
642 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Algorithm and Architecture for a Low-Power
Content-Addressable Memory Based

on Sparse Clustered Networks
Hooman Jarollahi, Student Member, IEEE, Vincent Gripon, Naoya Onizawa, Member, IEEE,

and Warren J. Gross, Senior Member, IEEE

Abstract— We propose a low-power content-addressable
memory (CAM) employing a new algorithm for associativity
between the input tag and the corresponding address of the
output data. The proposed architecture is based on a recently
developed sparse clustered network using binary connections that
on-average eliminates most of the parallel comparisons per-
formed during a search. Therefore, the dynamic energy con-
sumption of the proposed design is significantly lower compared
with that of a conventional low-power CAM design. Given an
input tag, the proposed architecture computes a few possibilities
for the location of the matched tag and performs the comparisons
on them to locate a single valid match. TSMC 65-nm CMOS tech-
nology was used for simulation purposes. Following a selection
of design parameters, such as the number of CAM entries, the
energy consumption and the search delay of the proposed design
are 8%, and 26% of that of the conventional NAND architecture,
respectively, with a 10% area overhead. A design methodology
based on the silicon area and power budgets, and performance
requirements is discussed.

Index Terms— Associative memory, content-addressable
memory (CAM), low-power computing, recurrent neural
networks, sparse clustered networks (SCNs).

I. INTRODUCTION

ACONTENT-addressable memory (CAM) is a type of
memory that can be accessed using its contents rather

than an explicit address. In order to access a particular entry
in such memories, a search data word is compared against
previously stored entries in parallel to find a match. Each
stored entry is associated with a tag that is used in the
comparison process. Once a search data word is applied to
the input of a CAM, the matching data word is retrieved
within a single clock cycle if it exists. This prominent feature
makes CAM a promising candidate for applications where
frequent and fast look-up operations are required, such as in
translation look-aside buffers (TLBs) [1], [2], network routers

Manuscript received July 5, 2013; revised February 24, 2014; accepted
April 8, 2014. Date of publication April 30, 2014; date of current version
March 18, 2015.

H. Jarollahi and W. J. Gross are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada
(e-mail: hooman.jarollahi@mail.mcgill.ca; warren.gross@mcgill.ca).

V. Gripon is with the Department of Electronics, Télécom Bretagne, Brest
29238, France (e-mail: vincent.gripon@telecom-bretagne.eu).

N. Onizawa is with the Research Institute of Electrical Commu-
nication, Tohoku University, Sendai 980-8577, Japan (e-mail: naoya.
onizawa@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2316733

[3], [4], database accelerators, image processing, parametric
curve extraction [5], Hough transformation [6], Huffman cod-
ing/decoding [7], virus detection [8] Lempel–Ziv compres-
sion [9], and image coding [10].

Due to the frequent and parallel search operations, CAMs
consume a significant amount of energy. CAM architectures
typically use highly capacitive search lines (SLs) causing them
not to be energy efficient when scaled. For example, this
power inefficiency has constrained TLBs to be limited to
no more than 512 entries in current processors. In Hitachi
SH-3 and StrongARM embedded processors, the fully asso-
ciative TLBs consume about 15% and 17% of the total
chip power, respectively [11]–[13]. Consequently, the main
research objective has been focused on reducing the energy
consumption without compromising the throughput. Energy
saving opportunities have been discovered by employing either
circuit-level techniques [14], [15], architectural-level [16], [17]
techniques, or the codesign of the two, [18], some of which
have been surveyed in [19]. Although dynamic CMOS circuit
techniques can result in low-power and low-cost CAMs, these
designs can suffer from low noise margins, charge sharing,
and other problems [16].

A new family of associative memories based on sparse
clustered networks (SCNs) has been recently introduced
[20], [21], and implemented using field-programmable gate
arrays (FPGAs) [22]–[24]. Such memories make it possible to
store many short messages instead of few long ones as in the
conventional Hopfield networks [25] with significantly lower
level of computational complexity. Furthermore, a significant
improvement is achieved in terms of the number of informa-
tion bits stored per memory bit (efficiency). In this paper, a
variation of this approach and a corresponding architecture are
introduced to construct a classifier that can be trained with the
association between a small portion of the input tags and the
corresponding addresses of the output data. The term CAM
refers to binary CAM (BCAM) throughout this paper. Orig-
inally included in [26], preliminary results were introduced
for an architecture with particular parameters conditioned on
uniform distribution of the input patterns. In this paper, an
extended version is presented that elaborates the effect of the
design’s degrees of freedom, and the effect of nonuniformity of
the input patterns on energy consumption and the performance.

The proposed architecture (SCN-CAM) consists of an
SCN-based classifier coupled to a CAM-array. The CAM-array

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 643

Fig. 1. Simple example of a 4 × 4 CAM array consisting of the CAM cells,
MLs, sense amplifiers, and differential SLs.

is divided into several equally sized sub-blocks, which can be
activated independently. For a previously trained network and
given an input tag, the classifier only uses a small portion
of the tag and predicts very few sub-blocks of the CAM
to be activated. Once the sub-blocks are activated, the tag
is compared against the few entries in them while keeping
the rest deactivated and thus lowers the dynamic energy
dissipation.

The rest of this paper is organized as follows. Section II
describes basic operation of the CAM. In Section III, some
of the recent research works related to this area are summa-
rized. In Section IV, the proposed associativity algorithm is
introduced. Section V describes the hardware architecture fol-
lowed by Section VI with the simulation results. Circuit level
simulations throughout this paper are obtained using HSPICE
and TSMC 65-nm CMOS technology. Finally, conclusions are
drawn in Section VII.

II. CAM REVIEW

In a conventional CAM array, each entry consists of a tag
that, if matched with the input, points to the location of a
data word in a static random access memory (SRAM) block.
The actual data of interest are stored in the SRAM and a tag
is simply a reference to it. Therefore, when it is required to
search for the data in the SRAM, it suffices to search for its
corresponding tag. Consequently, the tag may be shorter than
the SRAM-data and would require fewer bit comparisons.

