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Abstract—Deep Neural Networks (DNNs) are state-of-the-art
in many machine learning benchmarks. Understanding how they
perform is a major open question. In this paper, we are interested
in using graph signal processing to monitor the intermediate rep-
resentations obtained in a simple DNN architecture. We compare
different metrics and measures and show that smoothness of label
signals on k-nearest neighbor graphs are a good candidate to
interpret individual layers role in achieving good performance.

I. INTRODUCTION

Deep Neural Networks (DNNs) have attracted a lot of
interest for their ability to achieve state-of-the-art performance
in numerous challenges in machine learning. It is thus clear
that the mathematical functions that are obtained by assem-
bling neural layers manage to greatly approximate associations
between input natural signals and their corresponding labels.
Among other explanations (e.g. [1]), there are two arguments
that are of paramount importance: a) DNNs are universal
approximators of continuous functions in vector spaces, and
b) despite containing a huge number of parameters, they
can efficiently be trained thanks to the chain rule of back
propagation.

On the other hand, DNNs still suffer from major limitations:
• Since they typically rely on many parameters to reach

good accuracy, they are not well fitted to learning chal-
lenges where a limited amount of data is available [2].

• Because they rely on gradient descent for training, DNNs
are subject to catastrophic forgetting when training data
is streamed [3].

• Avoiding overfitting boils down to performing crossval-
idation, which requires very high quality representative
training sets [4], [5].

• There is no systematic method today to efficiently find
good hyperparameters for these architectures.

Most of these limitations come from the fact DNNs are in the
end “black boxes”. As such, there is a need for theories to
explain their functioning.

In this paper we propose to use Graph Signal Processing
(GSP) to monitor intermediate representations of DNNs. GSP
is a framework that extends classical Fourier analysis to any
topological domain that can be described by a graph. Our
motivation is to use GSP to detect overfitting in a DNN archi-
tecture, and, more generally, to attempt at better understanding

how intermediate representations of DNNs synergy to reach
top performance.

The outline of the paper is as follows. In Section II we
introduce DNNs and GSP. In Section III we introduce ways
to characterize intermediate representations of DNNs using
GSP. In Section IV we perform experiments on the CIFAR-10
dataset. Finally, Section V is a conclusion.

II. DEEP NEURAL NETWORKS AND GRAPH SIGNAL
PROCESSING

A. Deep Neural Networks

1) Classification: Classification is a common problem in
the field of machine learning. It consists in finding a way to
associate any observation xtest with a label ytest, generalizing
previously given associations (xtrain, ytrain). It can thus be
considered as a specific form of regression, where labels can
typically only take a finite number of distinct values.

In many practical cases it is possible to represent both
inputs and outputs as vectors (or tensors) with real valued
coordinates.

2) Deep Neural Networks: DNNs are mathematical func-
tions characterized by a large number of tunable parameters.
They are built by assembling neural layers, which are typically
made of two key ingredients: a linear transformation W` and
a nonlinear function h`, where ` indices the layer.

Denoting x` and y` resp. the input and the output of such
a layer, a layer can be represented mathematically as follows:

y` = h`(W`x`) .

In the most generic case where W` is not constrained and
h is a simple real valued function applied coefficientwise (typ-
ically a Rectified Linear Unit (ReLU): f : x 7→ max(0, x)),
we term the layer “fully-connected”. Of particular interest is a
subfamily of layers where W` is a tensor whose slices along
its first dimensions are convolutional matrices. We call them
“convolutional layers” (or “conv layers” for short). Note that
it is known that convolutional matrices with a small localized
kernel often lead to the best performance.

To the contrary, some layers are such that W` contains
almost no free parameters and h takes into account the specific
underlying structure of x`. It is in particular the case for stride
layers that consist of regularly sampling x, or pooling layers in



which a local filter is used to merge neighboring coordinates
in x.

These various layers can be assembled in many different
ways, even though most existing architectures lead to under-
lying graphs that are mostly lines or trees. Most of the time the
output of a layer is directly fed onto the input of a downstream
layer. In some rare exceptions, concatenations or sums are used
to merge the outputs of two or more layers.

