
Manuscript to defend

Habilitation à Diriger des Recherches (Habilitation)

of

Vincent GRIPON

Efficient Representations for

Graph and Neural Network Signals

Defended at ENS Lyon on Dec. 4th, in front of the jury, composed of:

President: Rémi Gribonval, Senior Research Scientist at INRIA

Reviewers: Sophie Achard, Senior Research Scientist at CNRS

Pascal Frossard, Professor at EPFL

Julie Grollier, Senior Research Scientist at CNRS/Thales

Examiners: Sébastien Lefèvre, Professor at Université Bretagne Sud

Antonio Ortega, Professor at University of Southern California



2



Contents

I Curriculum Vitae 7

I.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.2 Education and Past Positions . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.3 PhD Thesis Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.4 Other Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I.4.1 Postdocs and Research Engineers . . . . . . . . . . . . . . . . . . . 10

I.4.2 Master Students and Interns . . . . . . . . . . . . . . . . . . . . . . 10

I.5 Funded Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I.5.1 Summary of Funded Projects . . . . . . . . . . . . . . . . . . . . . 12

I.5.2 Neural Communications . . . . . . . . . . . . . . . . . . . . . . . . 14

I.5.3 Advanced Algorithmics and Graph Theory with Python MOOC . . 17

I.5.4 Incremental Learning of Complex Situations . . . . . . . . . . . . 18

I.5.5 Adversarial Robustness and Training Biases . . . . . . . . . . . . . 18

I.5.6 Enhancing Indirect Visual Localization with Graph Filters . . . . . 18

I.5.7 Small and One-Person Fundings . . . . . . . . . . . . . . . . . . . 18

I.5.7.1 Large Scale Simulation of Associative Memories . . . . . 18

I.5.7.2 Emergence of ECC in Neural Networks . . . . . . . . . . 19

I.5.7.3 Efficient Implementations of Deep Learning . . . . . . . 19

I.5.7.4 Graph Signal Processing for DNN Visualization . . . . . 19

I.5.7.5 Organization of NeuroSTIC 2017 in Brest . . . . . . . . . 20

I.6 Teaching Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I.6.1 PyRat Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I.7 Reviewing Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I.8 Community Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I.9 Events Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I.10 Major Collaborators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I.11 Invitations and Hosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I.11.1 Main events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



CONTENTS CONTENTS

I.11.2 Seminars and Invited Talks . . . . . . . . . . . . . . . . . . . . . . . 28

I.12 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I.12.1 Journals and Books . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I.12.2 Conference Proceedings and Preprints . . . . . . . . . . . . . . . . 35

II Past Contributions 43

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II.1.2 Indexing and Associative Memories . . . . . . . . . . . . . . . . . 46

II.1.3 Classification and cross-validation . . . . . . . . . . . . . . . . . . 47

II.1.4 Biological inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II.1.5 Notations and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 50

II.2 Graphs and Graph Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II.2.1 Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . 51

II.2.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II.2.1.2 Signals on Graphs . . . . . . . . . . . . . . . . . . . . . . 53

II.2.1.3 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II.2.1.4 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II.2.1.5 Tropical Algebra . . . . . . . . . . . . . . . . . . . . . . . 60

II.2.2 Graph Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II.2.2.1 From Signals . . . . . . . . . . . . . . . . . . . . . . . . . 61

II.2.2.2 From Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II.2.3 Direct Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II.2.3.1 Time-varying Graph Signals . . . . . . . . . . . . . . . . . 63

II.2.3.2 Neuroimaging Data . . . . . . . . . . . . . . . . . . . . . 64

II.2.3.3 Bio-inspired Visual Processing . . . . . . . . . . . . . . . 64

II.2.3.4 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . 67

II.2.4 Summary of Contributions of the Section . . . . . . . . . . . . . . 67

II.3 Neural Networks for Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 68

II.3.1 Source and Channel Coding . . . . . . . . . . . . . . . . . . . . . . 68

II.3.1.1 Source Coding . . . . . . . . . . . . . . . . . . . . . . . . 68

II.3.1.2 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . 69

II.3.1.3 Error Correcting Codes for Neural Networks . . . . . . . 70

II.3.2 Associative Memories . . . . . . . . . . . . . . . . . . . . . . . . . 71

II.3.2.1 Sparse Associative Memories . . . . . . . . . . . . . . . . 71

II.3.2.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

II.3.2.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . 76

4



CONTENTS CONTENTS

II.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II.3.3.1 Nonuniform Distributions . . . . . . . . . . . . . . . . . 76

II.3.3.2 Sets and Nearest Neighbor Search . . . . . . . . . . . . . 77

II.3.3.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . 77

II.3.3.4 A Novel Look at the Brain . . . . . . . . . . . . . . . . . . 79

II.3.4 Summary of Contributions of the Section . . . . . . . . . . . . . . 81

II.4 Neural Networks for Learning . . . . . . . . . . . . . . . . . . . . . . . . . 82

II.4.1 Compression of Deep Learning Architectures . . . . . . . . . . . . 82

II.4.1.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II.4.1.2 Quantization and Pruning . . . . . . . . . . . . . . . . . . 87

II.4.1.3 Varying-bit precision . . . . . . . . . . . . . . . . . . . . . 87

II.4.1.4 Quantization and Factorization . . . . . . . . . . . . . . 87

II.4.2 Applications and Methods . . . . . . . . . . . . . . . . . . . . . . . 88

II.4.2.1 Neural Networks as Accelerators . . . . . . . . . . . . . . 88

II.4.2.2 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

II.4.2.3 Incremental Learning . . . . . . . . . . . . . . . . . . . . 91

II.4.2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 92

II.4.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 93

II.4.3.1 Node Embedding . . . . . . . . . . . . . . . . . . . . . . . 93

II.4.3.2 Visualization of Deep Architectures . . . . . . . . . . . . 94

II.4.3.3 Graph Smoothness Loss . . . . . . . . . . . . . . . . . . . 94

II.4.3.4 Deep Learning with Irregular Signals . . . . . . . . . . . 96

II.4.4 Summary of Contributions of the Section . . . . . . . . . . . . . . 97

III Future Work and Directions 99

III.1 Compositional AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III.1.1 Congruent Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

III.1.2 Disentangling Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 103

III.1.3 Atomization Learning . . . . . . . . . . . . . . . . . . . . . . . . . 104

III.2 Few-Label and Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . 106

III.2.1 Improved Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

III.2.2 Controlled Data-Augmentation . . . . . . . . . . . . . . . . . . . . 107

III.2.3 Learnable Semi Supervision . . . . . . . . . . . . . . . . . . . . . . 107

III.3 Training Deep Learning on Chip . . . . . . . . . . . . . . . . . . . . . . . . 108

III.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III.3.2 Replacing Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 109

III.3.3 Compressing the Learning Phase . . . . . . . . . . . . . . . . . . . 110

5



CONTENTS CONTENTS

III.3.4 Privacy and Edge Computing . . . . . . . . . . . . . . . . . . . . . 110

III.4 Ethical and Societal Discussion . . . . . . . . . . . . . . . . . . . . . . . . 111

6



Chapter I

Curriculum Vitae

I.1 Summary

Personal Information

First name: Vincent

Last name: Gripon

Birth date: April 3rd, 1985

Nationality: French

ORCID ID: 0000-0002-4353-4542

Website: https://www.vincent-gripon.com

Position and Research Subjects

Position: Permanent Researcher with IMT Atlantique

Keywords: Efficient Deep Learning, Associative Memories, Graph

Signal Processing, FPGA Implementation

Quantitative Summary

Number of citations: ≈ 1200 according to Google Scholar

H-index: ≈ 19 according to Google Scholar

Books and chapters: 2

Papers in journals: 17

Other papers: 59 (including 2 best papers)

Obtained funding: ≈1Me
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I.3. PHD THESIS SUPERVISIONS CHAPTER I. CURRICULUM VITAE

I.2 Education and Past Positions

Date Position

2020 Chair of Excellence at Université de Côte d’Azur.

Host: Benoît Miramond

2018-2019 Invited Professor at Université de Montréal and Mila.

Host: Yoshua Bengio

2012- Permanent Researcher at IMT Atlantique

2011-2012 Postdoc at McGill University.

Supervisers: Michael Rabbat and Warren Gross

2008-2011 PhD student at IMT Atlantique.

Superviser: Claude Berrou

2006-2008 Master at École Normale Supérieure Paris-Saclay.

Specialty: Computer Science and Telecommunications

I.3 PhD Thesis Supervisions

2011-2014 Bartosz Bogulawski, supervising at 25%

Subject: Dynamic Power Management of MPSoC using Networks of

Neural Cliques

Now: Permanent Researcher with Schneider Electric

Note: Joint PhD with CEA LETI

2013-2016 Alan Aboudib, supervising at 50%

Subject: Neuro-inspired Architectures for the Acquisition Processing

of Visual Information

Now: Head of AI with DiGEiZ

2013-2017 Philippe Tigréat, supervising at 25%

Subject: Sparsity, Redundancy and Robustness in Artificial Neural

Networks for Learning and Memory
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CHAPTER I. CURRICULUM VITAE I.3. PHD THESIS SUPERVISIONS

2013-2018 Robin Danilo, supervising at 25%

Subject: Approches connexionnistes pour la vision par ordinateur

embarquée

Now: Teacher

Note: Joint PhD with University of South Brittany

2015-2018 Bastien Pasdeloup, supervising at 50%

Subject: Extending Convolutional Neural Networks to Irregular

Domains Through Graph Inference

Now: Professor with IMT Atlantique

2015-2018 Jean-Charles Vialatte, supervising at 50%

Subject: On Convolution of Graph Signals And Deep Learning on

Graph Domains

Now: Permanent Researcher with Senx

Note: Joint PhD with Senx

2016-2019 Ghouthi Boukli Hacene, supervising at 33%

Subject: Processing and Learning Deep Neural Network on Chip

Rewards: Ghouthi obtained the prize for the best PhD in 2019 from

Institut Mines Telecom, as well as the prize for the best PhD 2019

from the French Association for Artificial Intelligence (AFIA).