An example of a typical CAM array, consisting of four
entries having 4 bits each, is shown in Fig. 1. A search data
register is used to store the input bits. The register applies
the search data on the differential SLs, which are shared
among the entries. Then, the search data are compared against
all of the CAM entries. Each CAM-word is attached to a
common match line (ML) among its constituent bits, which
indicates, whether or not, they match with the input bits. Since
the MLs are highly capacitive, a sense amplifier is typically
considered for each ML to increase the performance of the
search operation.

As an example, in TLBs, the tag is the virtual page
number (VPN), and the data are the corresponding physical
page number (PPN). A virtual address generated by the CPU
consists of the VPN, and a page offset. The page offset is later
used along with PPN to form the physical address. Since most

TLBs are fully associative, in order to find the corresponding
PPN, a fully parallel search among VPNs is conducted for
every generated virtual address [2].

A BCAM cell is typically the integration of a 6-transistor
(6T) SRAM cell and comparator circuitry. The comparator
circuitry is made out of either an XNOR or an XOR structure,
leading to a NAND-type or a NOR-type operation, respectively.
The selection of the comparing structure depends on the
performance and the power requirements, as a NAND-type
operation is slower and consumes less energy as opposed to
that of a NOR type.

The schematic of two types of typical BCAM cells are
shown in Fig. 2. In a NAND-type CAM, the MLs are
precharged high during the precharge phase. During the eval-
uation phase, in the case of a match, the corresponding ML is
pulled down though a series of transistors [M5 in Fig. 2(b)]
performing a login NAND in the comparison process. In a
NOR-type CAM [Fig. 2(a)], the MLs are also precharged high
during the precharge phase. However, during the evaluation
phase, all of the MLs are pulled down unless there is a matched
entry such that the pull-down paths M3 − M4 and M5 − M6 are
disabled. Therefore, a NOR-type CAM has a higher switching
activity compared with that of a NAND type since there are
typically more mismatched entries than the matched ones.

Although a NAND-type CAM has the advantage of lower
energy consumption compared with that of the NOR-type coun-
terpart, it has two drawbacks: 1) a quadratic delay dependence
on the number of cells due to the serial pull-down path and
2) a low noise margin.

III. RELATED WORK

Energy reduction of CAMs employing circuit-level tech-
niques are mostly based on the following strategies:
1) reducing the SL energy consumption by disabling the
precharge process of SLs when not necessary [18], [27]–[30]
and 2) reducing the ML precharging, for example, by segment-
ing the ML, selectively precharging the first few segments
and then propagating the precharge process if and only if
those first segments match [31]. This segmentation strategy
increases the delay as the number of segments is increased.
A hybrid-type CAM integrates the low-power feature of NAND

type with the high-performance NOR type [12] while similar
to selective precharging method [31], the ML is segmented
into two portions. The high-speed CAM designed in 32-nm
CMOS [1] achieves the cycle time of 290 ps using a swapped
CAM cell that reduces the search delay while requiring a
larger CAM cell (11-transistors) than a conventional CAM cell
[9-transistors (9T)] used in SCN-CAM. A high-performance
AND-type match-line scheme is proposed in [32], where mul-
tiple fan-in AND gates are used for low switching activity
along with segmented-style match-line evaluation to reduce
the energy consumption.

In the bank-selection architecture [33], [34], the CAM array
is divided into B equally partitioned banks that are activated
based on the value of added bits of length log2(B) to the search
data word. These extra bits are decoded to determine, which
banks must be selected. This architecture was considered at

644 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Fig. 2. Classical BCAM cell types. (a) 10T NOR. (b) 9T NAND.

first to reduce the silicon area by sharing the comparison
circuitry between the blocks but was later considered for power
reduction as well. The drawback of this architecture is that
the banks can overflow since the length of the words remains
the same for all the banks. For example, let us consider
a 128k-entry CAM that incorporates 60-bit words and one
additional bank-select bit such that two banks result with 64k
entries each. Therefore, each bank can have 260 possibilities
causing an overflow probability that is higher compared with
when not banked. This overflow would require extra circuitry
that reduces the power saving opportunity since as a result
multiple banks are activated concurrently [19].

The precomputation-based CAM (PB-CAM) architecture
(also known as one’s count) was introduced in [16].
PB-CAM divides the comparison process and the circuitry
into two stages. First, it counts the number of ones in an
input and then compares the result with that of the entries
using an additional CAM circuit that has the number of ones
in the CAM-data previously stored. This activates a few MLs
and deactivates the others. In the second stage, a modified
CAM hierarchy is used, which has reduced complexity, and
has only one pull-down path instead of two compared with the
conventional design. The modified architecture only considers
0 mismatches instead of full comparison since the 1s have
already been compared. The number of comparisons can be
reduced to M ×�log(N + 2)�+ (M × N)/(N + 1) bits, where
M is the number of entries in the CAM and N is the number of
bits per entry. In the proposed design, we demonstrate how it is
possible to reduce the number of comparisons to only N bits.
Furthermore, in PB-CAM, the increase of the tag length affects
the energy consumption, the delay, and also complicates the
precomputation stage.

In the asynchronous architecture proposed by [15], as the
CAM assigns consecutive search data matched in different
word blocks, it operates based on the delay of matching
its first few bits instead of its full length as long as the
consecutive subsearch words are different. However, the cycle
time is drastically increased when the search-data patterns
are correlated. For example, if we have correlations in the
first 8 bits of the stored data, the cycle time is increased to
1.359 ns, which is 5.2 times that of the noncorrelated scenario.
In the proposed design, the cycle time is independent of the

Fig. 3. Top level block diagram of SCN-CAM. The CAM array is divided
into M/ζ − 1 sub-blocks that can be independently activated for comparison.
The compare-enable signals are generated by the SCN-based classifier.

correlation between the input patterns. Furthermore, the asyn-
chronous architecture in [15] is more susceptible to process
variations compared with its synchronous counterparts.

IV. SCN-CAM ALGORITHM

As shown in Fig. 3, the proposed architecture (SCN-CAM)
consists of an SCN-based classifier, which is connected to a
special-purpose CAM array. The SCN-based classifier is at
first trained with the association between the tags and the
address of the data to be later retrieved. The proposed CAM
array is based on a typical architecture, but is divided into
several sub-blocks that can be compare-enabled independently.
Therefore, it is also possible to train the network with the
association between the tag and each CAM sub-block if the
number of desired sub-blocks is known. However, in this
paper, we focus on a generic architecture that can be easily
optimized for any number of CAM sub-blocks. Once an input
tag is presented to the SCN-based classifier, it predicts which
CAM sub-block(s) need to be compare-enabled and thus saves
the dynamic power by disabling the rest. Disabling a CAM
sub-block avoids charging its highly capacitive SLs, while
applying the search data, and also turns the precharge path
off for the MLs.

