
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016 375

Twin Neurons for Efficient Real-World Data
Distribution in Networks of Neural Cliques:

Applications in Power Management
in Electronic Circuits

Bartosz Boguslawski, Student Member, IEEE, Vincent Gripon, Member, IEEE,
Fabrice Seguin, and Frédéric Heitzmann

Abstract— Associative memories are data structures that allow
retrieval of previously stored messages given part of their content.
They, thus, behave similarly to the human brain’s memory that
is capable, for instance, of retrieving the end of a song, given
its beginning. Among different families of associative memories,
sparse ones are known to provide the best efficiency (ratio of
the number of bits stored to that of the bits used). Recently,
a new family of sparse associative memories achieving almost
optimal efficiency has been proposed. Their structure, relying
on binary connections and neurons, induces a direct mapping
between input messages and stored patterns. Nevertheless, it
is well known that nonuniformity of the stored messages can
lead to a dramatic decrease in performance. In this paper, we
show the impact of nonuniformity on the performance of this
recent model, and we exploit the structure of the model to
improve its performance in practical applications, where data are
not necessarily uniform. In order to approach the performance
of networks with uniformly distributed messages presented in
theoretical studies, twin neurons are introduced. To assess the
adapted model, twin neurons are used with the real-world data
to optimize power consumption of electronic circuits in practical
test cases.

Index Terms— Associative memory, clique, power
management, real-world data, twin neurons.

I. INTRODUCTION

A. Associative Memories Overview and Problem Statement

IN TRADITIONAL indexed memories, data are addressed
using a known pointer. The principle of associative

memories is different: data retrieval is accomplished presenting
a part (possibly small) of it. Because of the partial input,
the rest of the information is retrieved, and consequently no
address is needed. As a toy example, retrieving the password

Manuscript received August 14, 2014; revised September 15, 2015; accepted
September 17, 2015. Date of publication October 26, 2015; date of current
version January 18, 2016. This work was supported in part by the European
Research Council (ERC-AdG2011 290901 NEUCOD).

B. Boguslawski and F. Heitzmann are with Université Grenoble Alpes,
Grenoble F-38000, France, and also with French Alternative Energies and
Atomic Energy Commission (CEA)–Research Institute for Electronics and
Information Technologies (LETI), Minatec Campus, Grenoble F-38054,
France (e-mail: bartosz.boguslawski@cea.fr; frederic.heitzmann@cea.fr).

V. Gripon and F. Seguin are with the Electronics Department, TELECOM
Bretagne, Brest 29238, France (e-mail: vincent.gripon@telecom-bretagne.eu;
fabrice.seguin@telecom-bretagne.eu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2480545

of a user given its name in a database is typically a request of
an associative memory. Associative memories are widely used
in practical applications, for instance databases [1], intrusion
detection [2], processing units’ caches [3], or routers [4].

In order to assess the performance of associative memories,
several parameters can be introduced. Probably the most
important one [5] is termed memory efficiency and is defined
as the best ratio of the total number of bits stored to the total
number of bits used to store the memory itself, for a targeted
performance. Note that this ratio is trivially one for indexed
memories. Another important parameter is the computational
complexity that depends on the operations needed to perform
the retrieval. Again, this parameter usually makes no sense for
the traditional memories in which computational complexity
is often considered to be of O(1).

In practice, one can distinguish two main families of
associative memories, namely, content-addressable mem-
ory (CAM) [6] and neuroinspired memories. A CAM com-
pares the input search word against the stored data, and returns
a list of one or more addresses where the matching data word
is stored. CAMs combine memory efficiency with zero error
rate and are often used in electronics, for example in network
routers [6]. However, since it is a brute-force approach, the
number of comparisons between the input search word and the
stored data results in high complexity and energy consump-
tion [7]. Moreover, CAMs assume that stored messages are
couples, where only the second item can be erased in an input.
Ternary CAM expands CAM functionality, allowing don’t care
bits matching both 0 and 1 values, thereby offering more
flexibility. However, this comes at an additional cost, as the
memory cells must encode three possible states instead of the
two in the case of binary CAM. Consequently, the cost of par-
allel search within such a memory becomes even greater [8].

Neuroinspired associative memories combine lower com-
plexity with higher flexibility, at the cost of reduced efficiency.
In this category, Hopfield neural networks [9] is the most
prominent model. In this model, stored messages are projected
onto the connection weights of a complete graph. Nevertheless,
when the size of this network is increased, the efficiency
decreases. Sparse networks originally proposed in [10] use
a small subset of connections to store each message, resulting
in a much better efficiency [11]. Furthermore, the works

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



376 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

from [12] are also known to allow storing large number of
messages.

Recently, Gripon and Berrou [13] proposed a new model
that can actually be seen as a particular Willshaw network with
cluster structure. This modification allows efficient retrieval
algorithm without diminishing performance. This model is
able to store a large number of messages and retrieve them,
even when a significant part of the input is erased. The
simulations of the network working as a data structure or an
associative memory proved a huge gain in performance com-
pared with Hopfield network [9] and Boltzmann machine [14]
(when using comparable material) [13]. The fact that the
network is able to retrieve messages with erasures on any
position, or in the presence of noise, gives it an advantage
over CAMs. These interesting properties originate in error
correcting codes that underlie this network’s principles [15].

The network as presented in [13] is analyzed only for
uniform independent identically distributed values among all
the messages. By the network construction, this means that the
number of connections going out from each node is uniformly
distributed across the whole network. It is well known that
nonuniformity of messages to store can lead to a dramatic
decrease in performance [16]. On the other hand, it is expected
that real-world applications may contain highly correlated
data. In order to approach the theoretical performances in
real-world applications, the model needs to be improved.

B. Related Work

The impact of nonuniform data stored in the network
introduced in [13] was analyzed in the work [17]. We exploit
the structures of these networks to introduce several techniques
in order to efficiently store the nonuniform data. First, the
technique from [16] consisting in adding an additional layer
to Willshaw network is adapted to the cluster structure of
the network [13]. It is a simple method yet it requires a
significant increase in the network size. The most efficient
method introduced in [17] is based on Huffman coding. This
approach exploits compression codes properties to minimize
the impact of nonuniform data and gives very good results.
However, it is an offline method where all the data have to be
known in advance to compute the words of the code. It also
requires additional operations related to coding and decoding.

C. Contributions

In this paper, a new technique that addresses the limitations
of the formerly proposed methods is developed. The main
contributions of this paper are the following.

1) The strategy based on Huffman coding proposed in [17]
is modified to better suit real-world applications. It is
shown to be much more efficient in a practical scenario
compared with the best technique in [17].

