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Abstract—For the past few years, the domain of graph signal
processing has extended classical Fourier analysis to domains
described by graphs. Most of the results were obtained by analogy
with the study of heat propagation. We propose to perform a
similar analysis in the context of tropical algebra, widely used
in theoretical computer science to monitor propagation processes
over graphs of distances. We introduce a Tropical Graph Fourier
Transform and prove a few results on graph inference and the
existence of a tropical uncertainty principle.

Index Terms—graph signal processing, tropical algebra, graph
inference, uncertainty principle

I. INTRODUCTION

For the past few years, the emerging field of graph signal
processing [1] has proposed a framework to extend classical
signal processing tools to domains with a complex topology
described by a graph. The key idea is to proceed by analogy
with the study of heat diffusion, where on graphs diffusion
correspond to the product of a matrix, representing the de-
pendencies of signal components, and a vector, representing
the intensity of the signal at the locations corresponding to
vertices in the graph.

Graph signal processing tools offer perspectives to exploit
structures of signals, when available. Examples include the
locations of electrodes in electroencephalography [2], that
of sensors in networks [3], or even more abstract ones like
social networks [4]. However, the diffusion operator which
was introduced to study heat propagation does not necessarily
match well these applications where linearity of processes is
debatable.

The purpose of our paper is to show it is possible to propose
a graph signal processing framework for different algebras,
conducive to better describing some mechanisms. More pre-
cisely, we focus on the case of tropical algebra, widely used
in theoretical computer science to study propagation in graphs
of distances or social networks.

We derive definitions analogous to those of classical graph
signal processing, and introduce a Tropical Graph Fourier
Transform (TGFT). We propose a simple algorithm to infer
a graph from smooth signals and discuss the existence of
a tropical graph uncertainty principle. Interestingly, all the
proposed definitions and results find elegant echos in the
classical graph signal processing setting.

The outline of the paper is as follows: Section 2 intro-
duces notations and some definitions. Section 3 contains the
definition of Tropical Graph Fourier Transform. Section 4
introduces a few results on graph inference and the tropical

graph uncertainty principle. A few experiments are presented
in Section 5 and Section 6 is a conclusion.

II. NOTATIONS AND DEFINITIONS

Let us work on the semiring (R̄,⊕,⊗,+∞, 0), where R̄ =
R ∪ {+∞}, ⊕ = min and ⊗ = +. Hence, for two matrices
in Mn(R̄) A and B, it holds that:

(A ·B)ij = min
k

(Aik +Bkj) ,

where · denotes the matrix product and Aij is the coefficient
at coordinates (i, j) in matrix A.

We term graph a couple G = 〈V,E〉 where V is the finite
set of vertices and E ⊆ V × V is the set of edges. We
restrict our study to graphs for which each vertex is connected
to itself (∀v ∈ V, (v, v) ∈ E). Without loss of generality,
we consider V = {1, . . . , n}. As a consequence, a graph is
entirely specified by an adjacency matrix A ∈ Mn(R̄) such
that

Aij =

 0 if i = j
1 if (i, j) ∈ E ∧ i 6= j
+∞ otherwise

.

We denote by A> the transpose of A.
We term weighted graph a graph for which each edge is

associated with a weight (but self loops), or equivalently, a
graph which adjacency matrix can contain any nonnegative
value instead of 1 where (i, j) ∈ E, i 6= j.

A signal is a collection of values in R̄ for each vertex in
the graph. We denote it by x ∈ R̄n. The hermitian of a signal
x, denoted x∗ is the signal −x>, where − is extended to +∞
with −(+∞) = +∞.

As an example, consider a signal as a collection of dates
corresponding to when vertices acquire some information. The
entry Aij should be interpreted as the duration it takes to
communicate the piece of information from vertex j to vertex
i (note the inversion of i and j).

Definition: 1 (smoothness). Given a graph G and a signal x,
the smoothness of x over G is given by L(x) = (x∗ ·A · x)

∗.

Proposition: 1. Smoothness is a nonnegative value, reaching
0 only for signals x such that:

∀i, j,xi ≤ xj +Aij .

Proof: We rewrite:

L(x) = min
ij

(Aij + xj − xi) .



In particular for i = j = 1, we obtain that L(x) ≤ 0. Also, this
quantity is nonnegative if and only if all terms are nonnegative.

A signal with smoothness 0 is thus such that the graph
cannot reduce the dates of acquisition of signals for any
vertex. More generally, the smoothness of a signal measures
the maximal gain in dates of acquisition of information it is
possible to obtain from the graph structure.