We show how it is possible, through the algorithmic
reduction in hardware complexity, to reduce the number of
comparisons to only one in average. SCN-CAM uses only a
portion of the actual tag to create or recover the association

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 645

Fig. 4. Representation of the proposed SCN-CAM for consisting of M entries
and a reduced-length tag of c × log2(l).

with the corresponding output. The operation of the CAM,
on average, allows this reduction in the tag length. A large
enough tag length permits SCN-CAM to always point to a
single sub-block. However, the length of reduced-length tag
affects the hardware complexity of the SCN-based classifier.
The length of the reduced-length tag is not dependent on the
length of the original tag but rather dependent on the number
of CAM entries.

A. SCN-Based Classifier

As shown in Fig. 4, an SCN-based classifier consists of two
parts: 1) PI and 2) PII. The neurons in PI are binary, correspond
to the input tags, and are grouped into c equally sized clusters
with l neurons in each. Processing of an input tag in the
SCN-based classifier is for either of the two situations: training
or decoding. In this paper, either for training or decoding
purposes, the input tag is reduced in length to q bits, and then
divided into c equally sized partitions of length κ bits each.
Each partition is then mapped to the index of a neuron in its
corresponding cluster in PI, using a direct binary-to-integer
mapping from the tag portion to the index of the neuron to be
activated. Thus, l = 2κ . If l is a given parameter, the number
of clusters is calculated to be c = q/ log2(l). Therefore, for
simplicity in hardware implementation, we can choose q to
be a multiple of κ . It is important to note that there are no
connections between the neurons in PI. PII is a single cluster
consisting of M neurons, which is equal to the number of
entries in the CAM. Each neuron in PII, ni ′ , is connected to
every neuron in PI via a connection whose binary value is
w(i, j)(i ′), and thus equal to either 0 or 1. The value of w(i, j)(i ′)
determines whether there exists an association between the j th
neuron in the i th cluster in PI, and the i ′th neuron in PII.

1) Network Training: The binary values of the connections
in the SCN-based classier indicate associations of the input
tags and the corresponding outputs. The connection values are
set during the training process, and are stored in a memory
module such that they can later be used to retrieve the address
of the target data. A connection has a value 1 when there exists
an association between the corresponding neuron in PI and a
CAM entry, represented as a neuron in PII.

For example, let us assume c = 2 and q = 6. For
a reduced-length input tag 101110 associated to the fourth
entry in the CAM, first, we split this input into two parts:

101 and 110. Then, each part is associated with a neuron
in the corresponding cluster in PI: 5 for 101 and 6 for 110.
Finally, the connections from these neurons toward the target
neuron, 4, in PII are added. That is, w(1,5)(4), and w(2,6)(4) is
equal to 1.

2) Network Update: When an update is requested in
SCN-CAM, retraining the entire SCN-based classifier with
the entries is not required. The reason lies in the fact that
the output neurons of PII are independent from each other.
Therefore, by deleting the connections from a neuron PII to
the corresponding connections in PI, a tag can be deleted.
In other words, to delete an entry, c connections are removed,
one for each cluster. Adding new connections to the same
neuron in PII, but to different neurons in PI, adds a new entry
to the SCN-based classifier. The new entry can therefore be
added by adding new connections while keeping the previous
connections for other entries in the network.

3) Tag Decoding: Once the SCN-based classifier has been
trained, the ultimate goal after receiving the tag is to determine
which neuron(s) in PII should be activated based on the given
q bits of the tag. This process is called decoding in which the
connection values are recalled from the memory. The decoding
process is divided into four steps.

1) An input tag is reduced in length to q bits and divided
into c equally sized partitions. The q bits can be
selected within the tag bits in such a way to reduce the
correlation.

2) Local Decoding (LD): A single neuron per cluster in
PI is activated using a direct binary-to-integer mapping
from the tag portion to the index of the neuron to be
activated.

3) Global Decoding (GD): GD determines which neuron(s)
in PII must be activated based on the results from LD
and the stored connection values. If there exists at least
one active connection from each cluster in PI toward
a neuron in PII, that neuron is activated. GD can be
expressed as

vni′ =
c∧

i=1

l∨

j=1

(
w(i, j)(i ′)

∧
v(i, j)

)
(1)

where
∨

and
∧

represent logical OR and AND opera-
tions, respectively. v(i, j) is the binary value of the j th
neuron in the i th cluster in PI, whereas vni′ is the binary
value of the i ′th neuron in PII.

4) If more than one neuron are activated in PII, then,
the same number of word comparisons are required
to detect the correct match. A single activated neuron
means no further comparisons are required. Because we
may not afford (in terms of the silicon area) to imple-
ment only one independently controlled CAM-row per
neuron, the neurons in PII are grouped into ζ -neurons.
Each group of neurons generates a single activation
signal to enable parallel comparison operations in its
corresponding CAM sub-block. A logical OR operation
is thus performed on the value of each group of neurons
resulting generation of M/ζ bits, which is also equal to
the number of CAM sub-blocks.

646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Fig. 5. Relationship between the length of the truncated tag (q), the number
of matched entries in SCN-CAM (λ), and the estimated matching probability
(P(λ)) for M = 512.

B. Tag-Length Reduction

Given the input tags, the number of bits in the reduced-
length tag, q , determines the number of possible ambiguities
in PII. The generated ambiguities can be corrected with
additional comparisons to find the exact match in the CAM.
Therefore, no errors are produced in determining the matched
result(s). On the other hand, no length reduction leads to the
generation of no ambiguities, but a higher level of hardware
complexity in the SCN-based classifier, since more neurons
are required.

C. Data Distribution

The number of ambiguities, generated in PII is dependent on
the correlation factor of the tag pattern, that is the number of
similar repeating bits in the subset of tags. A higher degree of
similarities results in a higher number of ambiguous neurons.
If the tag pattern is previously known, it is possible to select
the reduced-length tag bits among those that have a lower
level of similarity likelihood. Otherwise, SCN-CAM detects
the valid match but with a higher cost of power consumption.