2) A new online method is proposed in which coding/
decoding phases are not necessary and there is no
need to know the whole set of data in advance.
This makes it much more flexible and suitable for
real-world applications. Moreover, the new method
offers better performances.

3) The new strategy is assessed in practical applications to
manage power consumption of electronic circuits where
real-world data from simulations and measurements is
used. The results clearly indicate the interest of adapting
the model proposed in [13].

This paper is organized as follows. Section II outlines the
theory of the network. The problem of storing nonuniform data
is explained in Section III. Section IV gives an overview of the
techniques to store nonuniform data that were introduced in
earlier work and proposes a new strategy improved for practi-
cal applications. Furthermore, it presents a theoretical analysis
and an extensive comparison of the different techniques allow-
ing storage of nonuniformly distributed data. In Section V,
networks of neural cliques are applied in practical test cases to
present the interest of adapting the formerly presented model
to nonuniform data inherent in these applications.

II. SPARSE NEURAL NETWORKS WITH

LARGE LEARNING DIVERSITY

In this section, we introduce the family of sparse associative
memories described in [13].

A. Message Definition

Throughout this paper, we consider that associative mem-
ories store messages that they are later capable of retrieving
given a sufficiently large part of their content. In order to ease
the readability of this document, and without loss of generality,
we consider that a message consists of c submessages or
segments. Each segment can be seen as a binary vector whose
values range from 0 to �−1. An exemplary message, for c = 4
and � = 4, is m = {10 00 01 11} (to be read 2 0 1 3).

B. Network Structure

In order to store messages, we use a network that
consists of binary neurons and binary connections.
Gripon and Berrou [13] use the term fanal (which means
lantern or beacon) instead of neuron for two reasons: 1) at a
given moment, in normal conditions, only one fanal within a
group of them can be active and 2) for biological inspirations,
fanals do not represent neurons but microcolumns [18].
Fig. 1 shows the general structure of the network and
the notation. All the n fanals are organized in c disjoint
groups called clusters. Fanals belonging to specific clusters
are represented with different shapes. Each cluster groups
� = n/c fanals. A node in the network is identified by its
index (i, j), where i corresponds to the cluster number and
j to the number of the fanal inside the cluster. The
connections are allowed only between fanals belonging
to different clusters, i.e., the graph is multipartite. The
connection between two fanals is denoted by a binary
weight w(i, j )(i ′, j ′). Contrary to classical neural networks, the
connections do not possess different weights, the connection
exists or not. Hence, the weight (or adjacency) matrix of
such a network consists of values {0, 1} where 1 indicates
the connection between two fanals, and 0 is the lack of the
connection.



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 377

Fig. 1. Network general structure and notation. Different shapes
(circles and squares) represent fanals belonging to different clusters.

C. Message Storing Procedure

To store a message m in the network, each of its c segments
is associated with a distinct cluster, and more precisely with
a unique fanal in its cluster (the one that index corresponds
to the value of the segment). Then, this subset of fanals is
fully interconnected forming a clique representing the message
in the network. This term is also used in neurobiology to
describe such groupings of neurons [19]. When a new message
shares the same connection as an already stored message,
this connection remains unchanged. Therefore, the result of
the storage procedure is independent of the order in which
messages are presented to the network. For more details about
this storing procedure, refer to [13].

D. Message Retrieval Procedure

We call retrieval the process of retrieving a previously
stored message when only part of its corresponding fanals
is known. After the storing of all messages, the retrieval
process is organized as follows. First, the known segments
of the input message are used to stimulate appropriate fanals,
i.e., the value on the given segment indicates which fanal
should be chosen. These fanals are said to be active. After
the initial stimulation, message passing phase comes next. The
activated fanals send unitary signals to other clusters through
all of their connections. Then, each of the fanals calculates
the sum of the signals it received. Compared with [13], we
take advantage of the improvement proposed in [20] that
consists in summing only the signals from distinct clusters.
This modification simplifies the hardware implementation as
well [21]. Within each cluster, the fanal having the largest
sum is chosen and its state becomes 1, i.e., it is made active.
The other fanals inside the cluster represent the state equal
to 0. The rule according to which the active fanal inside
the cluster is elected is called winner takes all. The whole
process may be iterative, allowing the fanals to exchange
information with each other, such that ambiguous clusters
(those containing more than one active fanal) will hopefully
be correctly retrieved. When more than one iteration is needed
(input with significant noise or erasures resulting in nonunique
fanal with the largest sum) an extra value is added to the
score of the last winners in the next iteration. More details
on adjusting this memory effect are given in [13]. Because of
this iterative retrieval procedure, the network converges step
by step to the targeted previously stored message. In some
cases though, it may happen that the output message is not

correct, leading to nonzero error probability in the retrieval
process.

As a result of the strong correlation brought by the
connections of the clique embodying a message in the
network, it is possible to retrieve the stored message based on
partial or noisy information put into the network. In order to
target the first applications [22], the network was implemented
in hardware [23].

III. NONUNIFORMLY DISTRIBUTED MESSAGES

A. Density and Error Probability Definition

As previously stated storing messages in the network corre-
sponds to creating subgraphs of interconnected fanals. When
the number of stored messages increases, these subgraphs
share an increasing number of connections. Consequently,
distinguishing between messages is more difficult. As a logical
consequence, there is an upper bound for the number of
distinct messages one can store then retrieve for a targeted
maximum error probability. The network density d is defined
as a ratio of the established connections to all the possible
ones. Therefore, the density is a parameter of first impor-
tance to assess the network performance. A density close
to 1 corresponds to an overloaded network. In this case, the
network will not be able to retrieve stored messages correctly.
For a network that stored M uniformly distributed messages
expected density d is expressed by the following formula or
its first-order approximation:

d = 1 −
(

1 − 1

�2

)M

≈ M

�2 when M � �2. (1)

The probability of correctly retrieving a message with
ce positions erased in a network constructed of c clusters is
given by

P = (1 − dc−ce )(�−1)ce . (2)

This equation is valid for a single iteration. The probability of
error increases with d , which is expressed by (1). Note that in
the case of large density, iterations improve the ability of the
network for retrieving messages correctly, what is confirmed
by the evaluated simulations.

However, these equations only hold when input messages
are drawn uniformly at random. Correlation between stored
messages can lead to a dramatic decrease in the performance
of such memories.

