea is to exploit the inner
redundancy of trained weights. In order to do that, the authors propose to use
PQ.

PQ consists of partitioning the parameters space into disjoint sub-spaces,
and performing quantization in each of them. The term “product” refers to the
fact that the quantized points in the original parameter space are the cartesian
product of the quantized points in each sub-space. PQ performs increasingly
better as the redundancy in each subspace grows.
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Specifically, given a layer L, let us denote by W the matrix of the corre-
sponding weights and by (m,n) the dimensions of W. Assumming n is divisible
by s, we can partition W column-wise into s sub-matrices:

W = [W 1,W 2, ...,W s], (1)

where W i ∈ Rm(̇n/s). In [14], the authors point out that applying PQ on the
x-axis or the y-axis of W does not leads to major diffference in experiments. We
can then perform k-means for each sub-matrix W i, i.e. minimize:

m∑
z=1

k∑
j=1

‖wi
z − cij‖22, (2)

where wz
i denotes the z-th row of sub-matrix W i, and cij denotes the j-th row

of sub-codebook Ci ∈ Rk(̇n/s). The ci which minimize this expression are named
centroids.

Thus, the reconstructed matrix is:

Ŵ = [Ŵ 1, Ŵ 2, ..., Ŵ s], (3)

where
ŵi

j = cij , j being a minimizer of min
j
‖wi

z − cij‖22.

We replace wi
j by ŵi

j : the nearest centroid of wi
j . We need to store the

nearest centroid indexes for each wi
j and codebooks of all the ŵi

j for each
sub-vector. The codebook is not negligible, therefore the compression rate is
(32mn)/(log2(k)ms+32kn). With a fixed segment size, increasing k will lead to
decreasing the compression rate.

3.2 Proposed method

Our proposed method is twofold: first, we use a specific added regularization
term in order to attract network weights to binary values, then we coarsely
quantize the output layers.

Let us recall that training a neural network is generally performed thanks
to the minimization of a cost function using a derivative of a gradient descent
algorithm. In order to attract network weights to binary values, we add a bi-
narization cost (regularizer) during the learning phase. This added cost pushes
weights to binary values. As a result, solutions of the minimization problem are
expected to be binary or almost binary, depending on the scaling parameter of
the added cost with respect to the initial one. This idea is not new, although we
did not find any work applying it to deep learning in the literature. Our choice
for the regularization term has been greatly inspired by [19].

More precisely, let us denote by W the weights of the neural network, f(W )
the cost associated with W , hW (X) and y(X) respectively the output and the
label for a given input X, we obtain:
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f(W ) =
∑
X

‖hW (X)− y(X)‖2 + α
∑
w∈W

‖w − 1‖2‖w + 1‖2 , (4)

where α is a scaling parameter representing the importance of the binariza-
tion cost with respect to the initial cost. Note that possible values for binary
weights have been empirically explored and those centered on 0 (here {−1,+1})
led to the best results.

Finding a good value for α may be tricky, as a too small value results in a
failure of the binarization process and a too large value results in the creation
of local minima that will prevent the network from successfully training. To
facilitate this selection of α, we use a barrier method [19] that consists in starting
with small values of α and incrementing it regularly to help the quantization
process. In our experiments, at each iteration, we multiply α by a constant
c = 1.001.

We observed that some layers are typically very well quantized at the end
of this learning phase, whereas others are still far from binary. For that reason
we then binarize some of the layers but not all. Again, this selection is made by
exploring empirically the possibilities, for example using the results depicted in
Figure 1.

In order to improve further our compression rate, we then use the PQ method
presented in the previous subsection.

The compression rate for our method is (32mn)/(kn + log2(k)ms) (instead
of (32mn)/(32kn + log2(k)ms) for single Product Quantization). With a fixed
segment size, increasing k will lead to decreasing the compression rate.