Assuming a random distribution for the CAM entries, the
expected number of possible matches is the actual match
plus the expected number of ambiguities. The number of
ambiguities given a random and uniformly distributed input
pattern can be estimated using (2), where λ is a random
variable representing the number of ambiguities. Pλ is the
probability that exactly λ ambiguities occur using q bits of
the tag. Therefore, it follows a binomial distribution as shown
in (2). Software simulations on numerical data samples verify
the validity of (2). Therefore, according to the binomial law
the expected value of λ, E(λ), and its variance, Var(λ),
can be calculated as shown in (3) and (4), respectively.
If q = log2(M), only one ambiguity is achieved on average
leading to the activation of one extra neuron in PII in addition
to the actual match. Consequently, this value of q , and λ
is used throughout this paper as a starting point to estimate
the cycle time and the energy consumption of the proposed
CAM design.

Fig. 6. Expected value of the number of required comparisons in SCN-CAM
versus the number of bits in the reduced-length tag.

Fig. 5 shows simulations results on how it is possible
to reduce the estimated number of required comparisons by
increasing q . It is interesting to note that the number of clusters
in PI does not affect the number of required comparisons

Pλ =
(

M − 1

λ

)(
1

2q

)λ(
1 − 1

2q

)M−1−λ
(2)

E(λ) =
∑

λ

λ · Pλ = (M − 1)/(2q) (3)

Var(λ) = (M − 1)(1/2q)(1 − 1/2q). (4)

If the input pattern is correlated in a sense that certain bits
repeat their values among all of the CAM, (3) can be modified
to the following:

Ec(λ) = M − 1

2q−k
(5)

where k is the number of similar bits in q , and Ec is the
expected value of the number of matched entries. We can
consider more complex models, such as when the reduced tags
are obtained using a Bernoulli distribution with parameter α.
We then partition reduced tags depending on the number of
ones, i, they contain. In such a case, we obtain

EG(λ) = (M − 1)
q∑

i=0

(
q

i

)
(αi (1 − α)q−i)2. (6)

In particular, we verify that for α = 1/2, EG(λ) corresponds
to the independent identically distributed uniform case. Fig. 6
shows simulation results based on one million random and
uniformly distributed reduced-length tags and two different
CAM sizes. It shows how the expected value of the number of
possible matches (E(λ)) is decreased to only one by increasing
the value of the number of bits in the reduced-length tag
as shown in (2) and (3). The algorithm of SCN-CAM is
similar to that of the precomputation-based CAM (PB-CAM)
[16], [17]. A drawback of such methods, unlike SCN-CAM,
is that as the length of the tags is increased, the cycle time
and the circuit complexity of the precomputation stage are
dramatically increased. Furthermore, we will show that unlike
the PB-CAMs, SCN-CAM can potentially narrow down the
search procedure to only one comparisons with a simple
computational complexity that does not grow with the increase
of the tag length.

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 647

TABLE I

REFERENCE DESIGN PARAMETERS

V. CIRCUIT IMPLEMENTATION

A top-level block diagram of the implementation of
SCN-CAM is shown in Fig. 3. It shows how the
SCN-based classifier is connected to a custom-designed CAM
array shown in Fig. 9, where an example pertaining to the oper-
ation of a 4-bit CAM is demonstrated. A 10-transistor (10T)
NOR-type CAM with NOR-type ML architecture was used. The
conventional NAND and NOR-type CAM architectures were
also implemented for comparison purposes.

In order to implement a circuit that can elaborate the benefit
of the proposed algorithm, a set of design points were selected
among 15 different parameter sets with the common goal
of discovering the minimum energy consumption per search,
while keeping the silicon-area overhead and the cycle time
reasonable. The optimum design parameters depend on the
speed, energy consumption, and area requirements. If the area
budget is limited, smaller values of ζ is preferred with the
cost of higher number of comparisons and thus the energy
consumption. If the energy consumption is a critical design
parameter, and the budget for the silicon area is more relaxed,
a balance between a large enough q and a small ζ needs to
be considered. A preferred set of design choices based on the
experimental simulations on a 512-entry CAM is summarized
in Table I, where n is the number of cells attached to a local
match line (LML). Since N = 128, the last segment of the
LML is considered to include eight cells attached to it.

In SCN-CAM, we use the NOR-type CAM structure, in
order to take advantage of its better noise margin and the low
latency, compared with the NAND-type counterpart. We will
then show how it consumes lower energy per search compared
with that of a conventional NAND-type architecture—one of
the low-energy architectures of CAM.

A. SCN-CAM: Architecture of SCN-Based Classifier

The SCN-based classifier in SCN-CAM architecture gen-
erates the compare-enable signal(s) for the CAM sub-blocks
attached to it. The architecture of the SCN-based classifier

is shown in Fig. 7. It consists of c κ-to-l one-hot decoders,
c SRAM modules of size l × M each, M c−input AND gates,
M/ζ ζ−input OR gates, and M/ζ 2-input NAND gates. Each
row of an SRAM module stores the connections from one
tag to its corresponding output neuron. Each reduced-length
tag of length q is thus divided into c subtags of κ bits each,
where each subtag creates the row address of each SRAM
module.

1) Training: During the training process, the SRAM mod-
ules store the connection values between the input tags and
their corresponding outputs, which are later used in the decod-
ing process. The training process of the SCN-based classifier
in hardware is similar to that of a conventional CAM in
principle.

First, an input tag is reduced in length to q bits, and
segmented into c parts. Each segment is then presented to
the corresponding one-hot decoder, as shown in Fig. 7, to
determine the row-address of the SRAM module correspond-
ing to the segmented tag’s cluster. The association between
a tag and its corresponding output is written in the SRAM
module by accessing one row per SRAM module (i.e., one
neuron per cluster in PI), and writing a 1 into the i th bit of the
M-bit SRAM row, corresponding to the i th neuron in PII. This
process takes a single clock cycle per entry per SRAM module,
M cycles in total if parallel writing in the SRAM modules is
possible, and M × c cycles otherwise.

