
Incremental Learning on Chip
Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel and Michel Jezequel

IMT Atlantique, Brest, France
name.surname@imt-atlantique.fr

Abstract—Learning on chip (LOC) is a challenging problem in
which an embedded system learns a model and uses it to process
and classify unknown data, while adapting to new observations
or classes. It may require intensive computational power to adapt
to new data, leading to a complex hardware implementation. We
address this issue by introducing an incremental learning method
based on the combination of a pre-trained Convolutional Neural
Network (CNN) and majority votes, using Product Quantizing
(PQ) as a bridge between them. We detail a hardware imple-
mentation of the proposed method (validated on a FPGA target)
using limited hardware resources while providing substantial
processing acceleration compared to a CPU counterpart.

Index Terms—transfer learning, incremental learning, learning
on chip, convolutional neural network, FPGA

I. INTRODUCTION

Recently, Deep Neural Networks (DNNs) achieved signifi-
cant progress and became the state-of-art in many challenges
in the field of machine learning. In particular, Convolutional
Neural Networks (CNNs) exhibit outstanding performance
in object recognition in images. DNNs rely on hundreds of
millions of parameters that are trained using a large amount
of data, requiring heavy computational power and memory re-
sources. Such resources are not readily available on embedded
systems such as smartphones running on battery power.

To address these limitations, many recent studies proposed
to reduce the size of DNNs using product quantization (PQ)
methods to factorize their weights [1][2]. Other methods
proposed to binarize DNNs weights [3], [4], as well as
activation functions [5], with the aim to reduce both DNNs
size and computational complexity. These methods allow the
implementation of DNNs on embeded systems such as FP-
GAs [6][7]. However the proposed hardware implementations
focus only on the inference process of pre-trained DNNs,
assuming that the training procedure has been performed
beforehand. They therefore are not compliant with learning
on chip (LOC).

LOC allows an embedded system to train a model and
to use it to classify new data. It is a challenging research
field because of the intensive computation required during the
training phases which cannot be handled by a small embedded
system with a limited power. Of particular interest are incre-
mental learning methods that aim to learn data sequentially,
adapting the model to the new data, and are able to learn
new examples and classes while not requiring access to the
old data to retrain the model [8]. Although solutions have
been proposed and studied extensively during the last decades,
finding a good compromise between accuracy and required
resources remains challenging. Indeed, most of existing works

retrain the model when receiving new data [9], [10], and
reuse some prior data for the retraining process [8], [11],
which is computationally expensive and does not meet the
embedded systems requirements. In [12], the autors introduced
a new simple incremental learning method based on transfer
learning, product quantization and majority vote (cf. Figure 1).
This method adapts the model to new observed examples and
classes without retraining or accessing previously processed
data, and uses much less computational power than existing
counterparts. It is still able to approach state-of-art accuracy on
challenging vision datasets (CIFAR10 and ImageNet). These
properties agree perfectly with embedded systems require-
ments.

In this paper we propose a hardware architecture for an
incremental learning on chip (ILOC) solution based on [12],
with the following claims:

• It is possible to adapt the model to new data (from
scratch) without retraining it,

• It uses limited computational resources.
The outline of the paper is as follows. In Section II we

introduce related work. In Section III we present an overview
of the proposed incremental method. Hardware architecture
and implementation is introduced in Section IV. Hardware
results are outlined in Section V. Finally, Section VI is a
conclusion.

II. RELATED WORK

Learning on chip (LOC) refers to the ability of an embedded
system to learn by itself, then process and classify new
unknown data. Some previous works have proposed solutions
to train neural networks [13] on FPGA. However they require
to implement gradient descent which is computationally ex-
pensive and quickly becomes a bottleneck when the network
size increases. Other works propose to train Support Vector
Machines on FPGA [14], but still require intensive computa-
tional power and large memory usage to store all training data.
The need of intensive computation and memory usage during
the learning phase represents a major drawback for LOC. In
the past few years, a lot of interest has been devoted to big
databases such as ImageNet, leading to large DNNs in order to
achieve good accuracy. As the implementation of large DNNs
is problematic, most existing works focus on the inference
process and assume that the learning procedure is performed
offline on an external server [6][7], or is using already trained
SVMs [15].