B. Nonuniform Distribution Example

Fig. 2 shows a case of a network made of four clusters.
Fanals belonging to specific clusters are represented with
different shapes. There are four fanals per cluster. The number
of segments in the messages is four, each cluster corresponding
to a given segment, and on each segment one of the four values
is chosen. Cliques are formed by lines connecting fanals.
Fig. 2 shows a situation where four messages are stored, each
type of the line representing a different clique.

For a set of messages stored in the network, some fanals
can have much more connections than the others. One can
observe that in all of the clusters except cluster I, each node



378 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Fig. 2. Network with nonuniformly distributed messages. Different shapes
(filled or empty circles or squares) represent fanals belonging to different
clusters, and different types of lines represent connections belonging to distinct
cliques. Clusters are numbered—they represent segments of messages.

Fig. 3. Evolution of the error rate as a function of the number of stored
messages for different types of data distributions. The network composed of
eight clusters of size 256, and four randomly erased positions. For each point,
100 networks are evaluated doing 100 tests per network. The arrows indicate
standard deviations of the error rates.

has the same number of connections. This means that on the
segments II–IV of the messages each of the four possible
values occurred. However, in the cluster I, only one of the
fanals is always used, i.e., the value on the first segment is
constant. This simple example depicts how the distribution
of data stored in the network maps to the interconnection
structure.

Fig. 3 shows the evolution of the error retrieval rate for
a larger network with c = 8 and � = 256. In that specific
case, half the clusters are not provided with information. This
means that only four randomly chosen segments of a message
are known, the remaining are erased. Hence, only four fanals
are initially stimulated in four clusters. Fig. 3 shows also
the theoretical curve for a single iteration and the network
density. Note the interest of the iterative character of the
decoding process. The simulation shows that the network of
n = 2048 fanals can store up to 15 000 uniform messages of

64 bits each and retrieve them with a very high probability
(error rate 0.029 for four iterations allowed) even when half
the clusters are not provided with information. However,
when the messages are generated from the truncated Gaussian
distribution (mean μ = 135 and standard deviation σ = 25),
only 2000 messages can be stored (error rate 0.047). The
truncated Gaussian distribution, contrary to the uniform one,
implies that on a given segment of messages some values occur
much more often than the others. Fig. 3 also shows a curve
(indicated with a dot) for a data with a specific correlation
between the values within each message. Within each message,
either odd or even values are allowed. This means that if on the
first segment there is an odd value, one knows that all the other
values are odd (e.g., m = {1 3 5 7 9 11 13 15} in decimal). For
this data set, the network can store 8000 messages and retrieve
them with the same error probability as in the uniform case.
One can see that the correlation in the stored data clearly shifts
the curve toward lowest number of stored messages. In this
example, the same network filled with normally distributed
data can store only 13% of the number of uniformly distributed
messages.

As in most applications data cannot be considered uniform,
it is of first importance to introduce techniques to counterbal-
ance the effects of correlation on performance.

IV. LIMITING LOCAL DENSITY FOR STORING

NONUNIFORM DATA

A. Using Compression Codes

In [17], compression codes (more precisely Huffman
lossless compression coding [24]) were applied to store
nonuniform data. The core idea relies on the fact that
Huffman coding produces variable-length codewords—the
values that occur most frequently are coded on a small number
of bits, whereas less frequent values occupy more space.
One dictionary is constructed for each segment of all the
messages. Such procedure results in variable-length segments,
the most often occurring values being the shortest. Therefore,
the sizes of the frequent values that break the uniformity are
minimized. The free space obtained within each segment is
filled with random uniformly generated bits. Consequently,
the most often appearing values are associated with the largest
number of randomly chosen fanals, and the influence of local
high-density areas is minimized. Decoding is possible because
of the prefix-free property. This means that a set of bits
(codeword) representing a value on a given segment is never
a prefix of another codeword used for the same segment.
For instance, a code consisting of {01, 11} is a prefix-free
code. Strictly speaking, in order to decode the retrieved
encoded message, each segment is compared bit by bit with
its dictionary. When a codeword is met, one knows that these
bits are useful, the remaining being the random ones.

The baseline for the comparisons given in [17] is a strategy
that consists in adding a number of random uniformly
generated bits to each segment of a message. This simple
method allows to spread a value across a group of fanals
without the need to use a compression code and is added to
the comparisons in this paper as well.



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 379

Fig. 4. Message storing procedure for twin fanals; pseudocode.

The results presented in [17] show that using compression
codes is an effective solution for storing nonuniform data.
Compression codes, however, require additional operations
related to coding and decoding. Moreover, the whole set of
messages has to be known to construct the words of the code.

B. Introducing Twin Neurons

In order to avoid the additional cost related to coding and
decoding and provide an online and flexible approach where
the whole set of messages does not have to be known, a new
strategy to store nonuniform messages is developed here.

The principle of the method is to introduce twin neurons,
i.e., changing the role of neurons in response to data distribu-
tion. If a fanal is overloaded (has high local density) another
fanal will be designated to represent the same information. The
pseudocode in Fig. 4 outlines the new algorithm which relies
on modifying the message storing procedure. Before storing
messages, the fanal’s connection limit (ConnectionsLimit) is
chosen. Furthermore, an association table (AssocTab) con-
necting each value on each segment with a specific fanal is
necessary. Initially this table is empty. Alternatively, instead of
the association table, fanals representing the same value can be
interconnected. When a fanal is initially stimulated, it sends
signals to all the other fanals in its cluster associated with
the same value. Then, all the activated fanals start exchanging
signals on the global (intercluster) level. Depending on the
hardware/software implementation cost tradeoff or biological
plausibility aspects any of the solutions can be chosen. In this
paper, the association table is used.

After storing each message, the total number of outgoing
connections of each fanal belonging to the newly created
clique is controlled (line 18). If this number exceeds a formerly
defined threshold, and there are unassociated fanals available
in this cluster (line 19), a new fanal is associated with this
value (line 20). This is similar to adding random bits that
spread a given value over a number of fanals and results in
limiting the local density. If there is no additional fanal left,
the association table remains unchanged, and for each value,
the last associated fanal is used. In order to retrieve a message
based on partial input, all the fanals associated with the values
on the known segments are stimulated.

As the result of this method, the network automatically
adapts to the distribution of the stored data efficiently using the
available material. Limiting local densities improves retrieval
performance.

The method relying on Huffman coding is an algorithmic
solution and, therefore, not very satisfactory in terms of
biological plausibility. Storing messages according to the
procedure described in this subsection exploits the fact that
fanals that are close to each other receive inputs that are
relatively close and become clones of each other called twins.
Increasing the spatial diversity of the stored information allows
reducing the density of the most stressed parts of the network.