2) Decoding: The decoding process shown in (1) is imple-
mented using the structure of the SRAM modules, and the
c-input AND gates. The input tag is first reduced in length to
q bits, and segmented into c equal-length parts. Each segment
is presented to its corresponding one-hot decoder, as shown
in Fig. 7, that determines which row of the SRAM is to be
accessed. The location of this row corresponds to the index of
an activated neuron in PI. In order to read the stored values
in the SRAM, a sense amplifier is not required since the
bit lines are only attached to few cells. Furthermore, a cell
storing a 1 is the point of interest because it determines an
active connection. Therefore, in order to reduce the switching
activity of the successive logical stages, the complementary
bit line (BL′) is used to read the values of the SRAM cells
since it is pulled down during the read in case of reading a 1.

In each SRAM module, the accessed row is the only row
that can contain the information leading to the activation
of a neuron in PII and inherently eliminates unnecessary
w(i, j)(i ′)

∧
v(i, j) operations between the connection values and

the neural values in (1). In other words, since there are never
any ambiguities in PI, instead of calculating the neural values
in PII by computing all of the possible logical AND and OR

operations in (1), only those connections coming from the acti-
vated neurons in PI are used. This simplification is possible by
integrating the one-hot decoders and the SRAM modules in a
configuration shown in Fig. 7. Since there exists c × l SRAM
modules in the SCN, the learning process, or dynamically
updating the SCN-based classifier’s connections only takes
l clock cycles, and is not dependent on M . Therefore, the delay
required by the SCN-based classifier to update its connections
is by far less than what would be required to access and
retrieve values from the processor that keeps track of the tags.

648 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Fig. 7. Simplified schematic of the SCN-based classifier generating compare-enable signals for the CAM array.

3) Updating: Updating the network with a new entry is
according the approach that was explained in Section IV-A2.
First, to delete a previously trained entry, one row per
SRAM-block, corresponding to the entry that is being deleted,
is read into registers. Then, the i th bit in each read row is
converted to a 0 to remove the connections from the i th neuron
in PII to the corresponding neuron in PI. Finally, the modified
row is written back into the SRAM-block. The deletion process
thus takes two clock cycles. To update an entry after deletion,
the new entry is added to the network using the same approach
as in the training process.

B. SCN-CAM: CAM Architecture

In order to exploit the prominent feature of the SCN-based
associative memory in the classification of the search data, a
conventional CAM array is divided into sufficient number of
compare-enabled sub-blocks such that: 1) the number of sub-
blocks are not too many to expand the layout and to complicate
the interconnections and 2) the number of sub-blocks should
not be too few to be able to exploit to energy-saving opportu-
nity with the SCN-based classifier. Consequently, the neurons
in PII are grouped and ORed as shown in Fig. 7 to construct
the compare-enable signal(s) for the CAM array. Even the
conventional CAM arrays need to be divided into multiple
sub-blocks since long bit lines and SLs can slow down the
read, write, and search operations due to the presence of drain,
gate, and wire capacitances.

The number of sub-blocks, β, is equal to M/ζ , where M is
the total number of entries of the CAM, and ζ is the number
of CAM-rows per sub-block in the hierarchical arrangement
as shown in Fig. 9, with schematic details in Fig. 10.
The number of cells attached to an LML is denoted by n.
The number of compare-enabled sub-blocks (ψ) can be esti-
mated by multiplying the probability that a sub-block can be
enabled by the total number of sub-blocks

ψ =
[

1 −
(

1 − 1

β

)1+E(λ)
]

· β. (7)

Fig. 8. Number of activated sub-blocks in the CAM (ψ) versus the number
of bits in the reduced-length tag (q).

Fig. 8 shows the number of activated sub-blocks for various
values of M , while sweeping q . It shows how it is possible
to reduce β to only one sub-block by increasing the value
of q sufficiently depending on the number of entries in the
CAM array. Each sub-block has pass-gate devices attached to
the SLs, which are controlled by the compare-enable signals
from the SCN-based classifier. Furthermore, the precharging
process of the MLs are also controlled by the SCN-based
classifier. This way, the dynamic energy consumption due to
both charging of the SLs and the MLs can be controlled
using the same compare-enable signal(s) generated by the
SCN-based classifier. Since very few sub-blocks are acti-
vated using SCN-CAM, it is possible to exploit the low-
latency feature of the NOR-type architecture instead of the
NAND-type counterpart for the CAM part of SCN-CAM.
Because the energy saving opportunity is achieved using the
architectural modification of the search procedure, we will still
significantly reduce the energy consumption compared with
that of the conventional NAND-type architecture while taking
the advantage of the high-speed feature of NOR-type CAMs.
For ultralow power applications, a NAND-type CAM-cell may
also be used with the cost of speed.

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 649

Fig. 9. Simplified array organization of the proposed CAM architecture
showing an example when N = 4, search data word is 0110 and En0 = 1. The
sub-block compare-enable signals are generated by the SCN-based classifier.

Fig. 10. Simplified schematic view of the proposed CAM array. The compare-
enable signals for the CAM sub-blocks are generated by the SCN-based
classifier.

The total number of sub-blocks can be selected depending
on the silicon-area availability since each sub-block will
slightly increase the silicon area. If the input data word is
not uniformly distributed, more sub-blocks will be activated
during a search consuming higher amounts of energy while the
accuracy of the final output is not affected (Fig. 14). Therefore,
a false-negative output is never generated. However, since the
full length of the tag is not used in SCN-CAM, it is possible to
select the reduced-length tag bits depending on the application
and according to a pattern to reduce the tag correlation.

Fig. 11. Estimated number of required transistors for SCN-CAM designed
for 128×40 and 512×40 CAMs, and comparing them with the conventional
low-power NAND-type CAMs of the same size for various truncated tag
bits (q).

VI. CIRCUIT EVALUATION

A complete circuit for SCN-CAM was implemented and
simulated using HSPICE and TSMC 65-nm CMOS technology
according to Table I parameters, including full dimensions
of CAM arrays, SRAM arrays, logical gates, and extracted
parasitics from the wires in the physical layout.

A wave-pipelining approach has been followed for clk1
and clk2 signals in Fig. 7 to integrate the operation
SCN-based classifier and the CAM sub-blocks. This approach
is verified in terms of reliability and the latency under worst-
case process variations [slow–slow (SS) corner for latency
and fast-fast corner for reliability]. Other methods, such as
registered pipelining [35], are also possible, where M/ζ − 1
registers are placed after the OR gates in Fig. 7. This way, the
frequency of operation is determined by taking the minimum
reliable frequency between clk1 and clk2.