Incremental learning allows learning data sequentially and is
able to handle new data and new classes without the need to re-



train the whole system [16]. Existing solutions propose to add
new classifiers to accommodate new data, such as the learn++
method [8], [11] or retrain the model using newly received
data together with the old model [9], [10]. To avoid training
a large number of classifiers, and to address the catastrophic
forgetting problem [17], [18], a combination between SVMs
and the learn++ method, called “SVMlearn++” [19] was
proposed, showing promising improvements [20]. However,
this method still needs to retrain a new SVM each time new
data are provided, and some knowledge is forgotten while new
information is being learned. These methods need intensive
computing for training and large memory usage, which do not
satisfy the embedded systems criterion.

In [12], the authors introduced an incremental learning
model in which the learning process consists in making a ran-
dom sampling over input vectors, and then splitting and storing
them. We describe this method in the following Section. In this
paper, we will exploit the simplicity of the learning process
of this method to overcome LOC problems.

III. OVERVIEW OF THE INCREMENTAL METHOD

The incremental method introduced in [12] relies on the use
of a pre-trained deep CNN as feature extractor, followed by
product random sampling to embed data in a finite alphabet.
The last step of the method consists in a majority vote. We
detail this method in the next paragraphs.

First, we use the internal layers of a pre-trained CNN
[21], that transforms an input signal sm into a feature vector
xm (cf. Figure 1 step 1). Next, each obtained feature vector
xm is embedded in a finite alphabet using a PQ technique
[22]. We chose product random sampling as it achieves good
performance, yet it is computationally much lighter than other
PQ techniques such as K-means. Product random sampling
splits each feature vector xm into P subvectors of equal size
denoted

(
xmp

)
1≤p≤P

, which are quantized independently using
the K anchor points Yp = yp1, ..., ypK , where for each ykp ,
∃xm ∈ X, xmp = ykp .

Learning data amounts to adding new anchor points to the
memory, while remembering the class associated with each
of them. Most of the training data is actually disregarded,
not adding any anchor point to the memory: a parameter K
controls how many anchor points are added for each class.
Processing new data amounts to finding the anchor points(
qm
p

)
1≤p≤P

which are obtained from product quantization of
xm (cf. Figure 1 step 2), then looking at the corresponding
classes (c̃i)1≤i≤C where C is the number of classes, and
performing majority vote to take a decision (cf. Figure 1
step 3). The combination of the pre-trained CNN as feature
extractor and the majority vote as classifier allows example
and class incremental learning without damaging previously
learned knowledge [23] or needing to retrain the model.
These properties make the proposed method a good match
for embedded system.

The method was tested on challenging vision datasets (CI-
FAR10 and ImageNet), using Inception V3 [24] as feature ex-
tractor. The test gave promising results with 82% of accuracy

for CIFAR10 and 92% on ten categories of ImageNet distinct
from the 1000 ones that were used to train the CNN.

IV. HARDWARE IMPLEMENTATION

In this paper, we present a hardware implementation for
step 2 and 3, and we assume that step 1 (feature extractor) is
performed by an external CPU, providing feature vectors xm
to the FPGA.

A. Data Quantization

In addition to the quantization of the feature vectors xm
as described in the method, we quantize the corresponding
coordinates using a signed fixed point representation on n bits
with 5 bits for the integral part. The main motivation of this
step is to adapt data to optimally use the FPGA ressources
(e.g. reduce the number of bits to represent a value from 32
to n, where n should be lower than 18 in order to use only
one DSP for each operation instead of 2).

B. Architecture

The proposed architecture handles both learning and clas-
sification processes. The learning process is quite simple, as
described in [12]. After random sampling, learning requires
splitting the feacture vectors xm into P parts, then storing
each part xmp into RAMDp, representing anchor vectors
denoted ymp , and the input class vector cm into RAMCp

(1 ≤ p ≤ P ). RAMDp and RAMCp are concatenated into
one block denoted RAM (cf. Figure 2). The input class vector
cm containing the class of the feature vector xm is one hot
encoded. We choose the one hot encoding to simplify the
classification process described in the following paragraphs.

To classify an unlabelled feature vector xm, we split the
vector into P parts and obtain the P associated subvectors
xmp , 1 ≤ p ≤ P . The hardware architecture used to classify
the unlabelled xm is divided into two parts, the processing and
the classification part (cf. Figure 2). The processing hardware
architecture is made of P identical parts. For each part p, we
first compute the euclidean distance between xmp and y1p, and
store the distance in the register rp (Compute Distance block).
We do the same process with each

(
ykp
)
1≤k≤K

and compare
the obtained result with the distance stored in the register rp
(Compare Distance block). We store the smallest distance and
the vector class cp one hot encoded on C bits, where C is the
number of classes, corresponding to yk

p which is the nearest
from xmp (Distance Register block). Done sequentially on all(
ykp
)
1≤k≤K

, this process needs K clock cycle, one clock cycle
to compute one distance for each yp. The same process is ran
on the P parts in parallel.