C. Theoretical Analysis

For the presented curves, the improved retrieval procedure is
used where only the signals from distinct clusters are included
in the sum calculated by each fanal.



380 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Based on the probability of correctly retrieving a mes-
sage (2) one can obtain the probability of error after one
iteration of the retrieval procedure as

Pe = 1 − P. (3)

The error probability in the case of nonuniform data is
analyzed with the following nonuniform distribution. On the
first segment, the value one is chosen with probability p,
any other value is chosen with the same probability that
equals 1 − p/� − 1. The rest of the c − 1 segments are drawn
uniformly. To simplify the discussion, this distribution is called
first segment anomaly (FSA).

As a consequence, the density between any two clusters
associated with the last c−1 segments is unchanged. Between
the first cluster and any other one, the density is

d ′ = 1 −
(

1 − 1 − p

�(� − 1)

)M

(4)

for any value on the first segment that is not one, and

d ′
1 = 1 −

(
1 − p

�

)M

(5)

for the first segment equal one.
The error probability changes depending on whether the

first segment equals one (to simplify the discussion, we call
this case π) or is different from one (π) and whether the first
segment is erased (ε) or not erased (ε). In the following part
of this subsection, all the theoretical error probabilities are
expressed with appropriate equations.

In case πε, the error probability after one iteration of the
retrieval procedure is

Pe,πε = 1 − (1 − d ′c−ce)�−1 · (1 − dc−ce)(ce−1)(�−1). (6)

In case πε

Pe,πε = 1 − (
1 − d ′

1 · dc−ce−1)ce(�−1)
. (7)

In case πε

Pe,πε = (1−d ′c−ce)�−2 · (1−dc−ce)(ce−1)(�−1) · (1−d ′c−ce).

(8)

In case πε

Pe,πε = 1 − (1 − d ′ · dc−ce−1)ce(�−1). (9)

When using one of the techniques described in this paper
(compression codes or twin fanals), the fanal corresponding to
value one in the first cluster is duplicated when the density of
its connections is large enough. Ideally, the density becomes
constant and thus equals d ′ < d . The number of fanals
n1associated with value one in the first cluster is

n1 = log
(
1 − p

�

)
log

(
1 − 1−p

�(�−1)

) . (10)

As a result, in case π , Pe,πε is unchanged and Pe,πε

becomes

P ′
e,πε = 1 − (1 − (1 − (1 − d ′)n1) · dc−ce−1)ce(�−1). (11)

Fig. 5. Error rate for FSA and uniform distributions, with network from [13]
used. The first segment equals one (π ). Four positions are randomly erased—
results after one iteration. For each point, 100 networks are evaluated, doing
100 tests per network.

In case π , Pe,πε is unchanged and Pe,πε becomes

P ′
e,πε = 1 − (1 − dc−ce )(ce−1)(�−1) · (1 − d ′c−ce )n1+�−2.

(12)

In this section, the theoretical equations are verified with
simulations. The parameters chosen for the analysis are c = 8,
ce = 4, � = 256, and p = 0.5. For the given parameters and
distribution, n1 = 255. Fig. 5 shows the cases πε and πε.
Both (6) and (7) and the simulation results are plotted.
One can see that the simulations correlate well with the
theoretical analysis. In addition, the theoretical and simulated
curves for uniformly distributed messages are given for
comparison.

Fig. 6 shows the curve for (11) for compression codes or
twin fanals. As expected in this case, the performance after
one iteration is the same regardless of whether compression
codes or twin fanals are used or not. The additional curve for
four iterations shows the performance improvement.

Fig. 7 shows the cases πε and πε. Equations (8) and (9)
correlate well with the simulation results. Equation (12) and
the corresponding simulations are shown in Fig. 8. One can
notice the significant performance improvement.

D. Performance Comparison

The intrinsic characteristic of Huffman coding is the vari-
able codeword’s length. This parameter depends on the size
and distribution of the data set. It is possible that some of the
codewords exceed the available cluster size �. In this case,
in [17] no random bits are added to this segment and the
remaining bits are pushed to the next segment. Moreover, after
adding random bits, the bits from all the segments are shuffled
in such a way that even and odd bits from each of the segments
are stored in separate clusters. This means that in each cluster



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 381

Fig. 6. Error rate for FSA and uniform distributions, with compression codes
or twin fanals used for FSA. The first segment equals one (π ). Four positions
are randomly erased—results after one iteration unless otherwise stated. For
each point, 100 networks are evaluated, doing 100 tests per network.

Fig. 7. Error rate for FSA and uniform distributions, with network from [13]
used. The first segment is different from one (π ). Four positions are randomly
erased—results after one iteration. For each point, 100 networks are evaluated
doing 100 tests per network.

the chosen fanal depends not only on the value on the same
segment in the initial message but also on the other segments.
This implies that erasures are allowed only on the messages
after the coding. As pointed out in [17], this characteristic
makes this technique an effective solution for applications in
which one can afford transforming data before storing it in
the network. To simplify the discussion, in this paper, this
technique is called Huffman shuffle.

As a consequence of the abovementioned property, each
time the known segments of a message are used to stimulate

Fig. 8. Error rate for FSA and uniform distributions, with compression
codes or twin fanals used for FSA. The first segment is different from one (π).
Four positions are randomly erased—results after one iteration. For each point,
100 networks are evaluated, doing 100 tests per network.

the network, only one fanal in each cluster is selected. In case
of the strategy that relies on twin fanals, erasures are possible
on the initial messages. This is important in terms of practical
applications. Nevertheless, when retrieving messages, one does
not know which fanal was used to create the clique repre-
senting the concerned message and all the fanals associated
with the known segments are stimulated. If a unique fanal is
stimulated in each cluster, the problem solved by the network
is much easier, and one can expect better performances.