3) Example architecture: In the experiments section, we
make use of a specific architecture of a DNN that is sum-
marized in Figure 1. This architecture takes as input tensors
with dimensions 32x32x3 and outputs a 10-dimensional vector.
We use small 3x3 kernels for convolutions, so that each
convolutional layer has the effect of truncating a bit the first
two dimensions of its input to avoid side-effects.

During training, we introduce dropout (i.e. random reset to
0 for some coordinates) with probability 0.1 independently for
each coordinate right after Layers 3 and 6.

4) Training and testing: To train a DNN, we present the
couples (xtrain,ytrain) to the network and perform a stochas-
tic backpropagation of gradient descent. The parameters of the
model are all free parameters in tensors W, that are initialized
at random. Unless stated otherwise, we use a RMSProp
optimizer with a learning rate of 0.0001 and a decay of 1e-
6. We call epoch a period of time during which all training
vectors have been processed once. We call data augmentation
adding artificial training examples that are small modifications
of existing ones using translations, rotations and/or flipping.

Generally speaking, a key question to designing efficient
DNNs resides in choosing good hyperparameters (e.g. number
of layers, way of assembling them, number of free parameters
in each layer, types on nonlinearities, optimization routine’s
choices. . . ). Roughly speaking, there are two types of behavior
that should be avoided: underfitting, which corresponds to the
case where the architecture is not even able to obtain a good
association in training pairs (xtrain, ytrain), and overfitting,
which corresponds to the case where the architecture is obtain-
ing performance significantly better on the training examples
than on actual tests.

Crossvalidation is often used to estimate overfitting, and
consists in splitting the training set in two parts: the first one
is used for training and the second one for checking the ability
of the architecture to generalize to previously unseen inputs.

However in many practical cases it is problematic to rely
on crossvalidation, because:
• The training set is reduced in size. In some cases there

are not enough training examples in total to even simply
check the ability of the architecture to generalize effi-
ciently,

• The model generalization abilities are assessed using a
fraction of the training set, giving a possibly biased
judgement on their real performance on unseen data.

B. Graph Signal Processing

Graph signal processing [6] is a framework that aims at
extending classical harmonic analysis to arbitrary domains
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Figure 1. Depiction of a DNN architecture designed to handle input images
of 32x32x3 dimensions.



described by a graph. We call (weighted) graph a couple
G = 〈V,A〉 where V is a finite set of vertices indexed from
1 to n, the cardinality of V , and A ∈ Rn2

is a symmetric
matrix with nonnegative weights.

The (combinatorial) Laplacian of a graph G is the matrix
L , DA−A, where DA is the degree matrix of A, that is to
say the diagonal matrix which diagonal elements are the sum
of corresponding rows in A.

By construction, the Laplacian of a graph is a symmetric
real-valued matrix, and can thus be decomposed as L =
FΛFT , where Λ is a diagonal matrix of eigenvalues on its
diagonal in ascending order, F is an orthonormal matrix
of eigenvectors and F> is its transpose. Note that the first
column of F can always be chosen as a constant vector and is
associated with eigenvalue 0. More generally, the multiplicity
of eigenvalue 0 is the number of connected component in G.
Note that a corollary of this proposition is that all eigenvalues
are nonnegative.

Interestingly in the case of a ring graph columns of F can
be chosen as classical discrete Fourier Modes. Following this
lead, we define a signal x as a vector with dimension n, and
x̂ , F>x as its Graph Fourier Transform (GFT). Reciprocally,
x is said to be the inverse Graph Fourier Transform (iGFT)
of x̂.

The smoothness of a signal on G is defined as the quantity
x>Lx = x̂>Λx̂ =

∑n
i=1 Λiix

2
i . Note that we choose to

name this quantity “smoothness” to be coherent with existing
literature, and despite the fact it would be more adequate
to call it “nonsmoothness”. Indeed, the smoothest signal on
any graph is obtained when considering a constant vector,
which by definition has a smoothness of 0. To the contrary,
when considering unit-normed signals, the maximum value of
smoothness is reached when considering the last column of F
or its opposite, which typically involves a lot of zero-crossings
(i.e. number of edges for which connected vertices have values
with opposite signs in the signal).

III. USING GSP TO ANALYSE INNER LAYERS OF DNNS

Throughout its processing in a DNN, an input vector is
transformed in multiple intermediate representations of various
dimensions and shapes. In the example of Figure 1, the
number of dimensions varies from 10 to a maximum of
270,000. Furthermore, these representations can obey specific
constraints (e.g. nonnegativity).