A. Energy Consumption Model

To investigate the energy consumption of SCN-CAM for
various design parameters, such as q , c, and the effect of
nonuniform input distributions, the energy consumption of
SCN-CAM can be modeled as

ETotal = ESCN+ECAM

ESCN = c · EDec+M · c · ESRAMacc + (l − 1) · M

· c · ESRAMidle + Eλ · EANDc +ψ · EORζ

ECAM = (ψ · ζ − 1) · N · ECAMmismatch + N · ECAMmatch

+ (M/ζ − ψ) · ζ · N · ECAMstat (8)

where the total energy consumption is divided into the energy
consumption in the SCN-based classifier (ESCN), and the
CAM sub-blocks (ECAM). The SCN-based classifier’s contri-
bution to the energy consumption includes decoders, EDec,
SRAMs (accessed, ESRAMacc , and idle, ESRAMidle), and the
logical gates to perform the GD and to generate the compare-
enable signals for the CAM array. For every search operation,
one row in each SRAM is accessed and thus, the rest of
the rows is in idle states, in which there exists a switching

650 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

Fig. 12. Total estimated dynamic energy consumption per search for
SCN-CAM, and comparing them with the conventional low-power
NAND-type CAM design for various values of the reduced-length tag (q).

Fig. 13. Estimated energy consumption per bit per search of the proposed
NOR architecture, and the conventional NAND-type CAM for various values
of word lengths (N).

activity in their bit lines. Therefore, we have divided the energy
consumption of the SRAMs into the corresponding states.

Furthermore, the CAM portion of the energy model consists
of match (ECAMmatch) and mismatch (ECAMmismatch) portions,
whose values depend on the number of ambiguities discussed
in Section IV-B. Static energy consumption of the idle CAMs
(ECAMstat) has also been included due to the presence of
leakage current occurring in advanced technologies. The esti-
mation of the number of required transistors follows a similar
model.

B. Area Estimation and Simulation Results

Fig. 11 shows the estimated overhead of the number of
transistors in SCN-CAM for various number of entries of the
CAM in comparison with the conventional design. For design
selections in Table I, this overhead is only 3.4% compared
with that of the conventional CAM. The silicon area of the

Fig. 14. Total estimated energy consumption per search and match for
SCN-CAM, and comparing them with the conventional low-power
NAND-type CAM design for various truncated tag bits (q).

Fig. 15. Simulation results for SCN-CAM based on reference design
parameters in Table I.

SCN-based classifier can be estimated considering the area of
the decoders, the SRAM arrays, the precharge devices, the read
and write circuits, the interconnections, and the standard cells.
Similarly, the area of the CAM array can be estimated by
considering the gaps between the CAM sub-blocks, pass-
gate transistors, read and write circuits. The area overhead
is estimated to be 10.1% higher than that of the conventional
CAM design, for design selections in Table I.

In the simulations for measuring the energy consumption
and the cycle time (/bit/search), on average half of the data
bits were assumed to mismatch in case of a word mismatch.
In Fig. 12, the relationship between the dynamic energy
consumption of SCN-CAM and the tag length is depicted for
various number of entries of the CAM in comparison with
the conventional CAMs. The estimated energy consumption
is obtained based on (6), and the extracted values for energy
consumption using HSPICE simulations. As the value of q
is increased, the energy consumption is decreased as well

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 651

TABLE II

RESULT COMPARISONS

since the number of comparisons is reduced but up to a point
until the energy consumption of the SCN-based classifier itself
would dominate that of the CAM array. Therefore, the energy
consumption of the SCN-based classifier is not dependent on
the original tag length, and rather on the number of entries in
the CAM array.

Fig. 13 shows the effect of the word length on the energy
consumption in comparison with the conventional design.
The original tag length (N) does not change the architecture
and the energy consumption of the SCN-based classifier.
Furthermore, due to the small size of the sub-blocks, the
search power of SCN-CAM is much smaller compared with
that of the conventional. Consequently, as N is increased,
the energy consumption per-bit-per-search is decreased in
SCN-CAM while it stays constant in the conventional CAM.
It also implies an advantage of SCN-CAM over PB-CAMs,
such as in [16] and [17], where longer tag lengths increase
the energy consumption as well as the precomputation delay.
This is because longer tags will increase the complexity of
the adders and the number of comparisons. Fig. 14 shows
the effect of the correlation in the entries of the CAM on the
energy consumption for various lengths of the reduced-length
tag. The expected value of the number of sub-blocks has been
calculated according to (5). The correlation effect is applied
on the inputs by creating similarities within their contents.
For example, a 10% correlation means that 10% of the bit
values are similar in all input patterns. It is therefore observed
that larger correlation costs energy consumption although it
does not affect the performance as in [15]. Fig. 15 shows
simulation results for measuring the cycle time of SCN-CAM
for the selected design parameters shown in Table I. It shows
the worst-case cycle time, where the last input of the AND/OR

gates are pulled up and under SS corner. It also shows the
wave-pipelining method of clk1 and clk2 signals as shown in
Fig. 7. clk2 is simply a delayed version of clk1.

The cycle time is measured by the maximum reliable
frequency of operation in the worst-case cycle time (SS)
scenario. Table II summarizes the comparisons of the cycle
time and the energy consumption between SCN-CAM and
a collection of other related work including our own

implementation of the conventional NAND-type and NOR-type
CAMs. The technology-scaled version (to 65-nm CMOS) of
these results are evaluated according to the method described
in [18]. Unless otherwise indicated, the reported results are
based on simulations. The energy consumption of SCN-CAM
is 4.08%, 8.02%, 3.59%, 66.7%, 53.89%, 30.5%, and 3.69%
of that of the referenced NOR-based, referenced NAND-based,
[1], [12], [15], [16], and [32], respectively. On the other
hand, the cycle time of SCN-CAM is 132%, 31.4%, 224%,
67.2%, 169%, 48.4%, and 107% of that of the referenced NOR,
referenced NAND, [1], [12], [15], [16], and [32], respectively.
Although the energy consumption of the CAM presented in
[15] is small compared with most of the others, the cycle time
is significantly increased (5.2×) when the search-data patterns
are correlated, whereas the cycle time of SCN-CAM remains
unchanged in a similar situation.

