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Abstract—We propose an extension of Convolutional Neural
Networks (CNNs) to graph-structured data, including strided
convolutions and data augmentation on graphs. Our method
matches the accuracy of state-of-the-art CNNs when applied on
images, without any prior about their 2D regular structure. On
fMRI data, we obtain a significant gain in accuracy compared
with existing graph-based alternatives.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [1] have been able
to surpass traditional machine learning methods in various
image based tasks [2], [3]. This is possible as they exploit
the learning capabilities of deep neural networks while also
taking advantage of the intrinsic regular 2D structure of the
data. But when data lacks regular structure [4], there is no
natural notion of convolutions, stride/pooling or data augmen-
tation. Such irregularities occur in various domains covering
social networks to neuroscience, internet of things, citation
graphs, point cloud manifolds. . . The question of developing
solutions that are counterparts of CNNs in irregular domains
has recently been a very active field of research.

In this paper we introduce a method that extends CNNs
to irregular domains. Contrary to many alternative works,
we ensure that our proposed methodology matches the per-
formance of CNNs when applied to regular domains, even
without knowledge of the underlying structure. To that end,
we infer a graph to represent the topology of the data. From
this graph, we infer translations. The weight-sharing schemes
of our proposed convolutional layers are then defined based
on those translations, as well as data-augmentation and stride.

At the end of the process, the obtained architecture is very
similar to a traditional CNN and can thus be trained using
the same routines and libraries, and equivalent computational
and memory footprints. We first perform experiments on the
CIFAR-10 dataset without knowledge about the fact it is
made of images. We show that our method is able to reach
performance similar to state-of-art CNNs, thus implying that –
at least for regular domains – it allows to completely leverage
the underlying structure. Then, we perform experiments on
an irregular neuroscience dataset and demonstrate a gain in
performance compared with completely unstructured deep
learning methods and alternative graph-based CNNs.

II. RELATED WORK

Deep learning on graphs can refer to three distinct problems:
classification of graphs, of nodes in a graph, or of signals
on graphs. In this paper, we are interested only in the latter
task that is to leverage the graph structure of signals in deep
learning models, by redefining the convolutional layer. Such
methods have already been proposed in the literature. We
distinguish two categories of solutions.

In the first category, convolution is defined as pointwise
multiplication in the spectral domain of the graph, which is
defined using the Laplace-Beltrami operator [5]. This method
originated the first spectral graph CNNs [6], [7]. An approx-
imation of the spectral graph convolution using Chebychev
polynomials has been proposed [8], and has the advantage to
be both faster and localized in the vertex domain. Another
variant with Cayley polynomials [9] also localizes the convo-
luted filter in the spectral domain.

In the second category, convolution is defined directly in
the vertex domain. These works were originally motivated
by chemistry datasets [10], [11]. Convolution is defined as
a function of the kernel weights and neighboring vertices (the
receptive field), usually based on dot products. As such, it
retains the property of being localized and of sharing weights.
But there remains the need to specify how the shared weights
are allocated in this receptive field [12]. This allocation can
depend on an arbitrary order [13], on the number of hops [14],
[15], on both vertices and their neighbors [16], [17], on another
learned kernel [18], on an attention mechanism [19], on
pattern identification [20], or on translation identification [21].
All these methods also differ in the function that maps the
receptive fields and the weight kernel to the neuron’s outputs.
But in the end, these definitions overlap. That is why some
authors have proposed unified frameworks [22].

We tackle another point. Given a dataset with no structure
between the features of the input vectors, our goal is to
demonstrate that we can still define meaningful convolutional,
stride/pooling layers. The first step to determine whether the
results obtained on unstructured data is satisfactory or not is
to stress it on regular data while disregarding its structure.
We deal with this step on image datasets. Even though some
previous works match the performance of CNNs on image
datasets, ours is the first that can do it without structure prior.



III. METHODOLOGY

Our method is based on [21], where the authors have
introduced a way to infer a graph from training signals, then
translations from the obtained graph to design ad-hoc CNNs.
We extend this approach and design strided convolutions along
graph downscaling, data augmentation and convolutions on
downscaled graphs. Figure 1 depicts the proposed method.
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Figure 1. Outline of the proposed method

A. Background

Define a graph G = 〈V,E〉 with V the set of vertices, and
E ⊆

(
V
2

)
the set of edges. We suppose the graph is connected,

as conversely the process can be applied to each connected
component of G. We denote by d the max degree of the graph
and n = |V | the number of vertices.

The authors of [21] propose to inductively define transla-
tions as functions from vertices to vertices as follows:

Definition 1: Candidate-translation
A candidate-translation is a function φ : U → V , where
U ⊂ V and such that:
• φ is injective:
∀v, v′ ∈ U, φ(v) = φ(v′)⇒ v = v′,

• φ is edge-constrained:
∀v ∈ U, (v, φ(v)) ∈ E,

• φ is strongly neighborhood-preserving:
∀v, v′ ∈ U, (v, v′) ∈ E ⇔ (φ(v), φ(v′)) ∈ E.