In this paper we propose to use GSP to characterize the
evolution of each intermediate representation during the learn-
ing process. Using graphs to analyse a dataset is not a novel
idea [7], even in the context of GSP [8].

More precisely, we sample M example inputs in each of the
C classes, and we monitor their intermediate representations.
In the remaining of this work, we shall denote ye,`

c,i the
intermediate representation of the i-th input of class c at epoch
e of the learning process and at the output of layer `. In what
follows, we denote a ye,`

c,i as y, unless the sub/super indices
are needed.

A. Distances and k-Nearest Neighbor Graphs

Consider two vectors y,y′ ∈ Rd. We introduce three
distances and three associated similarities:
• Euclidean distance and similarity:

dE(y,y′) ,

√√√√ d∑
i=1

(yi − y′i)
2
, sE = exp (−dE) .

• Normalized Euclidean distance and similarity:

dNE , dE/
√
d , sNE = exp (−dNE) .

• Cosine similarity and distance:

scos(y,y
′) ,

d∑
i=1

yiy
′
i

d∑
i=1

y2
i

d∑
i=1

y′i
2

, dcos = 1− scos.

Note that these quantities are extended to tensors by consid-
ering their flattened vector counterparts and that the cosine
distance and similarity should only be considered for nonneg-
ative inputs.

We call complete graph the graph at epoch e and layer `
Gd = 〈V,Ae,`〉 where V = {(c, i), 1 ≤ c ≤ C, 1 ≤ i ≤ M}
and Ae,`

(c,i)(c′,i′) = f(ye,`
c,i ,y

′e,`
c,i ), f being one of the above-

mentioned distances or similarities.
We call k-nearest neighbor graph associated with Gd =
〈V,Ae,`〉 the graph Gd,k = 〈V,Ae,`,k〉 where Ae,`,k is
obtained from Ae,` by keeping only values that are among
the k smallest (resp. largest) ones on their row or on their
column if f is a distance (resp. similarity).

Considering vertices to be ordered in lexicographic order,
we call label signal a binary vector sc ∈ RCM , where all
coordinates are zero but the ones between the ((c− 1)M + 1)-
th coordinate and the cM -th one (i.e. except those belonging
to class c).

B. Separation

Separation is a measure of how well separated examples
that belong to distinct classes are, in comparison to examples
that belong to a same class.

Consider one of the previously introduced graphs. Denote
A its adjacency matrix. Then separation is written:

sepe,` =

C∑
c=1

C∑
c′=1
c′ 6=c

s>c supp(A)sc′

C∑
c=1

C∑
c′=1
c′ 6=c

s>c Asc′

C∑
c=1

s>c Asc

C∑
c=1

s>c supp(A)sc

,

where supp(A) denotes the support of A, that is to say the
matrix obtained from A by replacing each nonzero coordinate
with 1. Note that separation is always nonnegative and that it
should be lesser than 1 when considering distance graphs, at
least for the output layer.



C. Label Smoothness

Label smoothness is a measure of the smoothness of the
label signal on a given graph G. Denote by L the Laplacian
of G, then:

smoothe,` =

C∑
c=1

s>c Lsc′

M2C(C − 1)
.

Note that contrary to separation, a value of label smoothness
close to 0 on a similarity graph does not necessarily correspond
to the case where all classes are well separated, as the whole
similarity graph might be shrinking down.

D. Laplacian Spectrum

The first eigenvalues of the Laplacian of a graph gives
an interesting description of how clustered the graph is. In
particular an extreme case where the graph is made of several
connected components would lead to multiple eigenvalues
equal to 0.

Because eigenvalues are linearly impacted by scaling of a
graph, we propose to use the normalized Laplacian instead
of the combinatorial Laplacian. The normalized Laplacian is
obtained from an adjacency matrix A by computing L =

I − D
−1/2
A AD

−1/2
A . A useful property of the normalized

Laplacian is that its spectrum lies between 0 and 2, with at
least one eigenvalue that is larger than 1.