The classification hardware architecture takes as input the
(cp)1≤p≤P stored in (rp)1≤p≤P . As a first step, a bitwise
addition is computed over all vectors cp. The C results of
the additions are stored into C registers and then compared.
The comparison is done sequentially in such a way that we
compare only two results, store the highest one and its index
c (1 ≤ c ≤ C), then we compare the third result with the one
stored in the register, keep the highest one and its index c,



Input
Signal

sm Pre-trained
CNN

Hidden Layer
Output

Feature
Vector

xm

Split Feature
Vector

Step 1 Step 2

Quantization

•

•
•
•

+

qm
1

Storage

Step 3

majority vote

•
• •
•

•
•
•
•

+ •
• •
•

• ••

•
+

y21

•
• •
•

c̃1 c̃1

c̃2 c̃3

c̃1 c̃1

c̃2 c̃3

c̃1 c̃1

c̃2 c̃3

xm1

xm2

xm3

2 · c̃1
0 · c̃2
1 · c̃3

Output
Class

c̃1

Figure 1. Overview of the proposed method, comprising three main steps. Given a set of samples, we first use a pre-trained CNN for feature extraction (Step
1). Subsequently, we use a PQ technique to quantize the feature vectors (Step 2). Finally, we use a majority vote to classify the quantized data (Step 3)

and so on. In the end of this process, the index c stored in the
register presents the class that the model has attributed to the
unlabelled feature vector xm.

The architecture is fully pipelined, so the number of clock
cycles to process an input data is the number needed to
compute distances with all anchor vectors ykp . This means that
the model gives a valid output every K clock cycles.

V. RESULTS

The proposed architecture has been implemented on Xilinx
Virtex 7 (xc7vx690tffg1157) Field Programmable Gate Array
(FPGA). Its functionality has been verified by comparing
the obtained misclassified feature vectors of the hardware
architecture and the software simulation. For the hardware
solution, we encoded the input feature vectors on 16 bits in
order to use only one DSP for each multiplication operation.
This encoding reduces accuracy from 82% on CIFAR10 to
81.6%. Unlike other learning methods, this proposed approach
only needs to split input vector into P parts and then store
them. This allows a light learning process in which each vector
is stored in one clock cycle, no operation is performed and
T ·K · 16 bits memory usage is used, where T is the feature
vector size (cf. Table I).

For the classification process, we obtain a result each K
clock cycles. The experience parameters used are the same as
defined in [12] to get an accuracy of 82% and 81.6% for 32 and
16 values encoding respectively. To obtain feature vectors we
use inception V3 [24] which gives a 2048 dimensional feature
vector. 2048 DSPs are used, one for each vector value due
to the parallezation of processes applied to process vector’s
values. The energy consumption of the whole system is about
22 Watt (estimated by the tool) and the maximum frequency is
209 MHZ. For K = 200 the time needed to classify an input
vector is 957 ns, and the ratio between a software simulation
delay using an I7 870 (2.93 GHz) processor and the FPGA

when P = 64 and K = 200 is 104. Table I shows a summary
of the resource allocation of the FPGA for the implementation
of our proposed architecture.

Table I
FPGA RESULTS FOR THE OUR PROPOSED ARCHITECTURE ON VIRTEX 7

(XC7VX690TFFG1157) (T = 2048, P = 64, K = 200 AND n = 16 BITS).

Memory usage dedicated to store X (bits) 6553600

Combinational Look-up Tables (LUT) 265680/433200(61%)

Combinational Look-up Tables (DSP) 2048/3600(57%)

Maximum frequency (MHz) 209

learning/classifying delay (per feature vector) 4.79ns/957ns

Software to hardware delay ratio (delay) 104

VI. CONCLUSION

We proposed a hardware architecture using limited re-
sources for an incremental learning on chip. It is able to
train a model from scratch. The hardware implementation is
fully parallel and pipelined. This architecture can be used in
a variety of classification applications, and can be embedded
inside a processor chip.