To compare the techniques, two cases can be considered:
1) messages are transformed before storing them in the net-
work and 2) messages are not transformed before storing them
in the network. In Case 1, the messages are modified such
that they contain the number of fanal that was associated with
a specific value in each message. Consequently, in all the
strategies only a unique fanal is stimulated in each cluster.
In Case 2, the association table is used to find the fanals
to stimulate when a message is presented to the network.
In this scenario, all the fanals associated with a value present
in the message are stimulated. The first case, where erasures
are allowed only on the transformed messages, can be applied
to a very limited set of applications. Since the focus of this
paper is on applications and real-world data, the techniques
are compared in the second scenario. If Huffman shuffle
is applied in the second scenario, after all the described
processing steps (adding random bits, pushing bits to the next
segment, shuffling bits) one fanal can be associated with many
different values. To eliminate the impact of the interdepen-
dencies between different segments and to adapt Huffman
shuffle to Case 2, a new strategy is added to the comparison.
The bits that exceed the available space are now simply cut
instead of being pushed to the next segment. Furthermore,
there are no bit-shuffle operations. This technique is called
Huffman simple. To provide a fair comparison, the nonuniform
distribution is chosen so that the amount of codewords that



382 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

Fig. 9. Performance comparison for different proposed strategies.
Four positions are randomly erased. For each point, 100 networks are
evaluated doing 100 tests per network. Multiple fanals are stimulated in each
cluster. Arrows: standard deviations of the error rates.

exceed the space available in the cluster (� = 1024, 10 bits,
the same size as in [17]) is negligible (<1%). This occurs for
the truncated Gaussian distribution with μ = 135, σ = 65.

Fig. 9 shows the results when multiple fanals can be
stimulated in each cluster. First, note the performance of the
network [13] in case of the nonuniform distribution (� = 256,
the same as in Fig. 3). Then, several techniques are applied to
the same network as in [17] (� = 1024). Random bits allow
storing more messages; however, they are outperformed by
the strategies proposed in this paper. Twin fanals present the
best performance, Huffman simple being slightly less effective.
As stated earlier, Huffman shuffle is not adapted to stimulating
multiple fanals. In fact, it reaches retrieval error rate equal
to 0.97 when only 1000 messages are stored.

Fig. 10 shows the connections limit values for each point of
the curve for twin fanals. Each of these values was obtained
by varying the connections limit and choosing the one that
gave the lowest error rate. The connections limit parameter
(ConnectionsLimit) can be connected to density d for a
uniform distribution (1) and expressed as saturation s

s = ConnectionsLimit

(c − 1)�d
(13)

(c − 1)� gives the maximal number of connections per fanal.
By weighting this value with d , one obtains the expected
number of fanal’s connections. Dividing ConnectionsLimit by
this number gives the saturation of the network.

Based on the density, which is a function of the number
of stored messages M , the approximate optimal value of the
connections limit can be predicted. Fig. 11 shows how the
saturation depends on the number of stored messages based on
the optimal connections limit values. Fig. 10 shows also the
connections limit values obtained from an averaged s value
as s(c − 1)�d . The proximity of the optimal and predicted

Fig. 10. Optimal and predicted connections limit values in function of
the number of stored messages. For low numbers of stored messages, any
connection limit can be chosen.

Fig. 11. Saturation parameter used to predict connections limit value in
function of the number of stored messages. For low numbers of stored
messages, any connections limit can be chosen.

connections limit values in the range where the network is not
overloaded shows that the technique based on twin fanals is
also easy to adjust to the stored data.

According to the obtained results, the strategy that relies on
twin fanals presents the best performance. Moreover, it allows
to avoid the coding/decoding overhead, which is important in
practical applications, especially in the ones presented in the
following section, where the system’s time response and low
complexity are crucial.

E. Influence of Distribution’s Standard Deviation

As shown in the preceding sections, the distribution of the
data stored in the network influences the retrieval performance.
Here, the standard deviation of the nonuniform data distribu-
tion is varied to show what is the impact on the performance



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 383

Fig. 12. Error rate when using twin fanals for different values of σ for
nonuniform distribution. Four positions are randomly erased. For each point,
100 networks are evaluated, doing 100 tests per network. Arrows: standard
deviations of the error rates.

of the network when using twin fanals. The experiments
are done for truncated Gaussian distributions with different
standard deviations. In addition to the distribution chosen
in Section IV-D with σ = 65, a distribution with σ = 25
and σ = 100 is used. Fig. 12 shows how the retrieval process
is impacted when the stored data is more nonuniform (σ = 25)
and more uniform (σ = 100) than the previously chosen
one. When comparing these curves with the results in Fig. 9,
one can see how the retrieval performance depends on the
considered distribution’s parameter.

V. DYNAMIC POWER MANAGEMENT APPLICATIONS

FOR NETWORKS OF NEURAL CLIQUES

In this section, networks of neural cliques are applied in
dynamic power management applications. Because of these
applications, the networks are assessed in a practical context
using real-world data. It is shown that with such data, standard
networks become inoperative, and one needs to definitely
adapt to the model.

A. Dynamic Power Management in
Multiprocessor System-on-Chip

Multiprocessor systems-on-chip (MPSoCs) have gained a
lot of importance in recent years. Because of their distrib-
uted and scalable architecture, they offer high performance
required in real-time applications with potential power savings
allowing fulfilling energy restrictions under battery operation.
An MPSoC is built of multiple processing elements (PEs) that
can work in parallel (Fig. 13). Each PE or set of PEs form a
voltage/frequency island (VFI), i.e., they work within the same
power domain. The supply voltage Vdd and frequency f are set
by dedicated switching circuits allowing dynamic voltage and
frequency scaling. By decreasing the speed of the PEs with
lower performance requirements, the energy consumption is

Fig. 13. MPSoC with power management capability.

reduced. A control unit decides on (Vdd, f ), or power modes,
based on workload, latency, and temperature, among others.

Among the proposed control units, one can mention
approaches that rely on game theory [25], hybrid
subgradient and consensus method [26], low-level hardware
controllers [27], [28], PID automation controllers [29], and
operating system control [30]. Networks of neural cliques
were first proposed as a power controller in [22]. Compared
with the state-of-the-art technique, they react 4500 times faster
and consume 6800 times less energy. An extension of this
paper [31] shows that because of the fast time response, the
energy consumed by the MPSoC can be significantly reduced.

The impact of stored data distribution is not considered
in the abovementioned works. In this section, the adapted
networks of neural cliques are used as the power management
control unit.

1) Energy Model and Optimization Formulation: The
derivation of the energy model used for optimizing the energy
in MPSoCs is described in detail in [31]. The whole energy
needed by VFIi working with the clock period Ti belonging
to a finite set is given by

Ei (Ti ) =
[

Ni + γi

(
L

Ti
− Ni

)]
Enom,i T 2

nom,i

T 2
i

+ L Pstat,i

(14)

where Ni is the number of clock cycles needed to finish the
computation, L is the time when the application is running,
Enom,i is the nominal energy consumed during nominal clock
period Tnom,i , and Pstat,i is the static power. γi is used to
express the energy reduction per clock cycle in low-activity
state and is equal to

γi = ELdyn,i /(L − Xi )

EHdyn,i /Xi
(15)

where EHdyn,i is the energy consumed in high-activity state,
and ELdyn,i is the energy consumed in low-activity state.