Interestingly, this measure does not need the labels of moni-
tored signals, compared to separation and label smoothness. in
the case of monitoring intermediate representation of signals
in deep neural networks, it would thus be usable for semi-
supervised or unsupervised learning problems.

IV. EXPERIMENTS

We perform experiments using the CIFAR-10 image dataset.
It consists of 50,000 training pairs (xtrain, ytrain), where
the input is of dimensions 32x32x3 (images of 32x32 pixels
with 3 primary colors). There are 10 classes. The network
performance is then assessed using a testing set of 10,000
images, 1,000 in each class.

We use the architecture depicted in Figure 1 that we train
in different conditions:
• A reference condition in which the architecture achieves

85% accuracy on the testing set. In this setting we
use data augmentation and dropout with parameter 0.1,
resulting in almost no overfitting. Note that this accuracy
is not state-of-the-art (see [9] for example) due to the
simplicity of the architecture.

• A slightly overfitted condition in which the dropout is
removed and no data augmentation is performed during
learning phase. Here, accuracy reaches a maximum of
78%.

• An underfitted architecture obtained by dividing by 10
the number of feature maps in each convolutional layer.
Accuracy reaches a maximum of 72%.

• Finally an extreme overfitting case where labels of ex-
amples have been shuffled arbitrarily. Of course in such

conditions accuracy of the testing set remains around
10%, the chance level.

When applicable, we use a 10-nearest neighbor graph.

A. Comparison of Distances on k-Nearest Neighbor Graphs

We perform a first test in which we plot the label smooth-
ness at each layer and each epoch of the training process
for the reference condition and for all three similarities in
order to compare intermediate representations across layers.
In these experiments we use a k-nearest neighbor similarity
graph. Results are reported in Figure 2. We observe that
Euclidean distance is not well fitted for this experiment,
due to the sudden changes in dimensions of intermediate
representations that result in orders of magnitude that are hard
to compare across layers. A key interest in the cosine distance
is that it is upperbounded, but it suffers from the limitation
that it only applies to architectures for which intermediate
representations are nonnegative. As the normalized Euclidean
distance has some useful properties – since it associates layers
with comparable values – we use it for upcoming experiments.
Note that we ran simulations with separation but results were
unusable due to many divisions by 0.

B. Results on Complete Graphs

In Figure 3 we depict separation on the complete distance
graph and label smoothness on the complete similarity graph
as a function of the number of epochs of training, in all cases
for the reference condition. We also depict the evolution of
accuracy on both the training and the testing sets. We observe
that despite the fact that accuracy is changing, separation
appears to be almost constant for all layers except for the last
one. Compared with smoothness, we conclude that separation
is not informative enough to monitor how examples from
distinct classes are detached across the learning process. Also
we note that label smoothness on the complete graph seems
to be a lot more subject to noise than label smoothness on k-
nearest neighbor graphs depicted in Figure 2. For this reason
we continue experiments with k-nearest neighbor graphs.

C. Smoothness and Overfitting

A second test we perform consists of comparing label
smoothness of k-nearest neighbor graphs under different con-
ditions. Our findings are summarized in Figure 4. There are
multiple interesting observations we can draw from these
experiments.

1) In all our conditions, we observe a monotonic behavior
of smoothness with layer depth. This is intuitive, as
we expect first layers to hardly be able to separate
training examples from distinct classes, whereas output
layers should – as the target of the optimization routine
– separate them efficiently. Note that there is a small
decrease in the dimension of vectors at each step when
going forward in the architecture, and that it could be
partially responsible for this phenomenon.
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Figure 2. Evolution of label smoothness as a function of the number of epochs
of training for the Euclidean distance (first line), the normalized Euclidean
distance (second line) and the cosine distance (third line).
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Figure 3. Evolution of accuracy, separation and label smoothness for the
normalized Euclidean distance as a function of the number of epochs of
training. Note that separation is computed with distance graphs whereas label
smoothness is computed with similarity graphs.



Underfitting Reference Slight Overfitting Extreme Overfitting
0.340 ± 0.016 0.827 ± 0.019 0.7960 ± 0.083 0.3231 ± 0.110

Table I
RATIO OF THE DIFFERENCE IN SMOOTHNESS BETWEEN THE OUTPUT

LAYER AND THE PENULTIMATE LAYER TO THE LARGEST OF THE TWO. WE
PLOT RESULTS FOR DIFFERENT CONDITIONS. RESULTS WERE OBTAINED

BY AVERAGING 30 TESTS WITH RANDOM INITIALIZATIONS.