Now: Postdoc at Mila

2017- Carlos Rosar Kos Lassance, supervising at 50%

Subject: Graph Methods for Visualization and Robustness of Deep

Learning Architectures

2018- Myriam Bontonou, supervising at 50%

Subject: Processing of Time-Varying Graph Signals

2019- Yuking Hu, supervising at 50%

Subject: Deep Learning in Few-Shot Settings

Note: Joint PhD with Orange

2019- Hugo Tessier, supervising at 50%

Subject: Compression Methods for Deep Learning Architectures

Note: Joint PhD with PSA
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I.4 Other Supervisions

I.4.1 Postdocs and Research Engineers

2015-2016 Nicolas Farrugia, Postdoc, supervising at 100%

Project: Neural Communications, with LabEX CominLabs

Subject: Tracking the Dynamics of Cognitive Ability

Now: Professor with IMT Atlantique

2016-2017 Mathilde Ménoret, Postdoc, supervising at 50%

Project: Neural Communications, with LabEX CominLabs

Subject: Graph Signal Processing for fMRI Classification

Now: Research Engineer with IMT Atlantique

2017-2018 Olivier Dufor, Postdoc, supervising at 25%

Subject: Data Acquisition for EEG measures during Sound

Recognition

Now: Professor with ISEN

2017-2018 Ehsan Sedgh Gooya, Research Engineer, supervising at 50%

Subject: Demonstrators for Compressed Deep Learning

Architectures

Now: Professor with ISEN

2020- Mounia Hamidouche, Postdoc, supervising at 33%

Subject: Using graph signal processing to improve few-shot

classifiers

I.4.2 Master Students and Interns

2013 Baptiste Tessiau, from ENS Rennes

Subject: Associative Memories for Relational Algebra

Thibault Ehret, from ENS Rennes

Subject: Sparse Associative Memories and Dictionary Learning

Jean-Charles Vialatte, from IMT Atlantique

Subject: Classification with Networks of Neural Cliques
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Alan Aboudib, from ENIB

Subject: Comparison of Sparse Associative Memories

2014 Chendi Yu, from IMT Atlantique

Subject: Associative Memories for Nearest Neighbor Search

Baptiste Bourès, from University of Brest

Subject: Developing a Web-based Contest Platform

Nissim Zerbib, from ENS Paris

Subject: Extended Principles of Associative Memories

Réda Alami, from IMT Atlantique

Subject: Uncertainty with Graph Signal Processing

2015 Demetrio Ferro, from Polytechnico di Turino

Subject: Accelerating Search with Associative Memories

Jules Pondard, from ENS Paris

Subject: Hypergraphs for Associative Memories

Martin Guy, from ENS Lyon

Subject: Time-Supervised Classification of Video Frames

Emma Kerinec, from ENS Lyon

Subject: Visualisation of Time-Varying Graph Signals

2016 Tristan Sterin, from ENS Lyon

Subject: Comparison of LSTMs and Vanilla RNNs

Ghouthi Boukli Hacene, from Polytechnique Alger

Subject: Search with Associative Memories

2017 Guillaume Duboc, from ENS Lyon

Subject: Automatic Discovery of Virtual Environments

Simon Fernandez, from ENS Lyon

Subject: Semantics of Recurrent Neural Networks

Justine Delomenie, from IMT Atlantique

Subject: Automatic Music Video Clip Generation

Houda Abichou, from IMT Atlantique

Subject: Graph Signal Processing and Distributed Optimization

Rolland Xavier, from ENS Rennes

Subject: Analysing Trajectories of Heat Diffusion on Graphs
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2018 Amal Ben Soussia, from ENIT

Subject: Robustness of Deep Neural Network Architectures

Mehdi Rezzoug, from IMT Atlantique

Subject: Universality of Convolutional Neural Networks

Nicolas Grelier, from IMT Atlantique

Subject: Finding Regular Visualizations of Graphs

2020 Guillaume Coiffier, from ENS Lyon

Subject: Deep learning architectures with a tiny parameter budget

Louis Béthune, from ENS Lyon

Subject: Predicting the accuracy of few-shot classifiers

Théo Giraudon, from ENPC

Subject: Towards a robust definition of the robustness of classifiers

Tom Pégeot, from IMT Atlantique

Subject: Relation between Pruning and Robustness in Neural

Network Classifiers

I.5 Funded Projects

In this section we start with a summary of funded projects, then we present some high-

lights in a few paragraphs. Note that the results of these projects are also discussed in

Chapter II. Privately funded projects are not discussed because of intellectual prop-

erty.

I.5.1 Summary of Funded Projects

Date Amount Funding institution and subject

2012 6ke Lab-STICC

Subject: Large Scale Simulation of Associative Memories

Role: PI

2015 110ke Futur et Ruptures

Subject: Emergence of Error Correcting Coding in Neural

Networks

Role: Partner
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2015 291ke LabEX CominLabs

Subject: Neural Communications

Role: PI

2017 110ke PRACom and Brest Metropole

Subject: Efficient Implementations of Deep Learning

Role: PI

2017 5ke CNRS GDRs and IMT Atlantique

Subject: NeuroSTIC in Brest

Role: Organizer

2018 30ke Orange Labs

Subject: Online Sound Recognition

Role: PI

2018 150ke Thales

Subject: Associative Memories for Classification and

Novelty detection

Role: PI

2018 50ke Région Bretagne

Subject: Graph Signal Processing for Deep Learning

Visualization and Robustness

Role: PI

2018 55ke MOOC Funding

Subject: Advanced Algorithmics and Graph Theory with

Python

Role: PI

2019 150ke Thales

Subject: Few-Shot Learning

Role: PI

2019 10k AUD FASIC

Subject: Enhancing Indirect visual Localization with

Graphs

Role: PI
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2019 7ke GDR ISIS

Subject: Adversarial Robustness and Training biases

Role: PI

2019 20ke ERE DGA

Subject: Incremental Learning in Complex Situations

Role: PI

2020 50ke TSN Carnot

Subject: Graph Signal Processing to represent inner layers

of Deep Neural Networks

Role: PI

2020 30ke Orange Labs (CIFRE)

Subject: Few-shot Learning

Role: PI

2020-2022 75ke PSA (CIFRE)

Subject: Compression of Deep Neural Networks

Role: PI

2020-2021 15ke Schneider

Subject: Few-shot and continual learning

Role: PI

2020-2022 202ke Brittany region

Subject: Optimizing observation, detection, classification

and tracking of maritime objects

Total funding: 1.1Me

Role: PI

2021-2023 10ke AXA (CIFRE)

Subject: Explanability and Interpretability in Deep Neural

Networks

Role: PI

I.5.2 Neural Communications

The project “Neural Communications” was funded by the LabEX CominLabs for a du-

ration of two years. It was intended to be a continuation of the LabEX CominLabs

project “Neural Coding”, led by Professor Claude Berrou. The project was built upon

14
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a collaboration between three main entities: IMT Atlantique, the LTSI Laboratory of

INSERM Rennes, and Orange Labs. In total, 291ke were funded, covering roughly the

expanses related to the recruitment of three postdocs/research engineers for about

two years.

The main motivation of the project was to investigate neural communications at

the millisecond scale, thanks to a twofold approach. On the one hand, wecreated

a theoretical model of neural communications [1]. On the other hand, experiments

were conducted so as to reinforce or contradict the theoretical developments [2, 3, 4].

The project led to the development of signal processing methods to track the cog-

nitive activity at the millisecond scale. In Figure I.1 are shown illustrations extracted

from the project report, where spatio-temporal dynamic patterns of spontaneous brain

connectivity have been automatically determined.

The project also introduced novel methods to better represent brain activity for

downstream tasks, such as classification [5]. Extracted from this article, Table I.7 shows

how graphs can advantageously benefit such tasks, when using the low or high fre-

quencies (LF or HF) in conjunction with graph sampling (GS) or graph Fourier trans-

form (GFT).

Table I.7: Accuracy of the classification on the Haxby dataset (face vs. houses) for several graph-based
sampling methods (in %) for two difficulty groups. Starred numbers indicate best scores in their cate-
gory.

Graph GFT GFT GFT GS GS

Types LF HF ANOVA LF HF

Difficult

Full 54.8% 51.1% 66.0% 52.0% 51.3%

Geometric 56.7% 64.8% 64.8% 50.5% 65.2%

|Correlation| 52.4% 66.8% 64.7% 50.9% 60.3%

|Covariance| 52.4% 67.6% 65.2% 51.2% 66.2%

Kalofolias 61.6% 51.9% 65.9% 61.6% 51.9%

Semilocal 53.8% 69.5% 65.6% 50.3% 72.5%*

Fundis 54.9% 64.2% 65.1% 49.7% 62.8%

Easy

Full 65.1% 60.0% 88.9% 49.6% 60.6%

Geometric 71.3% 79.4% 86.0% 57.8% 79.1%

|Correlation| 59.5% 86.5% 86.9% 53.5% 75.2%

|Covariance| 57.2% 87.0% 88.8% 52.8% 84.8%

Kalofolias 88.2% 54.2% 89.4% 87.5% 52.6%

Semilocal 61.3% 87.9% 88.6% 52.3% 90.9%*

Fundis 67.4% 77.5% 86.7% 52.4% 77.5%

15
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Figure I.1: Spatio-temporal patterns of spontaneous brain activity during resting state, along with their
time-course prominence.
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I.5.3 Advanced Algorithmics and Graph Theory with Python MOOC

This project was funded by IMT. The funding was used partly to cover the costs of

the service providers, and partly to cover the commitment of the staff. We devel-

oped a MOOC addressed at students familiar with programming, but looking for a

way to improve their skills, while learning basics of graph theory. The whole project

revolves around a game where two players compete to grab pieces of cheese in a maze

as quickly as possible. The MOOC covers graph traversal, the traveling salesman prob-

lem, greedy approaches and operational research. One year after its launch in Novem-

ber 2018, the MOOC had more than 10’000 students, of which more than 500 finished

all the exercises. The students come from all over the world, with more than 50 coun-

tries represented. This MOOC was built upon the PyRat course I created in 2010 (see

Section I.6).

The MOOC benefited of a professional team for creating video clips and illustra-

tions. An extracted screenshot is in Figure I.2.

Figure I.2: Screenshot from one of the videos of the MOOC. It displays the maze game the students play
with during the lessons.

At the end of the course, students are supposed to be able to:

• Express a computational problem (such as pathfinding) using graph theory,

• Choose the appropriate algorithm to solve the given computational problem,

17
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• Code the algorithmic solution in python,

• Evaluate the proposed solution in terms of its complexity (amount of resources,

scalability) or performance (accuracy, latency).

I.5.4 Incremental Learning of Complex Situations

During my sabbatical at Université de Montréal, the main purpose was to study the

possibility to incrementally learn in complex situations. We thus investigated the ques-

tion of learning from streaming data in a very constrained settings where both mem-

ory and computational complexities are limited [6]. We also considered the case of

heterogeneous inputs supported by graphs [7, 8].

I.5.5 Adversarial Robustness and Training Biases

Since the end of 2019, we are investigating the impact of the training sampling policy

on the robustness of trained architectures towards deviations of their inputs. The pur-

pose is to bring together a pluridisciplinary team of scientists to address this problem:

myself, Franck Vermet, a specialist in applied mathematics at University of Brest, and

Matthias Löwe, a mathematician at Münster University in Germany. The funding is

mostly used to cover an intern, Théo Giraudon.

I.5.6 Enhancing Indirect Visual Localization with Graph Filters

This project is funded by the FASIC program of the Australian Academy of Science.

This is a joint project between Lab-STICC and the Australian Institute for Machine

Learning at the University of Adelaide. The funding is mainly used to fund missions

between France and Australia. The motivation of the project is to propose graph meth-

ods to denoise latent feature representations of images taken with a dash cam in a car.

These representations are used to perform visual localization using a support dataset.

A publication is in the process of being written on the subject.

I.5.7 Small and One-Person Fundings

I.5.7.1 Large Scale Simulation of Associative Memories

This project was funded by the CNRS Laboratory Lab-STICC in 2012, for a total amount

of 6ke. The funding was primarily used to fund a desktop computer with advanced

GPU components. This machine was used to perform simulations related to several

publications, including [9, 10].

18



CHAPTER I. CURRICULUM VITAE I.5. FUNDED PROJECTS

Another important part of the project was related to the acquisition of data related

to source localization in binaural setting. In partnership with Orange laboratories in

Lannion, this part of the project was devoted to testing the methods previously devel-

oped on visual tasks (in the previous project “Neural Coding”). Indeed, if resting state

analysis offers the best substrate for brain connectivity analysis, we wanted to develop

methodological tools and processing pipelines for task-related signals.

A startup project emerged from this project (Neurokyma), and is now technically

led by Mahmoud Hassan, postdoc of the project, in Rennes. This startup is interested

in providing toolboxes of signal processing for neuroimaging data.

I.5.7.2 Emergence of Error Correcting Coding in Neural Networks

This project was funded by the IMT program “Futur et Ruptures” in 2015, for a du-

ration of three years, corresponding to the funding of a PhD student. The project fo-

cused on the plausibility of the emergence of coding techniques in the storage process

of mental information, from a theoretical point of view. It consisted of two main parts.