The required silicon area of SCN-CAM is estimated to
be 10.1% larger than that of the conventional NAND-type
counterpart mainly due to the existence of the gaps between
the SRAM blocks of the SCN-based classifier. Consequently,
the silicon area can be reduced if fewer sub-blocks are used
with the cost of energy consumption.

VII. CONCLUSION

In this paper, the algorithm and the architecture of a
low-power CAM are introduced. The proposed architecture
(SCN-CAM) employs a novel associativity mechanism based
on a recently developed family of associative memories based
on SCNs.

SCN-CAM is suitable for low-power applications, where
frequent and parallel look-up operations are required.
SCN-CAM employs an SCN-based classifier, which is
connected to several independently compare-enabled CAM
sub-blocks, some of which are enabled once a tag is pre-
sented to the SCN-based classifier. By using independent
nodes in the output part of SCN-CAM’s training network,
simple and fast updates can be achieved without retraining the
network entirely. With optimized lengths of the reduced-length
tags, SCN-CAM eliminates most of the comparison operations

652 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 4, APRIL 2015

given a uniform distribution of the reduced-length inputs.
Depending on the application, nonuniform inputs may result in
higher power consumptions, but does not affect the accuracy
of the final result. In other words, a few false-positives may be
generated by the SCN-based classifier, which are then filtered
by the enabled CAM sub-blocks. Therefore, no false-negatives
are ever generated.

Conventional NAND-type and NOR-type architectures were
also implemented in the same process technology to com-
pare SCN-CAM against, along with other recently developed
CAM architectures. It has been estimated that for a case
study design parameter, the energy consumption and the
cycle time of SCN-CAM are 8.02%, and 28.6% of that of
the conventional NAND-type architecture, respectively, with
a 10.1% area overhead. Future work includes investigating
sparse compression techniques for the matrix storing the
connections in order to further reduce the area overhead.

REFERENCES

[1] A. Agarwal et al., “A 128×128 b high-speed wide-and match-line
content addressable memory in 32 nm CMOS,” in Proc. ESSCIRC,
Sep. 2011, pp. 83–86.

[2] Y.-J. Chang and M.-F. Lan, “Two new techniques integrated for energy-
efficient TLB design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 15, no. 1, pp. 13–23, Jan. 2007.

[3] H. Chao, “Next generation routers,” Proc. IEEE, vol. 90, no. 9,
pp. 1518–1558, Sep. 2002.

[4] N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen, “Design of multi-
field IPv6 packet classifiers using ternary CAMs,” in Proc. IEEE Global
Telecommun. Conf., vol. 3. 2001, pp. 1877–1881.

[5] M. Meribout, T. Ogura, and M. Nakanishi, “On using the CAM concept
for parametric curve extraction,” IEEE Trans. Image Process., vol. 9,
no. 12, pp. 2126–2130, Dec. 2000.

[6] M. Nakanishi and T. Ogura, “A real-time CAM-based Hough transform
algorithm and its performance evaluation,” in Proc. 13th Int. Conf.
Pattern Recognit., vol. 2. Aug. 1996, pp. 516–521.

[7] L.-Y. Liu, J.-F. Wang, R.-J. Wang, and J.-Y. Lee, “CAM-based VLSI
architectures for dynamic Huffman coding,” IEEE Trans. Consum.
Electron., vol. 40, no. 3, pp. 282–289, Aug. 1994.

[8] C.-C. Wang, C.-J. Cheng, T.-F. Chen, and J.-S. Wang, “An adaptively
dividable dual-port BiTCAM for virus-detection processors in mobile
devices,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1571–1581,
May 2009.

[9] B. Wei, R. Tarver, J.-S. Kim, and K. Ng, “A single chip Lempel–Ziv
data compressor,” in Proc. IEEE ISCAS, May 1993, pp. 1953–1955.

[10] S. Panchanathan and M. Goldberg, “A content-addressable memory
architecture for image coding using vector quantization,” IEEE Trans.
Signal Process., vol. 39, no. 9, pp. 2066–2078, Sep. 1991.

[11] T. Juan, T. Lang, and J. Navarro, “Reducing TLB power requirements,”
in Proc. Int. Symp. Low Power Electron. Des., Aug. 1997, pp. 196–201.

[12] Y.-J. Chang and Y.-H. Liao, “Hybrid-type CAM design for both power
and performance efficiency,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 8, pp. 965–974, Aug. 2008.

[13] Z. Lei, H. Xu, D. Ikebuchi, H. Amano, T. Sunata, and M. Namiki,
“Reducing instruction TLB’s leakage power consumption for embedded
processors,” in Proc. Int. Green Comput. Conf., Aug. 2010, pp. 477–484.

[14] S.-H. Yang, Y.-J. Huang, and J.-F. Li, “A low-power ternary content
addressable memory with Pai-Sigma matchlines,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1909–1913,
Oct. 2012.

[15] N. Onizawa, S. Matsunaga, V. C. Gaudet, and T. Hanyu, “High-
throughput low-energy content-addressable memory based on self-timed
overlapped search mechanism,” in Proc. Int. Symp. Asynchron. Circuits
Syst., May 2012, pp. 41–48.

[16] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-power precomputation-
based fully parallel content-addressable memory,” IEEE J. Solid-State
Circuits, vol. 38, no. 4, pp. 654–662, Apr. 2003.

[17] S.-J. Ruan, C.-Y. Wu, and J.-Y. Hsieh, “Low power design of
precomputation-based content-addressable memory,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 16, no. 3, pp. 331–335, Mar. 2008.

[18] P.-T. Huang and W. Hwang, “A 65 nm 0.165 fJ/Bit/Search 256 × 144
TCAM macro design for IPv6 lookup tables,” IEEE J. Solid-State
Circuits, vol. 46, no. 2, pp. 507–519, Feb. 2011.

[19] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[20] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” IEEE Trans. Neural Netw., vol. 22, no. 7, pp. 1087–1096,
Jul. 2011.

[21] V. Gripon and C. Berrou, “Nearly-optimal associative memories based
on distributed constant weight codes,” in Proc. ITA Workshop, Feb. 2012,
pp. 269–273.