Given the latency constraint L and the number n of VFIs,
the optimization problem is

min
n∑

i=1

Ei (Ti )

s.t.
n∑

i=1

(Xi = Ni Ti ) ≤ L . (16)



384 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

TABLE I

LTE RECEIVER APPLICATION PARAMETERS [26]

Fig. 14. LTE receiver application graph. The memory buffers between the
processing blocks are not presented.

Thus, the objective of the optimization is to minimize the total
energy consumption of the system, considering local clock
periods as state variables, and preserving the time constraint.
In our energy model for a given latency constraint L, global
static power has a constant contribution. Therefore, it is
discarded in the optimization process.

2) Test Case: In order to obtain data to store in the
network, an applicative test case on MAGALI telecom chip is
considered [32]. MAGALI is a semiheterogeneous MPSoC,
i.e., there is a number of different PEs, but each is reproduced
several times. The available resources communicate through
a network-on-chip. Each PE can work with one of the
256 frequencies between 20 and 790 MHz [33]. The
application mapped on the platform is the Long-Term
Evolution (LTE) receiver. It consists of six tasks: 1) TRX
OFDM; 2) channel estimation; 3) coefficient interpolation; 4)
MIMO decoding; 5) RX bit; and 6) channel decoding (Fig. 14).
The parameters of the application, necessary to calculate the
energy (14), were characterized at fnom,i = 400 MHz and
are summarized in Table I. The operating modes presented in
the table differ in reachable data rates [32].

Since there are 256 frequencies available, each PE is asso-
ciated with a cluster of 256 fanals. The frequencies that are
applied to the PEs depend on the latency constraint L and the
operating mode. There is, therefore, a cluster of five fanals
for modes and a cluster for L. L ranges from 0.7 to 2 ms.
Fifty one latency values are considered in this application
and consequently one cluster of 51 fanals is created. The
impact of the L cluster’s size on the power management
efficiency is analyzed in [31]. Each time the system needs to
be reconfigured, the L cluster and mode cluster are stimulated
and the set of frequencies is retrieved from the network.

The results of the evaluated experiments are summarized
in Table II. First, to test the network, a random uniformly dis-
tributed set of frequencies is stored. The network is simulated
for each of the possible L values. The simulations show that in
this case each of the stored frequencies is retrieved correctly.

Then, the actual values of the frequencies are stored in the
network and the same test procedure is applied. This time,
the error rate (the amount of messages in which at least
one frequency was not retrieved correctly) clearly increases.
As a consequence of the incorrectly retrieved frequencies,
there are 87 out of 255 L constraints that are violated.
Note that there may be more incorrectly retrieved frequencies
that not necessarily need to lead to L constraint violation.
Nevertheless, they result in nonoptimal solutions which imply
an excessive energy consumption.

In order to approach the optimal retrieval process of random
uniform frequencies, twin fanals introduced in Section IV-B
are applied. The structure of the network remains the same,
the number of fanals does not change, and only the message
storing procedure is modified. The connection limit is set
to 6. In this case, the error rate is reduced, and there are
eight constraint violations. The connection limit can be varied
to find an optimal value. The minimal number of constraint
violations was obtained for the connection limit equal to 10.
The error rate and the number of constraint violations are
slightly reduced.

B. Dynamic Variability Management

As the technology is scaled down and the supply voltage
is reduced, the intradie variability becomes an increasing
challenge. The fabrication process becomes less reliable and
causes static process (P) variations. Dynamic parameters as
voltage (V ) and temperature (T ) variations also have an
increasing impact on the timing and power consumption. The
optimal operating point set by a power controller can be
shifted by dynamic voltage drops and temperature variation.
A solution to avoid worst case design is to partition the
system to a number of parts, allowing each to work at its
best operating point. Based on the applicative constraints and
thanks to the sensors that provide the information regarding
current working conditions (V , T ), each part adjusts again its
operating point to reduce the power consumption or to preserve
the functionality.

In order to provide the adjustment policy with
current (V , T ) approximations, specific sensors have to
be embedded in the system. In this paper, a low-cost digital
sensor multiprobe [34] is considered. Multiprobe is made of
seven ring oscillators (ROs) that are designed to have different
sensitivities to Process-Voltage-Temperature (PVT) variations.
These sensors embedded in different parts of the circuit
experience the same static and dynamic variations as the parts
they are placed close to. Therefore, after a calibration phase,
based on the frequencies of the ROs, current approximations
(V̂ , T̂ ) of (V , T ) can be found. Frequency of an RO depends
in a complex way on the PVT parameters and it is impossible
to obtain (V̂ , T̂ ) from a single frequency [35]. Since there
are no models available, solving a set of equations in case of
several ROs is mathematically infeasible.



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 385

TABLE II

MPSoC POWER MANAGEMENT RESULTS

TABLE III

VARIABILITY MANAGEMENT RESULTS

Fig. 15. Overview of the variability management system.

An estimation method to obtain (V̂ , T̂ ) from the frequencies
of multiprobe is proposed in [35]. The proposed method relies
on statistical tests of goodness-of-fit. First, the data from the
sensors are specially adapted to the further treatment. Then,
the statistical tests are evaluated, a brute-force search in the
database obtained during the calibration phase is performed
and a weighted mean of the closest found entries is calculated.
This method provides satisfactory estimation precision, yet
implies certain complexity. Moreover, the estimation computed
by a dedicated hardware block can be obtained in 25 μs which
is not fast enough to follow fast voltage variations (order of
magnitude of few microseconds). Here, applying networks
of neural cliques to provide (V̂ , T̂ ) pairs corresponding to
frequencies of the ROs is explored (Fig. 15). The focus is
on the impact of the data distribution. Nevertheless, published
results [22], [23], [31] show that the time response of the
hardware implementation of the networks is in the order of
tens of nanoseconds.

In order to obtain data to store in the network, electrical
simulations of the multiprobe sensor have been performed
with an Eldo circuit simulator. The message set was obtained
for V ranging from 0.7 to 1.3 V with a step of �V = 10 mV
and T ranging from −40 °C to 120 °C with a step of
�T = 10 °C. In this paper, only two ROs of the multiprobe
are used to retrieve (V̂ , T̂ ) couples. The simulations show
that the impact of reducing the number of used frequencies
is negligible on the accuracy of the retrieved (V̂ , T̂ ). Among
the two kept ROs, one is specifically designed to be more
sensitive to temperature variations than the other. Due to
the characteristics of the ROs, in the database containing
1037 models linking the frequencies with (V̂ , T̂ ) points,

a number of models share the same frequencies leading
to different (V̂ , T̂ ) couples. In such an ambiguous case,
both (V̂ , T̂ ) solutions are equitable and are output by the
network. In a target system, the network can be followed by
an additional processing step, which calculates a mean value
of the obtained (V̂ , T̂ ) responses. Since the focus of this paper
is on exploring the impact of data distribution, these models
are removed from the database. After this step, 1018 models
are stored in the network.