The cardinal |V − U | is called the loss of φ. Two
candidate-translations φ and φ′ are said to be aligned if
∃v ∈ V, φ(v) = φ′(v). We define Nr(v) as the set of vertices
that are at most r-hop away from a vertex v ∈ V .

Definition 2: Translation
A translation in a graph G is a candidate-translation such
that there is no aligned translation with a strictly smaller loss,
or is the identity function.

Note that if the graph is a 2D grid, obtained translations
are exactly natural translations on images [23].

Definition 3: Local translation
A local translation of center v ∈ V is a translation in the
subgraph of G induced by N2(v), that has v in its definition
domain.

As local translations can’t be used to design data
augmentation and convolutions on downscaled graphs, we
also design proxies to global translations.

Definition 4: Proxy-translations
A family of proxy-translations (ψp)p=0,..κ−1 initialized by
v0 ∈ V is defined algorithmically as follows:

1) We place an indexing kernel on N1(v0) i.e.
N1(v0) = {v0, v1, ..., vκ−1} with ∀p, ψp(v0) = vp,

2) We move this kernel using each local translation φ of
center v0: ∀p, ψp(φ(v0)) = φ(vp),

3) We repeat 2) from each new center reached until satu-
ration. If a center is being reached again, we keep the
indexing that minimizes the sum of losses of the local
translations that has lead to it.

B. Efficiently Finding Translations

Finding translations is an NP-complete problem [24], such
that for large graphs the method is not suitable. In order
to break down complexity, the authors of [21] propose to
search for local translations. They also introduce approximate
translations which we omit for the sake of simplicity, but the
description would be similar. We describe in three steps how
we efficiently find proxy-translations.

First step: finding local translations
For each vertex v ∈ G, we identify all local translations

using a bruteforce algorithm. This process requires finding
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Figure 2. Grid graph (in dashed grey) and the subgraph induced by N2(v0)
(in black).

Figure 3. Translations (black arrows) in the induced subgraph (dashed grey)
around v0 (filled in black) that contains v0 and only some of its neighbors.

all translations in all induced subgraphs. There are n such
subgraphs, each one contains at most d local translations.
Finding a translation can be performed by looking at all
possible injections from 1-hop vertices around the central
vertex to any vertex that is at most 2-hops away. We conclude
that it requires at most O(ndd2(d+1)) elementary operations
and is thus linear with the order of the graph. On the other
hand, it suggests that sparsity of the graph is a key criterion
in order to maintain the complexity reasonable.

Figure 2 depicts an example of a grid graph and the
induced subgraph around vertex v0. Figure 3 depicts all
obtained translations in the induced subgraph.

Second step: using local translations to move a small
localized kernel around G

Given an arbitrary1 vertex v0 ∈ V , we place an indexing
kernel on N1(v0) i.e. N1(v0) = {v0, v1, ..., vκ−1}. Then we
move it using every local translations of center v0, repeating
this process for each center that is reached for the first time.
We stop when the kernel has been moved everywhere in
the graph. In case of multiple paths leading to the same
destination, we keep the indexing that minimizes the sum of
loss of the series of local translations. We henceforth obtain
an indexing of at most κ objects of N1(v) for every v ∈ V .

This process is depicted in Figure 4. Since it requires
moving the kernel everywhere, its complexity is O(nd2).

Final step: identifying proxy-translations in G
Finally, by looking at the indexings obtained in the previous

step, we obtain a family of proxy-translations defined globally
on G. More precisely, each index defines its own proxy-
translation. Note that they are not translations because only
the local properties have been propagated through the second
step, so there can exist aligned candidates with smaller losses.
Because of the constraint to keep the paths with the minimum
sum of losses, they are good proxies to translations on G.

1In practice we run several experiments while changing the initial vertex
and keep the best obtained result.
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Figure 4. Illustration of the translation of a small indexing kernel using
translations in each induced subgraph. Kernel is initialized around v0 (a),
then moved left around v1 (b) using the induced subgraph around v0, then
moved left again around v2 (c) using the induced subgraph around v1 then
moved up around v3 (d) using the induced subgraph around v2. At the end
of the process, the kernel has been localized around each vertex in the graph.

Figure 5. Proxy-translations in G obtained after moving the small kernel
around each vertex. Each color corresponds to one translation.

An illustration on a grid graph is given in Figure 5. The
complexity is O(nd). Overall, all three steps are linear in n.

C. Extended Convolution Layers

Let (ψp)p=0,..,κ−1 be the proxy-translations identified on G
with the convention that ψ0 = id is the identity function, and
where κ is the number of weights in the indexing kernel.

The operation of the extended convolution layer centered
on the vertex v ∈ V is defined as:

yv = h

(
κ−1∑
p=0

wpxφp(v) + b

)
where h is the activation function, b is the bias term, x⊥ = 0

and: {
φp(v) = ψp(v) if ψp is defined on v
φp(v) = ⊥ /∈ V else .

Note that we defined convolution layers using the formalism
of proxy-translations, but they can also be defined using only
the formalism of local translations [21].