[22] H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Architecture
and implementation of an associative memory using sparse clustered
networks,” in Proc. IEEE ISCAS, Seoul, South Korea, May 2012,
pp. 2901–2904.

[23] H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Reduced-
complexity binary-weight-coded associative memories,” in Proc. IEEE
ICASSP, May 2013, pp. 2523–2527.

[24] H. Jarollahi, N. Onizawa, and W. J. Gross, “Selective decoding in
associative memories based on sparse-clustered networks,” in Proc.
IEEE Global Conf. Signal Inf. Process., Dec. 2013, pp. 1270–1273.

[25] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, Apr. 1982.

[26] H. Jarollahi, V. Gripon, N. Onizawa, and W. J. Gross, “A low-power
content-addressable memory based on clustered-sparse networks,” in
Proc. 24th IEEE Int. Conf. ASAP, Jun. 2013, pp. 305–308.

[27] H. Noda et al., “A cost-efficient high-performance dynamic TCAM
with pipelined hierarchical searching and shift redundancy architecture,”
IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 245–253, Jan. 2005.

[28] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hier-
archical search-lines for low-power content-addressable memories,” in
Proc. IEEE Custom Integr. Circuits Conf., Sep. 2003, pp. 383–386.

[29] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-
addressable memory (CAM) using pipelined hierarchical search
scheme,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1512–1519,
Sep. 2004.

[30] H. Noda et al., “A 143 MHz 1.1 W 4.5 Mb dynamic TCAM with
hierarchical searching and shift redundancy architecture,” in Proc. IEEE
ISSCC, vol. 1. Feb. 2004, pp. 208–523.

[31] C. Zukowski and S.-Y. Wang, “Use of selective precharge for low-
power on the match lines of content-addressable memories,” in Proc.
Int. Workshop Memory Technol., Des. Test., Aug. 1997, pp. 64–68.

[32] J.-S. Wang, H.-Y. Li, C.-C. Chen, and C. Yeh, “An AND-type match-
line scheme for energy-efficient content addressable memories,” in IEEE
ISSCC Dig. Tech. Papers, vol. 1. Feb. 2005, pp. 464–610.

[33] M. Motomura, J. Toyoura, K. Hirata, H. Ooka, H. Yamada, and
T. Enomoto, “A 1.2-million transistor, 33-MHz, 20-b dictionary search
processor (DISP) ULSI with a 160-kb CAM,” IEEE J. Solid-State
Circuits, vol. 25, no. 5, pp. 1158–1165, Oct. 1990.

[34] K. Schultz and P. Gulak, “Fully parallel integrated CAM/RAM using
preclassification to enable large capacities,” IEEE J. Solid-State Circuits,
vol. 31, no. 5, pp. 689–699, May 1996.

[35] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hier-
archical search-lines for low-power content-addressable memories,” in
Proc. IEEE Custom Integr. Circuits Conf., Sep. 2003, pp. 383–386.

Hooman Jarollahi (S’09) received the B.A.Sc. and
M.A.Sc. degrees in electronics engineering from
Simon Fraser University, Burnaby, BC, Canada, in
2008 and 2010, respectively. He is currently pursu-
ing the Ph.D. degree with the Department of Elec-
trical and Computer Engineering, McGill University,
Montreal, QC, Canada.

He was a Visiting Scholar with the Research
Institute of Electrical Communication, Tohoku Uni-
versity, Sendai, Japan, from 2012 to 2013. His cur-
rent research interests include design and hardware

implementation of energy-efficient and application-specific VLSI systems,
such as associative memories and content-addressable memories.

Mr. Jarollahi was a recipient of the Teledyne DALSA Award in 2010,
for which he presented a patented architecture of a power and area-efficient
SRAM.

JAROLLAHI et al.: ALGORITHM AND ARCHITECTURE FOR A LOW-POWER CAM 653

Vincent Gripon received the M.S. degree from
École Normale Supérieure of Cachan, Cachan,
France, and the Ph.D. degree from Télécom
Bretagne, Brest, France.

He is a Permanent Researcher with Institut Mines-
Télécom, Télécom Bretagne. His intent is to propose
models of neural networks inspired by information
theory principles, what could be called informa-
tional neurosciences. He is also the Co-Creator and
Organizer of an online programming contest named
TaupIC, which targets the French top undergraduate

students. His current research interests include information theory, neuro-
science, and theoretical and applied computer science.

Naoya Onizawa (M’09) received the B.E., M.E.,
and D.E. degrees in electrical and communication
engineering from Tohoku University, Sendai, Japan,
in 2004, 2006, and 2009, respectively.

He was a Post-Doctoral Fellow with Tohoku Uni-
versity from 2009 to 2011, the University of Water-
loo, Waterloo, ON, Canada, in 2011, and the McGill
University, Montreal, QC, Canada, from 2011 to
2013. He is currently an Assistant Professor with
the Frontier Research Institute for Interdisciplinary
Sciences, Tohoku University. His current research

interests include the energy-efficient VLSI design based on asynchronous
circuits and multiple-valued circuits, and their applications, such as LDPC
decoders, associative memories, and network-on-chips.

Dr. Onizawa was a recipient of the Best Paper Award at the IEEE Computer
Society Annual Symposium on VLSI in 2010.

Warren J. Gross (SM’10) received the B.A.Sc.
degree in electrical engineering from the University
of Waterloo, Waterloo, ON, Canada, and the M.A.Sc.
and Ph.D. degrees from the University of Toronto,
Toronto, ON, in 1996, 1999, and 2003, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, McGill University, Montral, QC, Canada. His
current research interests include the design and
implementation of signal processing systems and
custom computer architectures.

Dr. Gross is currently the Chair of the IEEE Signal Processing Society
Technical Committee on Design and Implementation of Signal Processing
Systems. He served as a Technical Program Co-Chair of the IEEE Workshop
on Signal Processing Systems in 2012, and as the Chair of the IEEE ICC 2012
Workshop on Emerging Data Storage Technologies. He served as an Associate
Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He has served
on the Program Committees of the IEEE Workshop on Signal Processing
Systems, the IEEE Symposium on Field-Programmable Custom Computing
Machines, and the International Conference on Field-Programmable Logic and
Applications, and has served as the General Chair of the 6th Annual Analog
Decoding Workshop. He is a licensed Professional Engineer in the Province
of Ontario.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