In a first part, we investigated the impact of synaptic noise on the performance of stor-

age in neural networks [11, 12], which included introducing mathematical models of

synaptic noise [13]. In a second part, we looked at the emergence of error correcting

coding principles using simple hypothesis about the dynamic of neural networks [14].

I.5.7.3 Efficient Implementations of Deep Learning

This project was funded in part by PRACom (“Pole de Recherche Avancée en Commu-

nications”) and in part by Brest Metropole. Most of the funding was used to recruit a

PhD student. The motivation of the project was to develop techniques to allow effi-

cient deep learning on chip. The project can be split into two parts. In a first part, the

effort of research focused on proposing lightweight implementations of deep learning

methods for the inference (not for learning). In a second part, transfer incremental

learning approaches were proposed and implemented, using lightweight implemen-

tations of deep learning methods and novel tools for transfer learning. This project led

to several publications [6, 15, 16, 16, 17].

I.5.7.4 Graph Signal Processing for Deep Learning Visualization and Robustness

This project is funded by Région Bretagne. Most of the funding is used to cover a PhD

student. The idea of the project is to develop fine grain visualization techniques that

allow to track the evolution of training at the scale of a layer in deep neural networks.

Indeed, by looking at how the topology evolves between training examples, it is pos-
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sible to detect overfitting, to detect convergence of training, or even to detect robust-

ness defects [18]. Next, the project aims at proposing novel methods to improve the

robustness of deep neural network architectures, by using graph representations of

each layer [19, 20].

I.5.7.5 Organization of NeuroSTIC 2017 in Brest

Since 2016, I coorganize the NeuroSTIC days. The aim of NeuroSTIC is to bring to-

gether scientists in various fields connected with learning: cognitive scientists, com-

puter scientists, electrical scientists, neuroscientists, psychologists. . . These french-

speaking days have been organized in Grenoble (2016), Brest (2017) and Nice (2019).

They usually attract between 100 and 200 scientists. In 2016, part of the funding was

obtain at different GDRs of CNRS, and part of the funding at IMT Atlantique.

I.6 Teaching Experience

Being a permanent researcher, I have no obligation to teach in my institution. How-

ever I always considered teaching as a rewarding and enthusiastic experience, allow-

ing to transfer knowledge to students, to connect them with research and to challenge

myself in acquiring a deeper understanding of some domains. Beside these points, I

feel it is of prime importance to democratize science and its methodology, in a context

where dogmatism is strong and threatening. In addition to teaching, I regularly give

popularization conferences, as a mean to promote the scientific method.

In the next paragraphs, I summarize my teaching experience.

Date Total

hours

Institution and subject

2007 12h University of Rennes I

TP C2I (teaching assistant)

2008 12h IMT Atlantique

Project “Introduction to Large Scale Systems”. I was

responsible of the computer science part of the project

including proposing and preparing teaching material,

teaching and evaluating

2008-2009 31h Lycée Kérichen

Interrogation in Mathematics (MPSI)
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2010 16h IMT Atlantique

Courses in Graph Theory and Programming with OCaml.

I had full responsability of this one time course addressed

at PhD students and Professors

2009-2011 130h ENIB

Course in “Operational Research”. I had full responsability

of creating, teaching, and evaluating a course on

operational research addressed at Licence 3 level students

2010-2011 65h ENIB

Course in “Linear Algebra”. I had full responsability of

creating, teaching, and evaluating a course on operational

research addressed at Licence 3 level students

2013 10h IMT Atlantique

Interrogations in Computer Science

2013 8h IMT Atlantique

Summer School on “Mental Information” addressed at

teachers

2013- 14-40h

each year

IMT Atlantique

In charge of a course in the “research” excellence track for

top students at IMT Atlantique. The principle of the

course is to guide groups of two students towards a great

understanding of a research subject, enough to discuss

the use of a method in two distinct application areas or to

discuss two possible methods to solve a given problem

2013-2015 ≈100h

each year

Lycée Kérichen

Interrogation in Mathematics (MPSI and MP*)

2017 ≈ 3h BIOCOMP Summer School

Course on associative memories

2014-2018 ≈200h

then

21h/year

IMT Atlantique

PyRat course (see subsection below)
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2018- 100h then

≈100h/year

IMT Atlantique

We adapted PyRat to a MOOC. Now I have the charge of

taking care of students on the online platform and

updating the content based on the comments we receive

2020 2h Université Côte d’Azur

Introductory course to machine learning

I.6.1 PyRat Course

The PyRat course is by far the most evolved course I have created, since it has been

through three major versions since its creation in 2010. Originally, it was a course

designed to be oriented towards “operational research”. It was addressed to Licence

students, newcomers in the ENIB engineering school, with various backgrounds. As

such, the course required to be more or less self-contained, and appealing to a very

diverse audience. I had the idea of creating the course because the initial material I

was given was very little appealing to students.

So, with the support and blind trust of the professor that put me in charge1, I cre-

ated a simple video game in which two players compete to find gold coins spread in

a maze as quickly as possible. The game served as an excuse to introduce complex

operational research algorithms (e.g. backtracking, branch and bound) with a very

concrete application case. The course was a great success but only lasted for one year.

Indeed, in 2011 I defended my PhD and moved to Canada for a postdoc.

In 2014, I was back at IMT Atlantique. Philippe Picouet, in charge of computer sci-

ence in the school, heard of this course and proposed me to adapt it to the audience

at IMT Atlantique. With the help of several colleagues, and a deeply involved PhD

student (Bastien Pasdeloup), the course was transformed in a much more mature ver-

sion. I coded everything from scratch to offer a much more straight-forward approach

to students. For three years the course was played. In 2017, several adjustments had to

be made to update the course to the merged school (in 2018, older institutions Télé-

com Bretagne and Mines de Nantes merged into IMT Atlantique).

In 2018, the project began of adapting the course to become a MOOC. Once again,

everything had to be recoded from scratch so as to make the experience even simpler

for the student. With the help of Anja Hopma of IMT Atlantique, a lot of changes have

been made to the course. As of 2019, this course is one of the achievements of my

career that I am the most proud of. It required countless hours of work, but the result

1This professor is Pascal Redou, and I deeply thank him for his trust and the opportunity he gave me back then.
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is definitely very rewarding. In Figure I.3, you can see graphics of the three versions

of the game. In Figure I.4, there is a picture advertising for a student party, having the

game as a theme, and showing the adoption of the game by the students. A record-

ing of the ending competition in 2015 is available online: https://www.youtube.com/
watch?v=zI47xd_2zDs.

I.7 Reviewing Activities

Since July 2019, I have the honor of being an Associate Editor for IEEE Transactions on

Signal Processing. I also served in 2019 as a Guest Editor for a special session on net-

work topology inference for IEEE Transactions on Signal and Information Processing

over Networks.

I also served as a reviewer for various journals, including: IEEE Transactions on

Neural Networks and Learning Systems, IEEE Transactions on Signal Processing, IEEE

Transactions on Signal and Information Processing over Networks, Journal of Machine

Learning Research, Information Sciences, Journal of Selected Topics in Signal Process-

ing, Neural Computation, IEEE Transactions on Circuits and Systems, IEEE Transac-

tions on Information Forensics and Security, IEEE Transactions on Information The-

ory, Mathematical and Computational Applications, Artificial Intelligence. Of course,

I also often review for conferences.

I also participated as reviewer in the PhD defense of George Stamatescu, who de-

fended in University of Adelaide in 2020. I was member of the jury of the thesis of

Ludovic Danjean who defended in ENSEA in 2012.

I.8 Community Service

In the past few years, I have been in the TPC of several conferences, including EU-

SIPCO, IEEE GlobalSIP, ISTC and Cognitive. I also participated in the organization of

ISTC 2016 and I am participating to that of ISTC 2020.

Since 2013, I have served as a member of the jury of the IEEE Xtreme online pro-

gramming competition. IEEE Xtreme attracts each year of the order of a few thousands

of competitors. It consists of a 24h programming marathon. As a member of the jury,

I propose an exercise each year, I review other exercises and I answer to questions by

the candidates during the competition.

In the summers of 2015, 2016, 2017 and 2018, I served as a jury for the Écoles Nor-

males Supérieures of Paris-Saclay, Lyon and Rennes, national competitive examina-

tion. The first three years, I served in the “fundamental computer science” discipline.
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2010:

2014:

2018:

Figure I.3: Evolution of the PyRat main game, from its initial version in 2010, to its updated version in
2014 then its final version in 2018.
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Figure I.4: Poster to advertise for a “Pyrat Party”.

25



I.9. EVENTS ORGANIZATION CHAPTER I. CURRICULUM VITAE

Each year, I had to prepare a dozen of exercises, and review about double that amount.

Then, I interviewed about 60 students for a duration of 45 minutes each, for each of

these three years. For the last year, I served in the “practical programming” discipline,

which was a bit less demanding.

In 2011, I created an online programming competition for students in “classes pré-

paratoires”. It was named TaupIC, and typically attracted about 40 students each year.

The principle was to propose increasingly difficult exercises, mixing applied mathe-

matics and programming. For a duration of 6 hours the students were able to compete.

The last session of the project was in 2015, when I started working as an interviewer at

Écoles Normales Supérieures, since it would have been difficult to combine the two.

Also, I participated to the organisation of the first session of the Écoles Normales

Supérieures webchat in 2014 at Institut Henri Poincaré. The principle was to provide

an online platform for interactive discussions between representative of the Écoles

Normales Supérieures and candidates.

I.9 Events Organization

I have coorganized several special sessions at international conferences:

1. In 2016, the special session was about “Coding and Machine Learning” and was

organised during ISTC 2016 in Brest.

2. In 2017, the special session was about “Mental Information” and was organised

during Cognitive 2017 in Athens, Greece.

3. In 2019, the special session was about “Graph Neural Networks” and was organ-

ised during SDM 2019 in Calgary, Canada.

Since 2016, I am also a coorganizer of the NeuroSTIC days in France. NeuroSTIC

brings together scientists from various domains related to learning: computer science,

electrical and computer engineering, neuroscience, psychology, signal processing. . . It

usually attracts between 100 and 200 persons each time. In 2016 we organised it in

Grenoble at INRIA. In 2017, it was in Brest. In 2019 it was in Sophia Antipolis.

I.10 Major Collaborators

Throughout the years, I have built several main collaborations with scientists in vari-

ous countries. These include:

1. Professor Michael Rabbat, who was my supervisor in McGill University during

my postdoc. He since joined Facebook AI Research in Montréal. Prof. Rabbat
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is a specialist of distributed optimization and graph signal processing. We co-

authored many articles since 2012 [21, 22, 23, 24, 25, 26, 27, 28, 9, 29, 30, 31, 32,

33, 34, 35].

2. Professor Warren Gross, who was also my supervisor in McGill University during

my postdoc. He is since the head of the Electrical and Computer Engineering

Department. Prof. Warren Gross is a specialist of hardware implementations of

algorithms in coding and machine learning. Many of my contributions in the

field of hardware implementations were co-authored with him [36, 25, 37, 38, 39,

40, 41, 30, 42, 43, 34, 35, 44].

3. Professor Matthias Löwe works with University of Münster in the Mathematics

Department. Professor Franck Vermet is also a mathematician with the Univer-

sity of Brest. Since 2014, we worked together on a number of questions related

to probabilities and learning [45, 15, 46, 47]. We worked on associative memo-

ries, transfer learning and nearest neighbor search. We started a project on deep

neural networks robustness in 2019.

4. Professor Yoshua Bengio is a specialist of Artificial Intelligence and Deep Learning

at Université de Montréal and Mila. He was the host during my one-year stay at

Université de Montréal in 2019. Together, we worked on various problems related

to compressing deep neural network architectures, including the introduction of

trained shift layers [17, 48, 49, 50].