The proposed architecture allows an embedded system to
be trained and tested on new data, to evolve dynamically and
to easily adapt to new changes. This architecture allows to
perform both training the model and inferring the class of
new data. Future work will focus on proposing a hardware
implementation for the deep CNN which acts as feature
extractor to obtain a complete embedded system.

REFERENCES

[1] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng,
“Quantized convolutional neural networks for mobile devices,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4820–4828.



Feature
Vector

Xm

T

Input
Register

T/P

T/P

T/P

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

RAM
T/P

Compute
Distance

2T/P

Compare
Distance

2T/P

Distance
Register

C

Majority
Vote

Output
Class

C

Figure 2. Hardware architecture of ILOC

[2] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev, “Com-
pressing deep convolutional networks using vector quantization,” arXiv
preprint arXiv:1412.6115, 2014.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David, “Bina-
ryconnect: Training deep neural networks with binary weights during
propagations,” in Advances in Neural Information Processing Systems,
2015, pp. 3123–3131.

[4] Guillaume Soulié, Vincent Gripon, and Maëlys Robert, “Compression
of deep neural networks on the fly,” in International Conference on
Artificial Neural Networks. Springer, 2016, pp. 153–160.

[5] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee, “Towards the limit
of network quantization,” arXiv preprint arXiv:1612.01543, 2016.

[6] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al., “Going
deeper with embedded fpga platform for convolutional neural network,”
in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2016, pp. 26–35.

[7] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao, “Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural net-
works,” in Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. ACM, 2016, pp. 16–25.

[8] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar,
“Learn++: An incremental learning algorithm for supervised neural
networks,” IEEE transactions on systems, man, and cybernetics, part C
(applications and reviews), vol. 31, no. 4, pp. 497–508, 2001.

[9] Nadeem Ahmed Syed, Syed Huan, Liu Kah, and Kay Sung, “Incremen-
tal learning with support vector machines,” 1999.

[10] Tomaso Poggio and Gert Cauwenberghs, “Incremental and decremental
support vector machine learning,” Advances in neural information
processing systems, vol. 13, pp. 409, 2001.

[11] Yu Sun, Ke Tang, Leandro L Minku, Shuo Wang, and Xin Yao, “Online
ensemble learning of data streams with gradually evolved classes,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp.
1532–1545, 2016.

[12] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu
Arzel, and Michel Jezequel, “Incremental learning with pre-trained
convolutional neural networks and binary associative memories,” 2017.

[13] Gian Marco Bo, Daniele D Caviglia, and Maurizio Valle, “An on-
chip learning neural network,” in Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference on.
IEEE, 2000, vol. 4, pp. 66–71.

[14] Kyunghee Kang and Tadashi Shibata, “An on-chip-trainable gaussian-
kernel analog support vector machine,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 7, pp. 1513–1524, 2010.

[15] Markos Papadonikolakis and Christos-Savvas Bouganis, “A novel fpga-
based svm classifier,” in Field-Programmable Technology (FPT), 2010
International Conference on. IEEE, 2010, pp. 283–286.

[16] Robi Polikar, Lalita Udpa, Satish S Udpa, and Vasant Honavar,
“Learn++: an incremental learning algorithm for multilayer perceptron
networks,” in Acoustics, Speech, and Signal Processing. ICASSP’00.
Proceedings.IEEE International Conference on. IEEE, 2000, vol. 6, pp.
3414–3417.

[17] Nikola Kasabov, Evolving connectionist systems: Methods and applica-
tions in bioinformatics, brain study and intelligent machines, Springer
Science & Business Media, 2013.

[18] Robert M French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[19] Zeki Erdem, Robi Polikar, Fikret Gurgen, and Nejat Yumusak, “Ensem-
ble of svms for incremental learning,” in International Workshop on
Multiple Classifier Systems. Springer, 2005, pp. 246–256.

[20] José Fernando García Molina, Lei Zheng, Metin Sertdemir, Dietmar J
Dinter, Stefan Schönberg, and Matthias Rädle, “Incremental learning
with svm for multimodal classification of prostatic adenocarcinoma,”
PloS one, vol. 9, no. 4, pp. e93600, 2014.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid, “Product quantiza-
tion for nearest neighbor search,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[23] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio, “An empirical investigation of catastrophic forgetting in
gradient-based neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna, “Rethinking the inception architecture for com-
puter vision,” arXiv preprint arXiv:1512.00567, 2015.