The ROs can output 256 and 512 (temperature-sensitive RO)
different frequency values. Therefore, they are associated with
two clusters of 256 and 512 fanals, respectively. In addition,
there is a cluster to store T values made of 17 fanals and
a cluster of 61 fanals to store V values. Each time the
values (V̂ , T̂ ) are demanded by the variability management
system, the frequency clusters are stimulated and (V̂ , T̂ )
couple is obtained from the network.

The results are assessed in terms of the error rate [the
amount of messages in which at least one of the (V̂ , T̂ )
parameters is not retrieved correctly] and mean absolute errors

MAEV = 1

n

n∑
i=1

| fV ,i − yV ,i | (17)

MAET = 1

n

n∑
i=1

| fT ,i − yT ,i | (18)

where n is the number of stored models, f is the response
from the network. and y is the true value. In addition, the
standard deviations associated with these errors are reported.

All the obtained results are summarized in Table III. First,
a random uniformly distributed set of frequencies is stored.
The network is simulated for all the stored models. When the
actual values of the frequencies are stored in the network and
the same test is applied, the error rate increases significantly.
The mean absolute error and standard deviation increased
in the case of temperature. In the case of voltage, the error and
standard deviation decreased, which together with the error
rate means that there are more errors but they are smaller.

In this section, twin fanals are applied. The network’s
dimensions stay the same. As a consequence, the error rate
is slightly reduced and the error and standard deviation of V
are lower than in the former experiments. The temperature



386 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

retrieval is slightly improved as well compared with real data
stored in nonadapted network. In order to improve the retrieval
significantly, the network’s dimensions are changed. When
T cluster is increased to 500 fanals, the results are further
improved. For both the networks in which twin neurons were
used, the connection limit was set to 3. This value proved to
be the optimal one.

VI. CONCLUSION

Networks of neural cliques are associative memories able
to store and successfully retrieve a large number of messages.
Their performances have been theoretically studied exploiting
uniformly distributed information. When facing real-world
applications, the information that is stored in the networks is
not necessarily uniformly distributed. Analyzing this model
in case of nonuniform data and adapting it to practical
applications is a subject of work [17]. The solution based
on Huffman compression coding offers great performance
enhancements and allows efficient storage of nonuniform
messages. Nevertheless, in some applications its complexity
can be a limiting factor. Furthermore, Huffman coding is an
algorithmic solution and, therefore, not satisfactory in terms
of biological plausibility.

In this paper, a method with a limited complexity and a
comparable performance is proposed. Introducing twin fanals
avoids complex coding and decoding phases and is biologi-
cally plausible. It allows erasures on initial messages without
transforming the data before the storage. Furthermore, there
is no constraint in terms of data distribution parameters as it
is the case with Huffman coding. The results presented in this
paper show that because of spreading frequent values among
a group of fanals, twin fanals offer better performances than
Huffman coding-based technique.

Two test cases in power management domain are exploited
to obtain real-world data. When the networks presented in [13]
are applied to these applications, their performance is largely
degraded leading to nonfunctional system. In order to approach
the theoretical performance of the model, twin fanals are
used when real-world data are stored. The results show that
this solution approaches the performances close to uniformly
distributed data. Adapting the basic model is indispensable for
using these networks in practical applications.

REFERENCES

[1] C. S. Lin, D. C. P. Smith, and J. M. Smith, “The design of a rotating
associative memory for relational database applications,” ACM Trans.
Database Syst., vol. 1, no. 1, pp. 53–65, Mar. 1976.

[2] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos, “Improving
the accuracy of network intrusion detection systems under load using
selective packet discarding,” in Proc. 3rd Eur. Workshop Syst. Secur.,
Paris, France, Apr. 2010, pp. 15–21.

[3] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in Proc.
17th Annu. Int. Symp. Comput. Archit., Seattle, WA, USA, May 1990,
pp. 364–373.

[4] N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen, “Design of multi-
field IPv6 packet classifiers using ternary CAMs,” in Proc. IEEE Global
Commun. Conf., San Antonio, TX, USA, Nov. 2001, pp. 1877–1881.

[5] V. Gripon and M. Rabbat, “Maximum likelihood associative memories,”
in Proc. IEEE Inf. Theory Workshop, Seville, Spain, Sep. 2013, pp. 1–5.

[6] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE J.
Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[7] H. Jarollahi, V. Gripon, N. Onizawa, and W. J. Gross, “A low-power
content-addressable memory based on clustered-sparse networks,” in
Proc. 24th IEEE Int. Conf. Appl.-Specific Syst., Archit. Processors,
Washington, DC, USA, Jun. 2013, pp. 305–308.

[8] B. Agrawal and T. Sherwood, “Modeling TCAM power for next gener-
ation network devices,” in Proc. IEEE Int. Symp. Perform. Anal. Syst.
Softw., Austin, TX, USA, Mar. 2006, pp. 120–129.

[9] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[10] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-
holographic associative memory,” Nature, vol. 222, no. 7, pp. 960–962,
Jun. 1969.

[11] G. Palm, “Neural associative memories and sparse coding,” Neural
Netw., vol. 37, no. 1, pp. 165–171, Jan. 2013.

[12] A. H. Salavati and A. Karbasi, “Multi-level error-resilient neural net-
works,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA,
Jul. 2012, pp. 1064–1068.

[13] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1087–1096,
Jul. 2011.

[14] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm
for Boltzmann machines,” Cognit. Sci., vol. 9, no. 1, pp. 147–169,
Jan./Mar. 1985.

[15] V. Gripon and C. Berrou, “A simple and efficient way to store
many messages using neural cliques,” in Proc. IEEE Symp. Comput.
Intell., Cognit. Algorithms, Mind, Brain, Paris, France, Apr. 2011,
pp. 54–58.

[16] A. Knoblauch, G. Palm, and F. T. Sommer, “Memory capacities for
synaptic and structural plasticity,” Neural Comput., vol. 22, no. 2,
pp. 289–341, Feb. 2010.