5. Professor Jian Tang is a specialist of Graph Neural Networks at HEC Montréal and

Mila. During my stay at Université de Montréal, we worked together on various

problems related to graph and deep neural networks, including the introduction

of a graph smoothness loss to train deep neural network architectures, and the

use of graph signal processing to increase robustness of deep neural networks [19,

20, 51, 52].

6. Professor Antonio Ortega is a specialist of Graph Signal Processing and Vision

with the University of Southern California in Los Angeles. Together, we worked on

numerous problems related to using graphs in deep neural networks, including

visualization and training [19, 20, 18, 51, 52].

I.11 Invitations and Hosting

I.11.1 Main events

I have had the opportunity to visit multiple institutions:
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1. McGill University for one year, as a postdoctoral researcher, under the supervision

of Prof. Michael Rabbat and Prof. Warren Gross,

2. Université de Montréal for one year, as an invited professor, under the supervision

of Prof. Yoshua Bengio,

3. University of Toronto for one week, hosted by Prof. Andreas Moshovos,

4. University of Southern California for ten days, hosted by Prof. Antonio Ortega,

5. Brown University, for one week, hosted by Prof. Thomas Serre,

6. Tohoku University for a few days, hosted by Prof. Hanyu,

7. INRIA Rennes for one week, hosted by Permanent Researcher Hervé Jégou and

Director of Research Rémi Gribonval,

8. ENSEA for a few days, hosted by Prof. David Declercq,

9. Université Paris Diderot for a week, hosted by Permanent Researcher Olivier Serre,

10. Université of Nice Sophia Antipolis for a week, hosted by Prof. Benoît Mirramond,

11. École Polytechnique Fédérale of Lausanne for two weeks, hosted by Prof. Pierre

Vandergheynst,

12. University of Adelaide for a week, hosted by the group of Prof. Ian Reid,

13. University of Tartu for one week, hosted by Prof. Vitaly Skachek.

We received many researchers throughout the years. Prof. Michael Rabbat notably

stayed four months during his sabbatical. Prof. Warren Gross and Naoya Onizawa

stayed for a week.

I.11.2 Seminars and Invited Talks

1. Exposé, "Graphs for Deep Neural Networks Latent Representations", Edge

Seminar, Nice, France, July 2020.

2. Invited talk, "A Review of Compression Methods for Deep Convolutional Neural

Networks", TinyML, Montréal, July 2020.

3. Invited talk, "A Review of Compression Methods for Deep Convolutional Neural

Networks", TinyML, Montréal, July 2020.

4. Invited talk, "Deep Learning with Few Resources", Pracom Seminar, Brest, June

2020.
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5. Invited talk, "A Review of Compression Methods for Deep Convolutional Neural

Networks", International Workshop of Emerging Technologies for Brainware LSI

and its Applications, Honolulu, Hawaii, USA, December 2019.

6. Invited talk, "Using Graphs to Visualize, Train and Improve Deep Neural

Networks", SNT seminar, Luxembourg, November 2019.

7. Invited talk, "Efficient Implementations of Deep Learning Architectures",

Seminar of University of Rochester, Rochester, USA, September 2019.

8. Invited talk, "Artificial Intelligence: the goods and bads", Dialogues: les

éclaireurs, Brest, France, August 2019.

9. Exposé, "A Unified Deep Learning Formalism for Processing Graph Signals",

Graph Signal Processing workshop, Minneapolis, June 2019.

10. Exposé, "A Unified Deep Learning Formalism for Processing Graph Signals", GSP

2019, Minneapolis, Minnesota, June 2019.

11. Invited talk, "Robust Deep Learning Inference with Limited Resources", CUG,

Montréal, May 2019.

12. Invited talk, "Robust Deep Learning Inference with Limited Resources", CUG,

Montréal, May 2019.

13. Invited talk, "Matching Convolutional Neural Networks with Graph Signals",

STATOS workshop, Roma, Italy, September 2018.

14. Invited talk, "Convolutional Neural Networks for Signals on Graphs", Deep

Learning Workshop, Technicolor, Rennes, September 2018.

15. Exposé, ""Graph Signal Processing for Machine Learning"", FASIC workshop,

Adelaide, Australia, July 2018.

16. Invited talk, "Neural Networks and Artificial Intelligence", Beyond Gynecological

Surgery, Clermont Ferrand, April 2018.

17. Exposé, "Convolutional Neural Networks on Irregular Domains", Learning

Theory reading group, MILA, Montréal, April 2018.

18. Exposé, ""Dangers of AI"", Semaine du cerveau, March 2018.

19. Exposé, "Informational Neuroscience and Artificial Intelligence", ENIB, January

2018.

20. Exposé, "Extending Convolutional Neural Networks to Irregular Domains",

University of South California, November 2017.

21. Invited talk, "L’IA et le HPC", Round table at Collège de France to celebrate the 10

years of GENCI, Collège de France, October 2017.
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22. Exposé, "Generalizing Convolutional Neural Networks to Irregular Domains",

Visit at McGill, McGill University, Montréal, July 2017.

23. Exposé, "Supervised Classification of Brain Imaging using Graph Signal

Processing", GSP-17, Pittsburgh, PA, June 2017.

24. Exposé, "Tropical Graph Signal Processing", GSP-17, Pittsburgh, PA, June 2017.

25. Exposé, "S’inspirer du cerveau pour l’Intelligence Artificielle", Brain’s week,

Brest, March 2017.

26. Invited talk, "An attempt at characterizing graph translations in the vertex

domain", Barbados McGill gathering on Graph Signal Processing, Barbados,

February 2017.

27. Seminar, "Intelligence artificielle et neurosciences informationnelles",

ENS-Lyon, January 2017.

28. Seminar, "Intelligence artificielle et neurosciences informationnelles", Kérichen

high school, November 2016.

29. Seminar, "Vers une théorie de l’information mentale", Century of the birth of

Claude Shannon, Institut Henri Poincaré, Paris, October 2016.

30. Invited talk, "Neurosciences informationnelles et intelligence artificielle",

Journée Intelligence Artificielle : le renouveau, French Academy of Science,

October 2016.

31. Seminar, "Réseaux de neurones binaires et applications", Séminaire Institut

Brestois du Numérique et des Mathématiques, Brest, September 2016.

32. Invited talk, "Coding for machine learning and neural networks", International

symposium on turbo codes and iterative information processing, Brest,

September 2016.

33. Invited talk, "Mémoire associative basse consommation avec jonctions tunnel

magnétiques", Journée conférence débat "Atteindre une efficacité énérgétique

extrême dans les systèmes de calcul avec la bio-inspiration", Orsay, April 2016.

34. Invited talk, "Binary neural networks and applications", ENS Lyon ski seminar,

les sept laux, January 2016.

35. Exposé, "Binary associative memories and applications", Brown University,

December 2015.

36. Exposé, "Binary associative memories and applications", McGill University,

November 2015.
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37. Exposé, "Error correcting graphs for explaining long term memory", Nice, March

2015.

38. Invited talk, "Is information encoding in the brain analogic or digital?", Panel

Cognitive 2015, Nice, March 2015.

39. Seminar, "Informational neurosciences: error correcting codes in the brain",

Recent advances in computationnal neurosciences seminar, ENS Lyon, January

2015.

40. Exposé, ""Computing with associative memories"", Ski-week of ENS Lyon, Les

sept Laux, January 2015.

41. Exposé, "Exploiting high dimensionality for similarity search", NIPS 2014

workshop, Montréal, December 2014.

42. Exposé, "Error correcting codes and long term memory", EPFL, November 2014.

43. Invited talk, "Associative memories for computing", Hipeac HPC Workshop,

Athens, Greece, October 2014.

44. Exposé, "Neurosciences informationnelles", GRETSI summer school, Peyresq,

June 2014.

45. Associated with an invited talk, ""L’information mentale"", UPMC Colloquium,

University Pierre et Marie Curie, March 2014.

46. Seminar, "Reconstructing a graph from path traces", DECIDE team seminar,

Télécom Bretagne, February 2014.

47. Seminar, "Signal processing on graphs", Télécom Bretagne lunch seminar,

February 2014.

48. Invited talk, "Resilient and energy efficient memories based on neuro-inspired

codes", 2nd RIEC Symposium on Brain Functions and Brain Computer, Sendai,

Japan, February 2014.

49. Invited talk, "Un modèle numérique de la mémoire à long terme : l’information

mentale", Cantine numérique, Quimper, November 2013.

50. Associated with an invited talk, "Codes sur graphes et mémoire cérébrale", XXIV

colloque Gretsi, Brest, September 2013.

51. Invited talk, "L’information mentale", Sicma doctoral school day, Télécom

Bretagne, September 2013.

52. Seminar, "Calculating using associative memories", Thursday Seminar, Tartu

University, Estonia, June 2013.
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53. Seminar, "Calculating using associative memories", 68nqrt Seminar, IRISA,

Rennes, June 2013.

54. Invited talk, "L’information mentale", Tuesdays at Espace des sciences, Rennes,

May 2013.

55. Seminar, "When neural networks meet error correcting codes: towards new

architectures for associative memories", NeuroMathComp seminar, INRIA

Sophia Antipolis, Nice, April 2013.

56. Associated with an invited talk, "When neural networks meet error-correction

coding: new perspectives in associative memories", International Workshop on

Neuromorphic and Brain-Based Computing Systems, Grenoble, France, March

2013.

57. Seminar, "Les mémoires associatives : point de rencontre naturel entre calcul et

mémoires", ENS-Cachan, Dept. Computer Science and Telecommunications,

Rennes, March 2013.

58. Invited talk, "When neural networks meet error correcting codes: new

perspectives for resilient associative memories", Neuro Inspired Accelerators for

Computing workshop, HiPEAC conference, Berlin, Germany, January 2013.

59. Seminar, "Neural coding: from error correcting codes to associative memories",

ICI seminar, ETIS, ENSEA, November 2012.

60. Seminar, "When neural networks meet error correcting codes: towards resilient

associative memories", CEA-LETI, Grenoble, November 2012.

61. Seminar, "How to improve associative memories using neural coding?", Neucod

seminar, Télécom Bretagne, Brest, September 2012.

62. Associated with an invited talk, "Looking at the neocortex as a distributed

decoder", 7" International Symposium on Turbo Codes, Gothenburg, Sweden,

August 2012.

63. Invited talk, "Neural coding: a perspective for new associative memories",

Japan-France Frontiers of Engineering program, Kyoto, Japan, February 2012.

64. Invited talk, "Nearly-optimal associative memories based on distributed

constant weight codes", Information Theory and Applications workshop, San

Diego, CA, February 2012.

65. Exposé, "Networks of Neural Cliques", Université de Montréal, November 2011.

66. Associated with an invited talk, "Graphs, codes and the brain", 14th

International Symposium on Wireless Personal Multimedia Communications,

October 2011.
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67. Seminar, "Neural computation: min, sum and max", UBO mathematical

department seminar, University of Western Brittany, May 2011.

68. Exposé, Télécom Bretagne, March 2011.

69. Exposé, "Networks of Neural Cliques", McGill University, February 2011.

70. Exposé, "Réseaux de neurones parcimonieux à grande diversité

d’apprentissage", École Supérieure de Physique et Chimie Industrielles,

December 2010.

71. Seminar, "Networks of Neural Cliques: Some (not so) open issues", Télécom

Bretagne, September 2010.

72. Seminar, Breizh seminar of mathematics PhD students, Western Brittany

University, December 2009.