D. Extended Data Augmentation

Once translations are obtained on G, one can use them to
move training vectors, artificially creating new ones. Note that
this type of data-augmentation is poorer than for images since
no flipping, scaling or rotations are used.
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Figure 6. Downscaling of the grid graph. Disregarded vertices are filled in.

E. Extended Downscaling Layers

Downscaling is a tricky part of the process because it
supposes one can somehow regularly sample vectors. As a
matter of fact, a nonregular sampling is likely to produce
a highly irregular downscaled graph, on which looking for
translations irremediably leads to poor accuracy, as we noticed
in our experiments.

We rather define the translations of the strided graph using
the previously found proxy-translations on G.

First step: extended convolution with stride r
Given an arbitrary initial vertex v0 ∈ V , the set of kept

vertices V↓r is defined inductively as follows:
• V 0
↓r = {v0},

• ∀t ∈ N, V t+1
↓r = V t↓r ∪{v ∈ V,∀v′ ∈ V t↓ , v 6∈ Nr−1(v′)∧

∃v′ ∈ V t↓r, v ∈ Nr(v′)}.
This sequence is nondecreasing and bounded by V , so it

eventually becomes stationary and we obtain V↓r = limt V
t
↓r.

Figure 6 illustrate the first downscaling V↓2 on a grid graph.
The output neurons of the extended convolution layer with

stride r are V↓r.

Second step: convolutions for the strided graph
Using the proxy-translations on G, we move a localized r-

hop indexing kernel over G. At each location, we associate
the vertices of V↓r with indices of the kernel, thus obtaining
what we define as induced ↓r-translations on the set V↓r. In
other words, when the kernel is centered on v0, if v1 ∈ V↓r
is associated with the index p0, we obtain φ↓rp0(v0) = v1.
Subsequent convolutions at lower scales are defined using
these induced ↓r-translations similarly to Subsection C.

IV. EXPERIMENTS

To validate our method we performed experiments with two
different datasets, CIFAR-10 [25] and PINES fMRI dataset
[26]. The code is available at github.com/brain-bzh/MCNN.

A. CIFAR-10

On the CIFAR-10 dataset, our models are based on a vari-
ant of a deep residual network, namely PreActResNet18[2].
We tested different combinations of graph support and data
augmentation. For the graph support, we use either a regular
2D grid or either an inferred graph obtained by keeping the
four neighbours that covary the most. Table I summarizes
out results. In particular, it is interesting to note that results
obtained without any structure prior (91.07%) are only 2.7%
away from the baseline using classical CNNs on images
(93.80%). This gap is even smaller (less than 1%) when using

Table I
CIFAR-10 RESULT COMPARISON TABLE.

Support MLP
[27] CNN Grid Graph (Given) Covariance Graph (Inferred)

[8] Proposed Proposed
Full Data Augmentation 78.62% 93.80% 85.13% 93.94% 92.57%
Data Augmentation - Flip ——- 92.73% 84.41% 92.94% 91.29%
Graph Data Augmentation ——- 92.10%a —- 92.81% 91.07%b

None 69.62%b 87.78% —- 88.83% 85.88%b

a As the CNN does not have a graph support we used the covariance graph
as support for the graph data augmentation.
b No priors about the structure

the grid prior. Also, without priors our method significantly
outperforms the others.

B. PINES fMRI

The PINES dataset consists of fMRI scans on 182 subjects,
during an emotional picture rating task[26]. We fetched indi-
vidual first-level statistical maps (beta images) for the minimal
and maximal ratings from https://neurovault.org/collections/
1964/, to generate the dataset. Full brain data was masked
on the MNI template and resampled to a 16mm cubic grid,
in order to reduce dimensionality of the dataset while keep-
ing a regular geometrical structure. Final volumes used for
classification contain 369 signals for each subject and rating.

We used a shallow network. The results on Table II show
that our method was able to improve over CNNs, MLPs and
other graph-based extended convolutional neural networks.

Table II
PINES FMRI DATASET ACCURACY COMPARISON TABLE.

Graph None Neighborhood Graph
Method MLP CNN (kernel 1x1) [8] Proposed
Accuracy 82.62% 84.30% 82.80% 85.08%

V. CONCLUSION

We proposed a new methodology that extends classical
convolutional neural networks to irregular domains represented
by a graph. The methodology scales linearly well with the
order of the graph. Moreover, training can be performed using
existing libraries for deep learning.

We performed experiments and showed that our method is
able to match performance of classical convolutional neural
networks on images without explicit knowledge about the un-
derlying regular 2D structure. It also significantly outperforms
existing extended convolutional neural networks alternatives
based on graphs. We also demonstrated the ability of the
method to adapt to slightly irregular domains by performing
experiments on a neuroimage dataset.

However, the main limitation is that on highly irregular
domains, the obtained translations aren’t very helpful to design
meaningful convolutions, especially if the degree of the graph
varies a lot. Hence this requires to add constraints to the graph
inferring step to obtain an exploitable graph if it is not.

Future work includes extending to highly irregular domains,
which might require to revisit the definitions of translations.
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