[17] B. Boguslawski, V. Gripon, F. Seguin, and F. Heitzmann, “Huffman
coding for storing non-uniformly distributed messages in networks of
neural cliques,” in Proc. 28th Conf. Artif. Intell., Quebec City, QC,
Canada, Jul. 2014, pp. 262–268.

[18] B. K. Aliabadi, C. Berrou, V. Gripon, and X. Jiang, “Storing sparse
messages in networks of neural cliques,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 5, pp. 980–989, May 2014.

[19] L. Lin, R. Osan, and J. Z. Tsien, “Organizing principles of real-time
memory encoding: Neural clique assemblies and universal neural codes,”
Trends Neurosci., vol. 29, no. 1, pp. 48–57, Jan. 2006.

[20] V. Gripon and C. Berrou, “Nearly-optimal associative memories based
on distributed constant weight codes,” in Proc. IEEE Inf. Theory Appl.
Workshop, San Diego, CA, USA, Feb. 2012, pp. 269–273.

[21] H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Reduced-
complexity binary-weight-coded associative memories,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Vancouver, BC, Canada,
May 2013, pp. 2523–2527.

[22] B. Larras, B. Boguslawski, C. Lahuec, M. Arzel, F. Seguin, and
F. Heitzmann, “Analog encoded neural network for power management
in MPSoC,” in Proc. 11th IEEE Int. New Circuits Syst. Conf., Paris,
France, Jun. 2013, pp. 1–4.

[23] B. Larras, C. Lahuec, M. Arzel, and F. Seguin, “Analog implementation
of encoded neural networks,” in Proc. IEEE Int. Symp. Circuits Syst.,
Beijing, China, May 2013, pp. 1612–1615.

[24] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[25] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres,
“Dynamic and distributed frequency assignment for energy and latency
constrained MP-SoC,” in Proc. Conf. Design, Autom. Test Eur., Nice,
France, Apr. 2009, pp. 1564–1567.

[26] I. Mansouri, F. Clermidy, P. Benoit, and L. Torres, “A run-time distrib-
uted cooperative approach to optimize power consumption in MPSoCs,”
in Proc. IEEE Int. SOC Conf., Las Vegas, NV, USA, Sep. 2010,
pp. 25–30.

[27] D. N. Truong et al., “A 167-processor computational platform in 65 nm
CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1130–1144,
Apr. 2009.

[28] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proc.
IEEE 14th Int. Symp. High Perform. Comput. Archit., Salt Lake City,
UT, USA, Feb. 2008, pp. 123–134.



BOGUSLAWSKI et al.: TWIN NEURONS FOR EFFICIENT REAL-WORLD DATA DISTRIBUTION IN NETWORKS OF NEURAL CLIQUES 387

[29] G. M. Almeida et al., “PI and PID regulation approaches for
performance-constrained adaptive multiprocessor system-on-chip,” IEEE
Embedded Syst. Lett., vol. 3, no. 3, pp. 77–80, Sep. 2011.

[30] G. M. Almeida et al., “Predictive dynamic frequency scaling for multi-
processor systems-on-chip,” in Proc. IEEE Int. Symp. Circuits Syst.,
Rio de Janeiro, Brazil, May 2011, pp. 1500–1503.

[31] B. Larras, B. Boguslawski, C. Lahuec, M. Arzel, F. Seguin, and
F. Heitzmann, “Analog encoded neural network for power management
in MPSoC” Analog Integr. Circuits Signal Process., vol. 81, no. 3,
pp. 595–605, Dec. 2014.

[32] F. Clermidy, R. Lemaire, X. Popon, D. Kténas, and Y. Thonnart, “An
open and reconfigurable platform for 4G telecommunication: Concepts
and application,” in Proc. Euromicro Conf. Digit. Syst. Design, Archit.,
Methods Tools, Patras, Greece, Aug. 2009, pp. 449–456.

[33] F. Clermidy et al., “A 477 mW NoC-based digital baseband for MIMO
4G SDR,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco,
CA, USA, Feb. 2010, pp. 278–279.

[34] L. Vincent, E. Beigné, L. Alacoque, S. Lesecq, C. Bour, and P. Maurine,
“A fully integrated 32 nm multiprobe for dynamic PVT measurements
within complex digital SoC,” in Proc. 2nd Eur. Workshop CMOS
Variability, Grenoble, France, May 2011, pp. 1–4.

[35] L. Vincent, E. Beigné, S. Lesecq, J. Mottin, D. Coriat, and P. Maurine,
“Dynamic variability monitoring using statistical tests for energy effi-
cient adaptive architectures,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 6, pp. 1741–1754, Jun. 2014.

Bartosz Boguslawski (S’14) received the B.S. and
M.S. degrees in electronics and telecommunications
from the AGH University of Science and Technol-
ogy, Kraków, Poland, in 2011 and 2012, respectively.
He is currently pursuing the Ph.D. degree with
CEA–LETI, Grenoble, France, and TELECOM
Bretagne, Brest, France, directed by Prof. C. Berrou.
His master’s thesis was involved in the field of
inverse problems for heat transfer in microelectron-
ics with Ghent University, Ghent, Belgium.

He was an Exchange Student with Ghent
University. His current research interests include power management,
multiprocessor system-on-chip, and neural networks.

Mr. Boguslawski is a co-recipient of the Second Best Student Paper Award
at the 11th IEEE NEWCAS Conference, Paris, France.

Vincent Gripon (M’10) received the Ph.D. degree
from TELECOM Bretagne, Brest, France, in 2011,
under the supervision of Prof. C. Berrou.

He is currently a Permanent Researcher and
specializes in computer and information sciences.
His work mainly focuses on connecting information
theory and error correcting codes with neural
networks. His main contribution is a new family
of sparse associative memories based on distributed
codes that provide almost optimal efficiency. He is
also the creator and organizer of a programming

contest named TaupIC, which targets French top undergraduate students.

Fabrice Seguin was born in Talence, France,
in 1973. He received the Ph.D. degree from the
University of Bordeaux 1, Talence, in 2001.

His Ph.D. research concerned the current mode
design of high-speed current-conveyors and
applications in RF circuits. In 2002, he joined the
Electronic Engineering Department, TELECOM
Bretagne, Brest, France, as a full-time Lecturer.
He is currently involved in design issues of
analogue channel decoders and related topics,
energy harvesting, and neural networks.

Frédéric Heitzmann received the M.S. degree from
Ecole Polytechnique, Palaiseau, France, and the
M.S. degree from Telecom ParisTech, Paris, France,
with a specialization in computer science and
networks.

His current research interests include hardware–
software co-design, and compilers for heterogeneous
and homogenous MPSoC.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