73. Seminar, 4th year students seminar, École Normale Supérieure of Rennes,

January 2009.

I.12 Publications

I.12.1 Journals and Books

1. B. Pasdeloup, V. Gripon, R. Alami and M. Rabbat, “Uncertainty Principle on

Graphs,” L. Stankovic and E. Sejdic, Vertex-Frequency Analysis of Graph Signals,

pp. 317–340, April 2019.

2. C. Berrou and V. Gripon, “Petite mathématique du cerveau,” Odile Jacob,

September 2012.

3. A. Iscen, T. Furon, V. Gripon, M. Rabbat and H. Jégou, “Memory vectors for

similarity search in high-dimensional spaces,” in IEEE Transactions on Big Data,

pp. 65–77, 2018.

4. G. B. Hacene, V. Gripon, N. Farrugia, M. Arzel and M. Jezequel, “Transfer

Incremental Learning Using Data Augmentation,” in Applied Sciences, Volume 8,

Number 12, 2018.

5. B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor and M. Rabbat, “Characterization

and Inference of Graph Diffusion Processes from Observations of Stationary

Signals,” in IEEE Transactions on Signal and Information Processing over

Networks, Volume 4, Number 3, pp. 481–496, September 2018.

6. A. Mheich, M. Hassan, M. Khalil, V. Gripon, O. Dufor and F. Wendling, “SimiNet:

a Novel Method for Quantifying Brain Network Similarity,” in IEEE Transactions
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on Pattern Analysis and Machine Intelligence, Volume 40, Number 9, pp.
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Chapter II

Summary of Past Contributions and

Research

Because they have revolutionised Artificial Intelligence (AI) by providing the missing

link between the actual physical world and digital representations and processing, it

goes without saying that (artificial) neural networks have become a central technology

of our time.

Interestingly, when I began my PhD back in 2008, neural networks were almost

unanimously considered obsolete. Their inaptitude to solve real world problems, added

to the impossibility to formally and mathematically summarize their key properties,

made them very unpopular, in particular in France, where a large part of the research

in the field is driven by theorists. I remember applying to professor positions in 2013

in France. In the computer science section, counting more than 100 open positions

that year, only one of them mentioned the term “neural networks”.

In this chapter, we shall review my main contributions in the fields of neural net-

works and graph signal processing.

II.1 Introduction

As an introduction to this chapter, we present in the following sections basic notations

and concepts about Neural Networks, Indexation, Associative Memories and Classifi-

cation.

II.1.1 Neural Networks

Artificial neural networks, or simply “neural networks”, were originally introduced as

a simplified model for describing their biological counterpart. We will discuss these
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aspects later in the document, but for now let us focus on neural networks as mathe-

matical objects, disregarding any bounds with biological aspects. Neural networks are

obtained by assembling elementary blocks, often called “layers” in the literature. In

the vast majority of cases, a layer is a mathematical function of the form:

x 7→ f(Wx + b), (II.1)

where W and b are tensors containing tunable parameters, x is an input tensor and f

is a nontrainable nonlinear function. We will often make use of tensors in this docu-

ment. The fact is the theory of tensor spaces can quickly become unnecessarily com-

plicated and cumbersome. For the sake of better readability, we shall make many de-

tails implicit in this document, like in this equation the way the product between W

and x is computed.

Assemblies can be various, ranging from line architectures, in which layers are stacked

one of top of another, to elaborate recurrent networks in which the flow of information

can take the form of a complex graph (e.g. [53]). When the layers are assembled in a

line, the result neural network function is a composition of the functions of each layer.

In more complicated architectures, layer outputs can be aggregated using various op-

erators: sums, concatenations or element-wise extremum functions for example. In

all cases, a neural network is thus a particularly-shaped function F from an input ten-

sor space I to an output tensor spaceO.

All trainable parameters of the network function are usually randomly initialized [54]

or set to a neutral value (in most cases 0). As such, a nontrained architecture is mean-

ingless, unless looking for fancy ways to generate random projections. But when pa-

rameters are tuned, neural networks can solve a variety of problems. This is mainly

due to the fact that neural networks are universal approximators [55, 56]1. The con-

sequence is that it is known that for almost any real world problem that consists in

finding a mathematical function, there exists a neural network whose function ap-

proximately solves (arbitrarily closely) the given problem.

The terminology of neural networks can be confusing to newcomers. Let us define

some of the most generic terms here. A neuron is a coordinate of a tensor x, where x is

either the input or output of a layer in a neural network architecture. When processing

a certain input, the value of a neuron is called activation. A neuron that is neither part

of the input or output of the network function F is termed hidden.

A connection is a coordinate of a weight tensor W of a layer of the architecture. Each

connection has a specific value, called a weight. In certain cases such as convolutional

1At least for continuous functions of a finite number of real variables with a compact support, following mild conditions
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layers, various connections can share the same weight. When that happens, those

connections can be thought of as pointers to the same memory address.

The set of all neurons and connections of a given architecture are part of the so-

called hyperparameters, among others. To the contrary, the weights are referred to

as parameters. In most cases hyperparameters are handcrafted (or obtained through

random or grid searches), whereas parameters are tuned using automatic optimiza-

tion techniques.

Given an input tensor i, a neural network produces an output tensor o, which is

often compared to a target tensor t, having the same shape as o.

In some contexts, it might be useful to define an energy function associated with a

neural network. This is in particular useful for some classes of recurrent neural net-

works in which the output tensor has the same shape as the input tensor, and a given

input is processed several times through the whole architecture. The energy function

is then often defined so that its minimum points are the fixed points of this iterative

process.

Having fixed the hyperparameters of an architecture, a loss function L takes three

arguments: an input tensor i, a set of parameters θ, and a target tensor t. Often it

associates a nonnegative real value which is 0 if and only if the output of the neural

network when processing i with parameters θ equals t.

If both the loss function and the network function are differentiable, a neural net-

work can be trained to minimize the loss over a set of couples (i, t), called training

examples, using variants of the stochastic gradient descent algorithm. Thanks to the

compositional nature of a neural network function F , this descent can be efficiently

implemented using a backpropagation mechanism, making use of the chain rule of

differentiation.

To leverage the parallel abilities of graphical processing units, most libraries made

to optimize neural network architectures make use of batches and mini-batches. A

batch is a set of examples that are processed concurrently, so that the descent is per-

formed using the average gradients computed through the batch. In some cases, batches

are subdivided in mini-batches, that are subdivision of batches used for exploiting in-

creased parallelism or for limiting the memory usage.

Finally, let us give a few examples of nonlinear functions f commonly used for neu-

ral networks. Those include sign, sigmoid, heavyside, tanh and relu and are applied

dimension-wise. A less common nonlinear function is a winner-takes-all (or max), that

outputs a binary ({0, 1}) tensor containing 1 only where the value is maximum.

Note that the choice of the gradient descent algorithm, of its parameters, of the

dimension of each tensor weight, of the nonlinear functions, of the loss function are
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also often considered hyperparameters.

In the next subsections, we introduce two important problems that are the core of

the contributions described in this document.

II.1.2 Indexing and Associative Memories

Even long before the rise of deep learning, it used to be very common to store data

elements as tensors. Of course, any element stored using digital memory can be rep-

resented as an array of bits. But the key idea behind the field of indexing is to use

vector representations so that there exists a metric on these vectors that is meaningful

with respect to the data.

Let us point out that this idea is not as trivial as it may seems at first. In many cases,

databases are filled with data that is inherently poorly fitted to linear transforms. Ex-

amples are text documents, compressed vision or audio signals or even programming

code. Because they are among the simplest mathematical objects, vector or tensor

spaces are very attractive domain candidates to embed such data. But finding mor-

phisms from a very ambiguous domain where proximity is ill-defined to tensor spaces

is definitely a very hard challenge.

For example, in the past few years it has become increasingly popular to find em-

beddings for natural language processing, where words, sentences or even paragraphs

are represented as vectors such that the proximity between vectors is strongly related

to a proximity in the semantic of the corresponding texts [57]. Other embeddings have

been used for images for decades [58]. A naive way to obtain such vectors is to use

bag-of-words representations [59, 60]. In that case, dimensions of the vector repre-

sent features, and objects are represented as indicator vectors on this set of features

(with possible repetitions).

With the exponential growth of data, efficiently finding elements in a database of

embeddings has become a major problem. Two examples of queries are:

1. Exact match: is this element already in the database?

2. Approximate match: what are the elements closest to this element in the database?

Of course, it is always possible to exactly answer these queries by using a bruteforce

approach where all elements in the database are compared against the query. But the

complexity of this solution scales at least linearly with the number of elements stored

in the database, leading to often unpractical delays to obtain the answer to a query.

Related to the question of indexing are associative memories. Associative mem-

ories are devices able to store then retrieve pieces of information (most of the time

represented using vectors), using the content instead of an explicit address.
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As such, associative memories are able to solve the problems of exact and approxi-

mate match. We shall see in the coming chapters that most effective implementations

of approximate associative memories use neural networks.

Formally, in the remaining of this document, when interested in the problem of

indexing we will denote X = {x1, . . . ,xn} a database comprising n elements. A query

vector (or tensor) is denoted x.

Then the exact match problem consists in computing: 1x∈X , and the approximate

match problem consists in computing: arg minx′∈X d(x,x′), where d is a given metric

(or quasi-metric).

Note that the approximate match problem is often referred to as nearest neighbor

search (NN-search) in the literature. In some cases, one can prove the complexity re-

quired to solve NN-search scales linearly with the number of elements in the dataset

and their dimension. As such, achieving sub-linear complexities requires to approxi-

mately solve the NN-search problem.

II.1.3 Classification and cross-validation

In the field of machine learning, classification has always been one of the most promi-

nent problems. Classification is at its core an ill-posed problem of regression, where

the objective is to find a function that extrapolate examples sampled from an initial

distribution, and the output can only take a finite number of values. A very common

application domain of classification is the automatic labelling of natural images cap-

tured using a digital camera.

Nontrivial classification problems are clearly ill-posed as there are multiple ways to

extrapolate the given examples. Worse, it is often preferred a solution function that

is not fully consistent with all provided examples if it yields more regularity, what is

known as the “bias-variance” trade-off in the field of machine learning.

More generally, the implicit goal of classification is to achieve generalization. As

such, classification can be considered an alternative to classical programming. In-

deed, in the latter the principle is to rely on the ability of an expert programmer to

solve a problem by making explicit a nonambiguous sequence of instructions (i.e. an

algorithm) that, when applied to a given input, produces the expected output. In the

former, the fundamental principles that are required to associate the input with the

output are to be found automatically by the algorithm through optimization tech-

niques.

There can be many reasons to use classification: for example the impossibility to

explicitly describe a solution to the problem, the complexity of an exact solution or
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the prohibitive cost of experts...

In most cases described in this document, the main reason to rely on classifica-

tion is the fact no expert knows how to explicitly solve the corresponding problems.

As a consequence, it is delicate to assess whether the obtained solution is actually an

authentic generalization or not. In almost all works in the domain, measuring gener-

alization is performed thanks to cross-validation.

Cross-validation is a technique in which a dataset used for classification is split into

two parts. The first part is used to train a given solution. The second one to assess the

generalization abilities of the obtained solution. We will see in this document that

cross-validation can be problematic, in particular when the two parts are sampled

uniformly, and thus following the same distribution. The fact a classifier specializes

too much in biases of the training example distribution is often referred to as “overfit-

ting” in the literature. In order to avoid overfitting, authors use different techniques.

Those include data augmentation, where the number of training examples is artifi-

cially augmented by creating new ones from original ones and the use of regularizers

that prevent the gradient descent from being too sharp by constraining the network

function, either hardly (e.g. using convolutions) or softly (e.g. L2-regularization).