2) In overfitting conditions, multiple layers seem to sepa-
rate very well training examples, whereas in the refer-
ence condition only the output layer is achieving it. This
suggests that penultimate layers are less dedicated to the
specific training examples, and could explain their great
interest for transfer learning [10].

We stress further the latter observation by performing Monte-
Carlo experiments. Results are depicted in Table I.

D. Laplacian Spectrum

We monitor the first eigenvalues of the normalized Lapla-
cian of the k-nearest neighbor graph in the different conditions.
Results are depicted in Figure 5. We observe a relatively
smooth evolution of this spectrum for the underfitting and
reference conditions. To the contrary, the overfitting conditions
lead to sudden changes and only the last layer seems to offer
proper clustering of examples. Note that we expect in all cases
to see at least the first 10 eigenvalues close to 0 for the output
layer, as in all cases accuracy on the training set is close to
100%.

E. Application to Complex Architectures

We perform experiments using a more complex architecture
named PreActResNet18 [11]. It is made of blocks that are
globally arranged linearly as in our model depicted in Figure 1.
However each block is made of several paths that process
data concurrently, their output being then summed to form the
output of the block. This architecture is known to achieve near
state-of-the-art performance on CIFAR-10.

Here again, we compare several conditions, and depict the
results in Figure 6. In order to interpret these curves, one
should first note some important facts.
• For some conditions the learning rate is adapted during

the learning process, resulting in sudden changes in
slopes of the curves.

• We are not necessarily interested in all the intermediate
representation at each layer of the architecture, since the
parallel computations are thought to produce residuals,
which are likely to give chaotic behaviors with respect
to smoothness or separation. Rather we focus here on
the intermediate representations at the output of blocks
along with the initial and final layers, so that each
of these representations convey all information that is
downstreamingly processed.

• Since some outputs are outputs of blocks and others are
outputs of convolutional layers, we talk about “represen-
tations” in Figure 6.
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Figure 4. Evolution of label smoothness as a function of the number of epochs
for different conditions: a) underfitting, b) slight overfitting and c) extreme
overfitting.
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Figure 5. Evolution of first eigenvalues of the nomalized Laplacian across
the architecture at the end of the learning process and for different conditions:
a) underfitting, b) reference, c) slight overfitting and d) extreme overfitting.

• There are important changes of dimension occuring mul-
tiple times throughout the process. It is the case right after
representations 3, 5 and 7. As a result, representations
should be considered in groups as follows: repr. 1-2-3,
repr. 4-5, repr. 6-7, and repr. 8-9-10.

Interestingly, we observe significant changes between the
different architectures, in particular in the group 8-9-10. In the
reference case the three layers have reasonably similar label
smoothness, whereas in other conditions we see important
gaps, in particular between representations 8 and 9.

Similarly to the simple architecture, the lack of a gap
between label smoothness between the penultimate represen-
tation and the output one seems to be a good indicator of
overfitting. Indeed, the reference condition is arguably slightly
overfitting, considering the very high score on the training set.

Another interesting observation we can draw from these
experiments is the impact of the learning rate on the slopes of
the curves. This is particularly true for the reference condition
where the impact is considerable. As a matter of fact it seems
that the sudden change in the learning rate specializes the last
group in clustering properly the examples whereas it effects
the contrary for previous representations.

Another interesting observation is the fact the label smooth-
ness continues to evolve by a great extent even if training and
test accuracies remain constant. This motivate the idea of using
label smoothness to properly choose when to adapt learning
rate during training.

V. CONCLUSION

In this paper we introduced a way to monitor intermediate
representations of deep neural networks using graph signal
processing. Our initial findings suggest that smoothness of the
label signals on a k-nearest neighbor graph obtained using
normalized Euclidean distance is a good measure of separation
of classes in these intermediate representations.

Future work include performing tests on state-of-the-art
architectures, checking reproducibility with other datasets and
designing optimization costs that specifically aim at decreasing
smoothness on specific layers.
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Figure 6. Comparison of accuracy and label smoothness for PreActResNet18 under different conditions.
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