Definition: 2 (diffusion). Given a graph G and a signal x,
the diffusion of x over G is the signal A · x.

Lemma: 1. Consider a graph G, then for any vertices i and
j, Atij , t ∈ N is the length of a shortest path in G from vertex
i to vertex j using at most t + 1 distinct vertices. Note that
we choose the convention that A0 = I is the matrix with 0 on
its diagonal and +∞ everywhere else.

Proof: We proceed by induction on t. The result is
immediate for t = 0. Now suppose that for some t, any vertices
i and j are such that Atij is the length of a shortest path in
G from vertex i to vertex j containing at most t + 1 distinct
vertices. Now let us fix i, j and a shortest path p containing
at most t+ 2 edges from i to j. We consider three cases:

1) Case i = j. Then we observe that ∀i, Aii = 0 as a
consequence of the null diagonal in A.

2) Otherwise, p can be split into two subpaths p1 and
p2 such that p2 is of length exactly 1. Denote by k
the intermediary vertex which is the end of p1 and the
beginning of p2. These two subpaths are shortest paths,
as by contradiction p would not be a shortest path. Note
that they both contain at most p edges. Finally, we have
(At+1)ij = mink′ (A

t
ik′ +Atk′j) ≤ Atik +Atkj .

Proposition: 2. The sequence (At · x) , t ∈ N is stationary.

Proof: As a direct consequence of Lemma 1, and since
A only contain nonnegative entries, we conclude that ∀t ∈
N, At+n = An.

We denote by A∞ = lim
t→+∞

At and x∞ = lim
t→+∞

At · x.

Proposition: 3. For any signal and graph, the smoothness of
x∞ is 0.

Proof: Using Proposition 1, we proceed by contradiction.
Suppose that L(x∞) < 0. Then it holds that: ∃i, j, Aij+x∞j <
x∞i . But x∞i = (A ·x∞i ) = minj′ Aij′ + x∞j′ ≤ Aij +x∞j .

For our example, the signal x∞ corresponds to the best
dates for which vertices can acquire information given initial
dates given by x and the duration graph G.

Definition: 3 (Laplacian). The Laplacian of a graph G with
adjacency matrix A is the matrix L = I −A (recall that I is
the matrix with a null diagonal and +∞ everywhere else).

Proposition: 4. The Laplacian can admit only one eigenvalue
which is 0.

Proof: Denote x an eigenvector of L and µ the corre-
sponding eigenvalue, i.e. L·x = µ⊗x. Here, the ⊗ operator is

extended such that ∀i, (µ⊗x)i = µ+xi. Then At·x = (tµ)⊗x,
which converges if and only if µ = 0. Proposition 2 concludes.

Proposition: 5. The eigenvectors of L are the signals for
which x = x∞. Moreover, they are such that ∀i,∀j,xi ≤
Aij + xj .

Proof: Consider x an eigenvector of L. Proposition 4
gives us that ∀i,minj (Aij + xj) = xi, leading to the second
part of the proposition. Moreover, L ·x = x−A ·x = 0 gives
us the first part.

III. TROPICAL GRAPH FOURIER TRANSFORM

In this section we show it is possible to rewrite any signal
x∞ as a linear combination of eigenvectors of L. We call this
representation Tropical Graph Fourier Transform of the signal
x.

We denote by ei a signal with only +∞ values but the i-th
coordinate which is 0.

We first introduce the following result, which is a direct
corollary of Lemma 1.

Corollary: 1. For any signal x, it holds that ∀i, j,x∞i −x∞j ≤
d(i, j), where d(i, j) is the length of a shortest path between
vertices i and j in the graph G.

We also introduce the following algorithm to compute the
Tropical Graph Fourier Transform (TGFT) of a signal x,
denoted x̂:

Data: Graph adjacency matrix A, signal x.
Result: x̂
Initialize each coordinate of x̂ as +∞
while x∞ 6= x̂∞ do

i∗ ← arg min
i

x∞
i
6=x̂∞
i

{x∞i }

x̂i∗ ← xi∗
end
Return x̂

Algorithm 1: Algorithm to compute the TGFT of a signal
x over a graph G.

Let us prove that Algorithm 1 ends:

Proposition: 6. For any graph G and any signal x, Algo-
rithm 1 ends.

Proof: Denote by t the number of times the while
loop has been visited in the algorithm. We denote by x̂t the
corresponding value of x̂ in the algorithm and by it the chosen
vertex i∗.