Usually, the performance of a classifier is measured thanks to the accuracy, which

is the complement of the predictor error rate. When challenges are hard, a classifier is

allowed to propose several guesses, and an error is counted in the extreme case where

none of the guesses is correct. In that case, we speak of “top-n” accuracy, where n is

the number of guesses. For most competitive classification benchmarks, deep learn-

ing methods are the golden standard in terms of accuracy. The term “deep learning”

refers to neural networks comprising a significant number of layers, trained through

backpropagation.

If originally most of the efforts of the community used to be focused on classifica-

tion algorithms to improve accuracy of the methods (notably in the 20th century), it

has been known for quite a while that finding adequate representations of data is actu-

ally the bottleneck for accuracy. Interestingly, deep learning methods abilities to reach

state-of-the-art accuracies have often been explained by the fact both representations

and classification are trained jointly [61].

It is worth mentioning that classification is a supervised learning problem, mean-

ing that learning is performed with the help of a teacher (here, the teacher is used to

obtain the target tensors of the training examples). A related problem is that of semi-

supervised classification in which only a portion of the examples contain the target

tensor.
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II.1.4 Biological inspiration

As previously mentioned, neural networks were originally introduced as a simplified

mathematical model to explain the behavior of biological neural networks [62]. De-

spite this initial relation, it is fair to say that modern artificial neural networks share

little similarities with their biological counterpart.

As a matter of fact, biological neural networks contain hundreds of different types

of neurons in the hypocampus alone [63], yielding various connection ranges and be-

haviors. The role of each type of neuron remains a highly open question. At the scale

of architectures, simplified models of the cortex suggest an organization in layers, for

example in the visual areas [64]. But these layers are very different from the model of

artificial neural networks: layer-wise connections and backward connections are nu-

merous. There is no such thing as a parallel computation in which the neurons are

simultaneously updated in a same layer. Time is a crucial factor, and synchronization

is argued to be key of the dynamic of neurons [65].

The recent literature in the field of deep learning tend to reduce the number of

references to the actual brain [66]. This is a good thing, because the terminology is

confusing to the general public and even to some of the scientific communities. The

key differences between neuro-inspiration and neuro-mimetism are only known by

the experts.

Understanding the organization and functioning of the brain is a domain that has

known important breakthrough in the past few years, notably thanks to the advances

in neuroimaging. Two techniques massively used to observe a living brain are fMRIs

and EEGs. Scans in fMRIs allow to observe the brain with a very good spatial resolution

(up to several 100k of regions), but with a very poor time resolution (≈1s). To the

contrary, EEGs offer a limited spatial resolution (≈100s of regions) but with a far better

time resolution (≈1ms). Because of the irregular structure of the neocortex, analyzing

these signals is an open major scientific discipline. We discuss this problem in the next

chapter.

If artificial neural networks differentiate themselves from biological ones, the prob-

lems of indexing and classification echo to cognitive abilities of the human brain. As a

matter of fact, the associativity of the human memory has been discussed in the psy-

chology literature for decades [67]. Similarly, the generalization abilities of the humain

brain are still unmatched for a variety of challenges [68].

In the light of these observations, multiple scientific paths are being followed in

the literature. In the main conferences interested in deep learning, the inspiration

from the brain now occupies but a very small portion of the accepted papers. The
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main motivation is drawn from engineering and fundamental mathematical or artifi-

cial intelligence problems. To the contrary, other scientific communities reclaim the

terminology of neural networks, motivated by the fact there are still a lot of problems

that can only be solved by the human brain.

Diversity is a fundamental aspect of research. In the multiple contributions sum-

marized in this document, we followed these two paths, being sometimes clearly in-

spired by the functioning of the brain, or even the will to better understand it, and

sometimes motivated by engineering aspects of machine learning. There is no reason

to think that these two motivations are compatible in practice, and as such we will

make sure to be clear about the motivations of each contribution while introducing

them.

II.1.5 Notations and Outline

Throughout the document, we try to use notations as consistently as possible. Bold

letters usually refer to tensors, such as for example x. When indices are added such as

xi, they refer to the index of tensor in a list. A specific dimension of the tensor can be

denoted x[i]. We follow the Python conventional notations, where x[:, i] refers to the

(complete) i-th column of x. Capital letters refer to sets and tuples, such as G or E.

In Section II.2, we introduce contributions related to graphs and graph signals. We

discuss introducing translations and an uncertainty principle for graph signals. We ex-

plain how to infer a graph structure from the observation of signals. We also deal with

the case of semiring algebraic structures. We apply these tools to the study of time-

varying graph signals, neuroimaging data, retina-inspired visual processing systems

and graph matching.

In Section II.3, we discuss contributions in the field of neural networks for index-

ing. We introduce the problem of looking at the brain as an information processing

system. We discuss proposed families of associative memories and their extensions

to deal with multiple problems. We introduce a mathematical comparison of sparse

associative memories. We discuss applications to nonuniformly distributed data, to

perform approximate nearest neighbor search and to implement lightweight content

adressable memories and context search engines.

In Section II.4, we present contributions in the field of neural networks for learning.

We introduce methods to extend convolutional neural networks to irregular domains.

We explain how to exploit specific statistical properties of transfer learning features to

improve accuracy of downstream classifiers. We propose novel definitions of neural

network robustness and define new loss function based on graphs. We present meth-
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ods to compress deep learning architectures, to perform incremental learning on chip,

to solve the feature correspondence problem in image matching and we explain how

to use graph signals to monitor the training of deep learning architectures.

II.2 Graphs and Graph Signals

II.2.1 Graph Signal Processing

II.2.1.1 Graphs

Graphs are ubiquitous. As a generic tool to model relationships between objects, they

are suited to countless problems in computer science and related disciplines. For ex-

ample, in [69] we used graphs to model games. The reader can find a comprehensive

and modern introduction to graphs in [70]. In the following paragraphs we introduce

fundamental notions of Graph Theory.

Definition II.1 (graph). In its simplest form, a graph is a tuple G = 〈V,E〉, where V is

the countable set of vertices, and E ⊂ V × V is the set of edges.

Vertices represent objects, whereas edges represent relations between objects. In

many cases, relations are symmetric and irreflexive, in which case it makes more sense

that E ⊂
(
V
2

)
. Here, the notation

(
V
2

)
denotes the set of unordered pairs of vertices.

When E ⊂
(
V
2

)
, we say the graph is both symmetric (accounting for the fact edges

are unordered pairs of vertices) and simple (accounting for the fact there is no edge

comprising twice the same vertex). We call neighbor of u in G the set N (u) = {v ∈
V, (u, v) ∈ E}.

The number of vertices in the graph, denoted |V |, is called the order of the graph.

The size of the graph refers to the number of edges, |E|.

Definition II.2 (clique). A clique in a graph is a subset of vertices from which any pair

is an edge of the graph.

Sometimes graphs are best represented with their square adjacency matrix W, in-

dexed by vertices. The most used convention (although we discuss this point in [71])

is to define W as follows:

W[u, v] =

 1 if (u, v) ∈ E

0 otherwise
. (II.2)

Since the adjacency matrix of the graph conveys exactly the same information as

the set of edges, we sometimes consider graphs G = 〈V,W 〉.
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v1
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v4 v5

v6

v7

Figure II.1: Example of a simple and symmetric graph. Vertices are represented within circles and edges
as lines connecting vertices.

In some cases, graphs can be weighted, as to capture more subtle relationships be-

tween their vertices. In that case the adjacency matrix contains real values, with the

convention (again discussed in [71]) that W[u, v] = 0 if and only if there is no edge

(u, v) in the graph. The value W[u, v] is called the weight of the edge (u, v).

A walk in the graph is a sequence of vertices, such that any two consecutive vertices

form an edge in the graph. It is said to be elementary if each vertex appears at most

once (with the only possible exception being that the two extremities are identical).

Walks are often confused with paths. A path is a sequence of edges, obtained by taking

consecutive vertices in a walk, but such that all edges are distinct from one other.

Consider the simple and symmetric graph depicted in Figure II.1, where vertices

are represented as circles and edges as lines between circles. In this example, {v1, v2},
{v2, v6}, {v4, v6}, {v3, v4} is a path obtained from the walk v1, v2, v6, v4, v3. But {v1, v2},
{v2, v4}, {v2, v4} (obtained from the walk v1, v2, v4, v2) is not a path, because of the rep-

etition of the edge {v2, v4}.
A cycle in a graph is a path in which extremities of the underlying walk are identical.

For example, in the previous graph {v2, v6}, {v4, v6}, {v3, v4}, {v2, v3} is a cycle.

The length of a path is the number of edges it contains. For weighted graphs, the

length often refers to the sum of the weight of its edges. Using lengths it is possible

to define the distance between two vertices in a graph. Let us first denote P (u, v) the

set of all paths connecting vertex u to vertex v (u and v are resp. starting and ending

vertices of the corresponding walk). Given a path p, we denote len(p) its length.

Definition II.3 (geodesic distance). Given a graph G = 〈V,W 〉, the geodesic distance

dG is the function:

dG :

 V 2 → R ∪ {+∞}

(u, v) 7→ minp∈P (u,v) len(p)
(II.3)

A graph is said to be connected if there exists a path between any pair of vertices.
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Figure II.2: Another example of a graph. In this case, it is the celebrated Petersen graph.

Equivalently, it means that the geodesic distance output domain is R (without +∞).

Some graphs are particularly useful for proving interesting properties. For example

trees are connected graphs that are cycle-free. A complete graph is a graph containing

all possible edges. A ring graph is a graph which edges are precisely those that occur in

a cycle obtained from an elementary walk that goes through all vertices of the graph2.

A bipartite graph is a graph which unweighted version only contains cycles of even

length. An Erdős-Rényi graph is a graph where each edge is drawn independently with

probability p.

II.2.1.2 Signals on Graphs

Among other applications, graphs are well adapted to represent dependencies be-

tween dimensions of multivariate signals. Consider for instance observing a signal

showing the neural activity in regions of interest in the brain. Disregarding how these

regions may interact, this signal is basically a vector which indexation is arbitrary. In-

stead, it might be useful to exploit prior knowledge about how regions of interest in-

teract with each other.

In the coming sections, we will see how to apply graph signal processing to the

study of neural networks. But for now, let us introduce basic concepts of the field.

In its general form, Graph Signal Processing is a field that aims at extending har-

monic analysis, including Fourier transform, convolution, translation, filtering. . . to

ad hoc domains described with graphs.

Let us consider a graph G = 〈V,W 〉. We call signal a real-valued vector x, indexed

by V .

Using simple linear algebra, signals can interact with graphs. For example, it is

possible to diffuse the signal x over the graph G. It simply consists in constructing

2I apologize to the reader for this very non-intuitive definition of ring graphs.
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the signal x′ = Wnx, where n is typically a nonnegative integer (or a nonnegative real

number). To understand why we call this operation a diffusion requires to look at its

details. Indeed, let us focus on a specific vertex u. It holds that:

x′[u] =
∑
v∈V

Wn[u, v]x[v]. (II.4)

In other words, the value at vertex u in the diffused signal is a linear combination of the

values in its neighbors in the original signal, when n = 1, hence the term “diffusion”3.

Often we look at diffusion in the context of normalized adjacency matrices. There

are many ways to normalize the symmetric matrix, and pros and cons of each method

are heavily discussed in the literature [72]. Just to name a few, random-walk nor-

malization consists in making the matrix right-stochastic. To do so we consider A =

D−1W instead of W, where:

D[u] =
∑
v∈V

W[u, v]. (II.5)

Other authors prefer to use the (standard) normalization A = D−1/2WD−1/2.