4 Experiments

We evaluate these different methods on two image classification datasets : MNIST
and CIFAR10. The parameters used for Product Quantizer are a segment size
m varying in {2, 4, 5, 8} and a number of cluster k varying in {4, 8, 16}.

4.1 Experimental settings

MNIST The MNIST database of handwritten digits has a training set of 60,000
examples, and a test set of 10,000 examples. It is a subset of a larger set available
from NIST. The digits have been size-normalized and centered in a fixed-size im-
age. The neural network we use with MNIST is LeNet5. LeNet5 is a convolutional
neural network introduced in [22].

CIFAR10 The CIFAR10 database has a training set of 50,000 examples, and
a test set of 10,000 examples. It is a subset of a larger set available from the 80
million tiny images dataset. It consists of 32x32 colour images partitioned into
ten classes. With the CIFAR10 database, we use a convolutional neural network
made of four convolutional layers followed by two fully connected layers. This
network has been introduced in [23].
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4.2 Layers to quantify

Our first experiments (with the MNIST database) depicted in Table 1 shows
the influence of quantified layers on performance. We observe that performance
strongly depends on which layers are quantized. More precisely, this experiment
shows that one should quantize layers from the output to the input rather than
the contrary. This result is not surprising to us as input layers have often been
described as similar to wavelet transforms, which are intrinsically analog oper-
ators, whereas output layers are often compared to high level patterns which
detection in an image is often enough for good classification results.

Layer 0 Layer 1 Layer 2 Layer 3 Test error
- - - - 0,90%

binarised - - - 23,19%
binarised binarised - - 81,26 %
binarised binarised binarised - 90,26%
binarised binarised binarised binarised 90,1 %

- binarised binarised binarised 7,54%
- - binarised binarised 1,13%
- - - binarised 0,88%

Fig. 1. Performance of the classification task depending on which layers of the network
are quantized, on the MNIST database. Layer 0 is the input layer, whereas layer 3 is
the output one.
4.3 Performance comparison

Our second experiment shows a comparison with previous work. The results are
depicted in Figure 4.3. Note that in both cases compared networks have the
exact same architecture.

As far as our proposed method is concerned, we choose to compress only the
two outputs layers, which are fully connected. Since their sizes are distinct, we
are not able to use the same PQ coefficients k and m twice. Note that layer 2
contains almost all weights and is therefore the one we chose to investigate the
role of each parameters.

We observe that our added regularization cost allows to significantly improve
performance. For example for the MNIST database, if we want to respect a loss
of 2%, we have a compression rate of 33 with single PQ, whereas our learn-based
method leads to a compression rate of 107.

This compression rate concern only the two output layers. Howewer, as the
output layers contains almost all weights, we still have a significant compression:
on this specific example, using our proposed method the memory used to store
the network weights fall down from 26MB to 550kb.

5 Conclusion and Perspectives

In this paper we introduced a new method to compress convolutional neural
networks. This method consists in adding an extra term to the cost function
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Fig. 2. Comparison of our proposed method with previous work on the MNIST dataset.

that forces weights to become almost binary. In order to compress even more
the network, we then apply Product Quantization and the combination of both
allows us to reach performance above state-of-the-art methods.

We also demonstrate the influence of the depth of the binarized layer on
performance. These findings are of particular interest to us, and a motivation to
further explore the connections between actual biological data and deep neural
systems.

In future work, we consider applying this method to larger datasets (e.g. Im-
ageNet). Such datasets typically require larger networks, leading to an increased
interest in obtaining good compression factors. In addition, these network are
expected to be deeper, and thus allow studying thoroughly the impact of bina-
rization depending on the deepness of layers. We also consider exploring more
complex regularization functions, in particular in order to extend our work to
q-ary values, q being layer-dependent and determined on the fly.

Finally, the next step consists in making activities of neurons also binary.
With both connections and activities binary, one could propose optimized digital
implementations of these networks leading to higher throughput, lesser energy
consumption and lesser memory usage than conventional implementations.
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