We denote H(t) the hypothesis that
1) ∀1 ≤ τ < t,xiτ ≤ xiτ+1 ,
2) ∀1 ≤ τ, τ ′ ≤ t, iτ = iτ

′ ⇒ τ = τ ′.
First, note that H(1) is trivially correct.
Now suppose H(1), . . . ,H(t) for some t. There are two

cases: x∞ = x̂t∞, in which case the algorithm ends, or
∃j,x∞j 6= x̂tj

∞. In the latter case, we want to show H(t+ 1).
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x = (2, 9, 8, 1, 3)

x∞ = (2, 2, 3, 1, 3)

x̂ = (2,+∞,+∞, 1,+∞)

Figure 1. Example of a nonweighted graph, of a signal x, of its diffusion
limit x∞, and of its TGFT x̂.

First let us show that ∀τ ≤ t, iτ 6= it+1. Suppose by contra-
diction that ∃τ ≤ t, iτ = it+1. Recall we have x∞iτ 6= x̂tiτ

∞.
Because x̂tiτ = xiτ , we more precisely have x∞iτ > x̂tiτ

∞.
This is not possible because of Lemma 1 and the fact the non
+∞ values in x̂t are identical to those in x.

Second, let us show that xit+1 ≥ xit . Suppose by contradic-
tion that xit+1 < xit . At step t, we also have x∞it 6= x̂t−1it

∞.
Since it+1 has not been chosen at step t, it must holds that
x∞it+1 = x̂t−1it+1

∞. But we have x∞it+1 6= x̂tit+1
∞, which means

that x̂tit+1
∞ 6= x̂t−1it+1

∞. More precisely x̂tit+1
∞ < x̂t−1it+1

∞

because of Lemma 1 and x̂t ≤ x̂t−1. Since the only difference
between x̂t and x̂t−1 is the it-th coordinate, by Lemma 1 it
means that xit+1 ≥ xit .

We conclude by induction. Note that the set {i1, . . . , it}
is increasing. Since there is a finite number of vertices, we
conclude.

We conclude by observing that the output of the algorithm
is a signal x̂ such that x̂∞ = x∞. We point out that x̂ =⊕

i∈S xi ⊗ ei, where S is the set of marked vertices at the
end of Algorithm 1.

Definition: 4. The signal x̂ result of Algorithm 1 is called the
Tropical Graph Fourier Transform of x over G.

Note the immediate corollary:

Corollary: 2. For any signal and any graph, it holds that
x̂ = Â · x.

Proof: This result is directly derived from the proof of
Proposition 6.

Figure 1 depicts an example of a graph, of a signal, of its
diffusion limit and of its TGFT.

IV. GRAPH INFERENCE AND UNCERTAINTY PRINCIPLE

An important question when it comes to classical graph
signal processing is how to infer a graph from signal obser-
vations. A common way to answer it consists of supposing
signals to be smooth [] or stationary [5], [6] over the graph.
In the latter case, one can show that the eigenvectors of the
covariance matrix are identical to those of the graph.

Following the same vein, we consider m observations of
signals with dimension n, grouped in the matrix X with n
lines and m columns. We introduce the following definition:

Definition: 5 (induced graph). The induced graph of a set
of signals X ∈ R̄mn is the graph which adjacency matrix is
h((X ·X ∗)∗), where h is applied component-wise and is such
that

h : x 7→
{

+∞ if x < 0
x otherwise .

When signals are only containing 0 and +∞ values, ob-
tained graphs are similar to binary associative memories [7].

Note that an induced graph is more easily recovered with
signals containing only a few coefficients that are not +∞
in their TGFT, as many of the difference of their coordinates
correspond to weights of the targeted adjacency matrix.

Also, in classical graph signal processing, the eigenvectors
of a matrix or any of its powers are identical, such that
retrieving a graph is up to the power of its adjacency matrix.
The same result holds here, where the induced graph is the
transitive closure of the targeted graph. This motivates for the
following definition:

Definition: 6 (binary induced subgraph). The binary induced
subgraph of a set of signals X ∈ {0,+∞}mn is obtained by
taking the corresponding induced subgraph and keeping only
its weights that are lesser or equal to 1, the others being put
to +∞.

Proposition: 7. Consider observed signals to be with smooth-
ness 0. Then the corresponding binary induced graph may
contain spurious edges but does not miss any one.

Proof: First note that the signal 0 is of smoothness 0
for any graph. The corresponding binary induced graph is
containing only 0s in its adjacency matrix, proving that some
edges might be spurious.