When dealing with multiplications in linear algebra, it is often meaningful to look at

the spectrum of the matrices. Let us consider a symmetric graph G. Being symmetric

means that W is also symmetric. Now, W real-valued and symmetric means that it

can be written as:

W = FΛF>, (II.6)

where F is an orthonormal matrix, F> is its transposed version, and Λ is a diagonal

matrix which diagonal is made of the eigenvalues of W, in descending order: Λ[i, i] =

λ[i], ∀i. In [29], we analyzed the spectrum of random small-world graphs. We derived

closed-form expressions and concentration bounds.

Interestingly, normalized versions of the adjacency matrix have the interest of being

such that:

Proposition: 1. The normalized adjacency matrix of a symmetric graph is such that its

largest eigenvalue is exactly 1, and the corresponding eigenvectors are constant.

Proposition: 2. The normalized adjacency matrix of a symmetric graph is such that its

lowest eigenvalue is at least −1, and this lower bound is only achieved if the graph is

bipartite.

For details and proofs about these statements, the reader can refer to the book

chapter we wrote in [21].

3Note that the term diffusion actually refers to the study of the “heat diffusion”.
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If the adjacency matrix of the considered graph has the property of being circulant,

an interesting consequence is that F can take the form of a standard discrete Fourier

transform. This is in particular the case for a ring graph, for the correct indexation of

vertices. Extrapolating this identity, authors [73] define the Graph Fourier Transform

(GFT):

Definition II.4 (graph Fourier transform). Given a graph G = 〈V,W 〉 and a signal x.

The GFT x̂ of x on G is defined as:

x̂ , F>x. (II.7)

The (possibly normalized) adjacency matrix of a graph allows to define another op-

erator, that is called the Laplacian of the graph. The Laplacian of the graph is defined

as the matrix L = D−W. Other versions of the Laplacian, including the random walk

Laplacian or the normalized Laplacian, are obtained using the same normalization as

described for the adjacency matrices.

Note that diffusion can be written as:

x′ = F

|V |∑
i=1

(
λni F

>[i, :]x
)

= F

|V |∑
i=1

(λni x̂[i]) . (II.8)

Together with Proposition 1 and Proposition 2, this writing has the interest of show-

ing that, on a nonbipartite graph, diffusion has the effect of smoothing the signal on

the graph, in the sense that neighboring vertices have more similar values after diffu-

sion than they had before diffusion. As a matter of fact, when diffusing the signal, only

its constant part is fully maintained (as it is associated with eigenvalue 1, as stated in

Proposition 1), whereas other parts are weakened (as their corresponding eigenvalues

are strictly between -1 and 1, as a consequence of Proposition 1 and Proposition 2).

More generally, we can define the smoothness of the signal on a graph.

Definition II.5 (graph smoothness). Given a graph G = 〈V,W 〉 and a signal x, the

smoothness of x over G is the quantity:

sG(x) = x>Lx = x̂>(I− Λ)x̂ =

|V |∑
i=1

(1− λi)x̂[i]2 =
∑
u,v∈V

W[u, v] (x[u]− x[v])2 , (II.9)

where I is the identity matrix.

As such, smoothness is 0 when the signal values of strongly connected vertices is

identical, and positive otherwise.
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Figure II.3: Example weighted graph where one edge weight is parametrized by ε.

II.2.1.3 Uncertainty

A fundamental result of classical signal processing is that a signal cannot be localized

in both space and frequency domains. This result, often referred to as the “uncertainty

principle” [74], has strong implications to the field. Following the seminal work of [75,

76], we published several works extending this principle to graph signals.

In [75, 76], the authors define two notions:

Definition II.6 (graph spread). The graph spread of a signal x on a graph G, around a

vertex u0, is:

∆2
G,u0

(x) ,
1

‖x‖22

∑
u∈V

d2G(u0, u)x[u]2. (II.10)

Definition II.7 (spectral spread). The spectral spread of a signal x on a graph G is:

∆2
s(x) ,

1

‖x‖22
sG(x). (II.11)

They then show that on some graphs, couples (∆2
G,u0

(x),∆2
s(x)), for unit-norm sig-

nals, cannot be made arbitrarily close to 0. Said otherwise, there exists a trade-off

between how graph spread and spectral spread can be made small. For some fami-

lies of graphs, they are even able to obtain a closed form expression of the lower curve

of the region (∆2
G,u0

(x),∆2
s(x)). In [77], we extended this mathematical formulation to

other families of graphs.

In another paper [27], we adapted the definitions proposed in [75, 76] to make them

compliant with weighted graphs. As a matter of fact, when used as is, the problem is

that the use of the geodesic distance in the definition of the graph spread causes strong

discontinuities. Consider the example graph of Figure II.3. We have limε→0 (dG(u0, u)) =

0 6= 3 = dlimε→0 G(u, u0), leading to similar discontinuities for the corresponding values

of the graph spread.

The reason for this problem comes from an incoherent interpretation of edge weights.

As a matter of fact, in Definition II.6, the graph spread increases with distances in the
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graph, meaning that edge weights are interpreted as “distances” between vertices. On

the contrary, in Definition II.5, a signal is smooth if large edge weights link vertices

with similar values, so edge weights represent “similarities”. To overcome this con-

tradiction, we introduced in [27] a transform on edge weights so that the geodesic

distance can be applied meaningfully to weighted graphs.

Later, in [21], we introduced new definitions of graph and spectral spreads, in an ef-

fort to make a closer connection with classical signal processing. Namely, we removed

the squared distance in the definition of the graph spread, and the dependence on a

specific central vertex u0. We obtained the following definition:

Definition II.8 (redefined graph spread). The redefined graph spread of a signal x on

a graph G, around a vertex u0, is:

∆G(x) ,
1

‖x‖22
inf
u0∈V

[∑
u∈V

dG(u0, u)x[u]2

]
. (II.12)

Similarly, we wanted the spectral spread to better reflect the idea of a smooth vari-

ation, rather than forcing most components of the Fourier transform of the signal to

be 0. We proposed the following definition:

Definition II.9 (redefined spectral spread). The redefined spectral spread of a signal x

on a graph G is:

∆s(x) ,
1

‖x‖22

|V |
inf
i=1

 |V |∑
j=1

‖λi − λj‖2x̂2
j

 . (II.13)

Despite these new definitions being more challenging to deal with, due to the pres-

ence of a inf operator, we managed to use them to prove the existence of an uncer-

tainty principle on weighted graphs.

Among other results, the existence of an uncertainty principle has the interest of

showing that having limited observations in the graph domain (resp. in the spectral

domain) lead to a strong uncertainty in the spectral domain (resp. in the graph do-

main). This result is strongly tied with the graph inference problem we discuss in Sec-

tion II.2.2.1.

II.2.1.4 Translations

Graph Signal Processing can be used to define convolutions by analogy with classical

Fourier analysis. As a matter of fact, convolutions are simple pointwise multiplication

in the spectrum domain in classical signal processing. By extension, it is possible to

obtain counterparts of convolutions for complex domains represented with graphs.
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Figure II.4: Example of a torus grid graph.

Following this lead, translations can be obtained by convolving with Dirac signals

(one-hot-bit vectors), again following the analogy with classical signal processing.

Interestingly, when starting with a ring graph, both convolutions and translations

match exactly their definitions in the time domain. This is because the adjacency ma-

trix can be made circulant and thus its decomposition matches perfectly the classical

Fourier transform. But when the input graph is more complex the analogy does not

guarantee exact matches with usual conventions.

A trivial example is obtained when considering a torus grid graph, as depicted in

Figure II.4. In general, torus grid graphs are defined by considering the set of vertices

to be Z/mZ × Z/nZ, and edges connect vertices (u, v) and (u′, v′) if and only if u =

u′ ∧ |v − v′| ≡ 1 (mod m) or v = v′ ∧ |u− u′| ≡ 1 (mod n).

Torus grid graphs are natural graph representations of regular 2D structures. As

such, 2D Fourier transform, convolutions and translations are well defined. But using

Graph Signal Processing the obtained operators are very different from their classi-

cal counterparts. Consider the example depicted in Figure II.5. Here we consider an

image signal on a torus grid graph. In (a) is depicted the original image, in (b) its repre-

sentation on the graph, and in (c) and (d) two arbitrary translations defined using the

Graph Fourier Transform. It is quite clear from these examples how the translations

defined this way do not match the classical translations in a 2D domain.

The reason for this shortcoming is that the Graph Fourier Transform is defined with
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Figure II.5: Example of the translation obtained with a torus grid graph. (a) is the original image, (b)
the image on the torus grid graph and (c) and (d) are two arbitrary translations using the Graph Fourier
Transform of the torus grid graph. This image is extracted from [78].
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analogy to a 1D ring graph. When applied to complex topologies, the result is that the

Graph Fourier Transform adapts the 1D transform to this domain. In the case of 2D

graphs, translations have the effect of smoothing the signal while translating it.

For this reason, we developed alternative ways to define translations on graph struc-

tures. In [79], we proved that it is possible to retrieve classical translations from torus

grid graphs by considering the group of functions generated from an initial set of

transforms. This initial set of transform is characterized by:

1. Functions should be from vertices to vertices,

2. Functions should be associating a vertex with one of its neighbor,

3. Functions should associate neighbor vertices with neighbor vertices, and inverse

functions should do so as well.

Not only does this paper shows that the structure of a torus grid graph is informa-

tive enough to recover the disregarded coordinates of the vertices, but it shows that

in general it is possible to define translations on graphs directly in the vertex domain

(not requiring to go through the Graph Fourier Transform).

II.2.1.5 Tropical Algebra

An obvious shortcoming of Graph Signal Processing is that it is based on the assump-

tion that diffusion (as defined in Section II.2.1.2) makes sense for the considered prob-

lem.

But in many cases, multiplying the adjacency matrix of the graph with a signal is

meaningless. Consider for instance the case of a communication network, where edge

weights represent delays. In such an example, graphs signals could be observations of

timestamps at which a given message was received at the various nodes of the com-

munication network. In such a setting, diffusion would imply the multiplication of

delays and timestamps, what is physically meaningless.

To overcome this lock, we proposed in [71] a generalization of Graph Signal Pro-

cessing to semiring structures, such as the tropical algebra. We proposed novel defi-

nitions of diffusion, the Laplacian operator (which cannot be a matrix with semiring

structures), and even an uncertainty principle for this generalized framework. For ex-

ample, in Figure II.6, we show the evolution of the errors in reconstructing graphs

from random smooth signals, a typical problem in the classical graph signal process-

ing framework [80].

II.2.2 Graph Inference
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Figure II.6: Average number of spurious edges when reconstructing a graph from random smooth sig-
nals, as a function of the number of observations m.

II.2.2.1 From Signals

Another strong important shortcoming of Graph Signal Processing is that the frame-

work supposes an access to a graph representing the relations between signal vari-

ables. In many cases, some of which shall be discussed in Section II.4.3.2, such a graph

is not explicitly available. When that is the case, it becomes interesting to look at the

problem of inferring a graph structure from a set of signals.

There are many ways to obtain a graphs from a set of signals. Some popular meth-

ods include covariance selection [81], thresholding the empirical covariance matrix [82],

or enforcing specific relationships between recovered graphs and signals [83, 84, 80].

In [26], we decided to tackle the problem under the angle of diffused signals.

In our work, we considered the following paradigm. Starting from some white dis-

tribution, random signals are diffused using the adjacency matrix of a graph. So that

we observe only the diffused version of these signals. Interestingly, it is straightfor-

ward to show that in such a case, the empirical covariance matrix of observed signals

is a polynomial of the adjacency matrix of the graph. As such, the eigenvectors of the

graph are directly estimated using the eigenvectors of the empirical covariance matrix.