Now consider by contradiction a missing edge from vertex
i to vertex j. This means that there is some observed signal
x for which xi > xj + 1 despite there is an edge from i to j
in the initial graph. This contradicts Lemma 1.

Next, we propose definitions loosely based on those in [8].
We now consider a connected graph (An contains no +∞
coefficient).

Definition: 7 (spatial spread). The spatial spread of a signal
x is defined as Λ(x) = −x∗ · Ī ·x, where Ī is the matrix which
diagonal is +∞ and all other coefficients are 0.

Note that the spatial spread of a signal is the maximum
difference between two values in x.

Definition: 8 (spectral spread). The spectral spread of a signal
x, denoted ∆(x), is the number of coordinates that are not
+∞ in its TGFT.

Definition: 9 (uncertainty domain and uncertainty compro-
mise). The uncertainty domain of a graph G is the set of cou-
ples {(∆(x∞),Λ(x∞)),x ∈ R̄n − {+∞}n}. The uncertainty
compromise is the function Γ(s) = min

x
∆(x∞)=s

Λ(x∞).

We have the following results:



Figure 2. Graphs used for our simulations: complete, cycle and Petersen.

Proposition: 8. For any graph, Γ(1) is the radius of the graph.

Proof: Note that a signal with spectral spread 1 is
necessarily of the form ei. Lemma 1 concludes.

Proposition: 9. For any unweighted graph with order n, ∀s <
n,Γ(s) ≥ 1.

Proof: Note that Γ(s) = 0 gives that 0 has spectral spread
s. Suppose by contradiction that s < n. Consider a vertex i
in x̂ which value is +∞. Using Lemma 1 gives us that there
is a shortest path with length 0 from i to some other vertex j,
contradicting the fact the graph is unweighted.

Proposition: 10. For any graph, Γ(n) = 0.

Proof: Consider 0.

V. EXPERIMENTS

Throughout this section, we consider several unweighted
graphs. Namely, we consider the graph from Figure 1, and
three graphs of order 10. The latter are: a) a complete
symmetric graph, b) a directed cycle graph and c) the famous
Petersen graph. These graphs are depicted in Figure 2.

A. Graph inference from smooth signals

In our first experiments, we have generated random signals
in {1, . . . , 20}n where each value is drawn independently from
each other with a uniform probability. These signals have then
been diffused up to convergence and processed to obtain the
corresponding binary induced graph.

Because of Proposition 7, we are only interested in measur-
ing the expected number of spurious edges in the reconstructed
graphs. We thus derive this empirical probability using Monte-
Carlo simulations. The results are depicted in Figure 3 as a
function of the number of observations m.

B. Uncertainty compromise of classical graphs

We also generated the uncertainty compromise correspond-
ing to these graphs using an exhaustive approach. The results
are depicted in Figure 4. As we can see, some graphs offer
better compromise than others, and the best one is achieved
with the complete graph.
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Figure 3. Average number of spurious edges when reconstructing a graph
from random smooth signals, as a function of the number of observations m.
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Figure 4. Uncertainty compromise for various graphs of order 10.

VI. CONCLUSION

We have introduced the notion of tropical graph signal pro-
cessing. The proposed definitions are loosely based on those of
classical signal processing. Interestingly, many classical results
find an echo in the tropical setting, leading to possible new
ways to confront real world applications.

These definitions are merely an introduction to the domain,
and are debatable. We hope these ideas will help get a better
understanding of graph signal processing, and provide a socle
for extending it to other algebras.

ACKNOWLEDGEMENTS

This work has been funded in part by the CominLabs project
Neural Communications.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.



[2] W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and
A. Ribeiro, “Graph frequency analysis of brain signals,” IEEE Journal
of Selected Topics in Signal Processing, vol. 10, no. 7, pp. 1189–1203,
2016.

[3] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE transactions on signal processing, vol. 61, no. 7, pp. 1644–1656,
2013.

[4] ——, “Big data analysis with signal processing on graphs: Representation
and processing of massive data sets with irregular structure,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 80–90, 2014.

[5] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, “Char-
acterization and inference of graph diffusion processes from observations
of stationary signals,” Arxiv preprint:1605:02569v2, 2016.

[6] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” arXiv preprint arXiv:1603.04667,
2016.

[7] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-
holographic associative memory.” Nature, 1969.

[8] A. Agaskar and Y. M. Lu, “A spectral graph uncertainty principle,” IEEE
Transactions on Information Theory, vol. 59, no. 7, pp. 4338–4356, 2013.