The problem then boils down to estimating the (lost) eigenvalues of the graph. We

proposed an optimization procedure trying to maximize sparsity in the reconstructed

graph, as sparsity is often a strong asset of downstream methods. This work motivated

for the introduction of new approaches to the problem [85].

In [23], we extended our framework to the more general case of stationary signals.

Stationary signals are signals which covariance matrix commutes with the graph ad-
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Figure II.7: Example of two inferred graphs from temperature sensors distributed in the Brittany region.
On the example of the left, the graphs was recovered assuming signals were smooth. On the example
of the right, we combined smoothness with stationarity using our proposed method. Interestingly,
we observe that the graph on the right is better at uncovering regularity in measurements along the
seashore.

jacency matrix. Again, this means that the eigenvectors of the covariance matrix of

signals are the same as the ones of the graph adjacency matrix. This equality intro-

duces a polytope of possible solutions. We introduced several optimization methods

to enforce various properties of recovered graphs, including sparsity, simplicity and

smoothness. We also performed experiments on both synthesized datasets and real

data. For example in Figure II.7, we compare the inferred graphs using two meth-

ods. In case (a), we used the method described in [80], which assumes that signals are

smooth on the graph. In case (b), we combined this method with ours, to enforce both

smoothness and stationarity. As a result, the graph on the right shows better regularity

along the seashore.

II.2.2.2 From Traces

Sometimes, recovering a hidden graph structure can be performed thanks to a collec-

tion of indirect observations. In [33], we considered the case where we observe sets

of vertices corresponding to short walks in symmetric graphs. Observing the walks

directly could be very informative about the edges of the graph. But observing un-

ordered sets of vertices, that we call traces, carries much more ambiguity. This prob-

lem makes sense for applications where, for example, we observe the vertices a packet

traversing the graph has encountered, but we do not have access to the order in which

vertices have been encountered.

The problem is trivial when traces are made of pairs of vertices, since traces convey

exactly as much information as edges. Interestingly, we were able to determine neces-
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sary and sufficient conditions for an edge to be correctly retrieved, or for a nonedge to

be unconsidered, when observing traces of three vertices. We also derived probabilis-

tic formulations in the case of traces generated uniformly at random in Erdős-Rényi

graphs.

II.2.3 Direct Applications

II.2.3.1 Time-varying Graph Signals

In [7], we tackled the problem of predicting the future of time-varying graph signals

using latent spatial representations. The main question we asked in the paper was

whether using a prior about the structure using Graph Signal Processing, or learning

directly from scratch using autoencoders would lead to the best predictions.

To this end, we introduced two new datasets. The first one was created using the

STL10 image dataset, that comprises 96x96 pixels images of natural objects. We ex-

tracted short sequences of images from STL10 by selecting an initial crop of the image

and moving the crop towards a unique direction frame by frame. The second one was

created from fMRI measurements of resting state subjects.

In both cases, we compared three alternatives:

1. A completely unlearned representation. Here we used a grid graph for the images

and a structural connectivity graph for the fMRI dataset. Then we used the low

spectrum of the Graph Fourier Transform as latent features,

2. A completely structure-agnostic learnable method. Here, we used an autoen-

coder that completely disregarded any disposable prior about the structure of

signals,

3. A mixed case, where the idea here was to infer a graph from the signals (c.f. Sec-

tion II.2.2.1) and to use this graph to obtain latent representations through the

low spectrum of the Graph Fourier Transform.

To make the comparison fair, the autoencoder was constrained to adapt the same

mathematical formulation as the Graph Fourier Transform.

We then used the latent representations to predict the future of sequences, through

the use of a Long Short-Term Memory (LSTM) neural network [86, 87].

We found that in the end-to-end task of predicting sequences, all methods per-

formed similarly, whereas the autoencoder was able to extract more efficient latent

spatial representations of the input. We concluded that the LSTM were probably ex-

pressive enough so as to compensate for the poorer representation of graph-based

methods. In Figure II.8 we depict examples of sequence predictions with the different
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methods: GFT refers to the use of the grid graph, GEO to a grid graph with inferred

weights and AE to the use of the structure-agnostic autoencoder.

II.2.3.2 Neuroimaging Data

A previously mentioned promising application domain for the tools and methods de-

veloped using Graph Signal Processing is that of neuroimaging. As a matter of fact,

there has been numerous recent publications in the field showing that graphs can be

very useful to analyze these signals [88, 89, 90].

In [5], we looked at the possibility to use Graph Fourier Transforms to improve the

accuracy of classifiers using fMRI inputs. We considered the Haxby dataset [91] where

measurements were performed while subjects were looking at objects on a screen,

which objects could belong to 7 possible distinct categories. The challenge here was

to guess what category the image shown on the screen belonged to based only on the

fMRI measurements.

We considered various graphs inferred from the available data, and various ways

to select components of the Graph Fourier Transforms. Overall, we demonstrated the

effectiveness of Graph Fourier Transform to improve the accuracy of classification in

this specific context.

II.2.3.3 Bio-inspired Visual Processing

In [92, 93], we looked at the possibility to use graphs to define image filters inspired by

the human retina. As a matter of fact, most computer vision methods treat images as

matrices of pixel values, whereas the retina has a uneven distribution of sensors with

various spectral responses. This phenomenon, referred to as “cortignal magnification”

in the literature, has important consequences to how humans analyse and process

visual inputs.

We proposed a mathematical model and a Python implementation of a retina-inspired

framework for processing visual signals.

In [92], we demonstrated the interest the proposed framework in order to increase

the performance of saliency maps estimators. A saliency map is a map obtained us-

ing eye-trackers on humans while they observe images on a screen. It estimates the

probability distribution of an eye fixation on each pixel. In Figure II.9 we depict ex-

amples of saliency maps obtained using our framework. At the time of releasing this

work, the proposed model of visual attention was ranked first on the celebrated MIT

Saliency Benchmark. It remained first among the models that did not use training data

for several years.
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Figure II.8: Example of prediction of the future of image sequences using various latent spatial repre-
sentations of the inputs.

65



II.2. GRAPHS AND GRAPH SIGNALS CHAPTER II. PAST CONTRIBUTIONS

Figure II.9: Saliency maps extracted using the retina-inspired framework introduced in [93].
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II.2.3.4 Graph Matching

As previously mentioned, the use of brain networks is becoming increasingly popular

in the literature [94, 95]. Among other problems, a key question of the field is the

ability to efficiently compare graphs between subjects and/or measurements.

The problem of graph matching is very classical in computer science [59]. But in

the specific case of neuroimaging data, the problem is quite different. As a matter of

fact, graph similarity usually refers to the question of comparing two graphs for which

vertices are anonimized. In the context of neuroimaging data, additional information

is available under the form of GPS coordinates of vertices representing regions of in-

terest in the brain.

Of course in some cases these regions of interest are obtained independently from

the considered data, and are shared among subjects and experiments, in which case

the graph similarity problem boils down to edit distances or a simple Frobenius norm.

But when regions of interest are evaluated using the processed data, it is likely that two

graphs will have distinct structures and distinct vertices coordinates.

In this specific context of matching graphs taking into account both the structure

of the graph (i.e. the edges) and the coordinates of the vertices, we authored a number

of publications introducing tools and experiments [4, 3, 2].

II.2.4 Summary of Contributions of the Section

In the field of graphs and graph signals, the main contributions are:

1. Fundamental questions:

(a) Contributing to the definition of an uncertainty principle for graph signals [27,

77, 21],

(b) Proposing alternate definitions for translations of graph signals [79, 96],

(c) Contributing to the field of graph inference [26, 23, 33],

(d) Extending Graph Signal Processing to semiring structures [71].

2. Applications:

(a) Time-varying graph signals [7],

(b) Neuroimaging data [5, 4, 3, 2],

(c) Retina-inspired visual processing systems [93, 92],

(d) Neuroimage-based graphs matching [4, 3, 2].
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II.3 Neural Networks for Indexing

II.3.1 Source and Channel Coding

II.3.1.1 Source Coding

In the field of information theory, two very important concepts are that of source

and channel coding. Source coding usually refers to the compression of data issued

from a random source. By exploiting redundancy of the source through its potentially

nonuniform distribution, source coding has seen the emergence of numerous meth-

ods deployed in modern digital systems. In [34], we contributed to the field by looking

at the problem of compressing multisets.

Multisets are sets in which elements can be repeated. They naturally occur in many

application domains, including the bag-of-words representations of data. Contrary to

sequences of elements, multisets completely disregard the order of elements, which

can be seen as a form of information reduction.

As a matter of fact, consider m messages, containing n bits each, generated uni-

formly at random using the same source S. When order in which these messages have

been generated is important, the problem becomes equivalent to compressing a se-

quence of mn bits generated uniformly at random. Shannon’s source coding theorem

gives that any lossless compressed version of this sequence must contain at least H

bits, where H is the corresponding entropy, which is also mn. In other words, one

cannot expect to (losslessly) compress such data.

Now, consider that the order in which messages have been generated is unimpor-

tant. In the extreme case where the source generates only one message containing a

total of mn bits, we obtain the same result that no compression can be achieved. In

the other extreme case where the source generates mn messages of 1 bit each, then it

is sufficient to store the number of times each bit has been seen, which can be per-

formed using log2(mn) bits. More generally, the two question are: what gains can be

expected in nontrivial settings? How to achieve them?

Authors considered in the past two settings [97, 98, 99, 100]: one where m � 2n,

meaning that repetitions are very unlikely to occur. In this setting, the problem boils

down to that of compressing sets (without repetition). The other where m � 2n, in

which case the problem boils down to the compression of a histogram.

In our work, we focused on the intermediate case wherem = Ω(2n). We first derived

bounds based on the entropy of the source, then derived an algorithm using prefix

trees (tries) to approach the bound by a constant factor of 5/3. An illustrative example

of a trie based on a small set of vectors is depicted in Figure II.10.
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Figure II.10: Trie associated with the set of vectors {00000, 01000, 10000, 01001, 01101}.

II.3.1.2 Channel Coding

Another important problem in the field of Information Theory is that of Channel Cod-

ing. Usually, channel coding refers to the use of well-designed representations of data,

that are able to suffer radius-limited distortions without loss of information.

The key principle behind channel coding is simple. The idea is to embed data in

a large dimensional space in which any two embeddings are distant apart. As such,

any perturbations of at most half the minimum distance between two such embed-

dings can be mitigated. These embeddings are called error correcting codes. In [35],

we looked at the possibility to define error correcting codes by using cliques in graphs.

Let us develop on that. Imagine again being in the context of facing bag-of-words

data. So basically, data is made of subsets of a fixed set of features, and is represented

through indicator vectors. For the sake of simplicity, consider that each subset is made

of the same number of elements.

In this case, the problem can be formalized as follows: let n be the number of fea-

tures, and consider binary ({0, 1}) vectors of size n containing the same number c of

1s (we call them feature vectors). Without error correcting codes, these vectors are

susceptible to the erasure of a 1 or to the creation of a spurious 1. In both cases, mul-

tiple feature vectors can be equidistant to the created erroneous vector. An example

is given here: consider n = 5, and the feature vectors 11100 and 01110, here written

as sequences. Let us start with the feature vector 11100, and imagine that the first 1

is erased. We obtain the vector 01100, which could result from an erasure in 11100 or

from an erasure in 01100.

Instead, consider the feature vector dimensions as being vertices of an empty graph

69



II.3. NEURAL NETWORKS FOR INDEXING CHAPTER II. PAST CONTRIBUTIONS

1

2

3

4

5

Figure II.11: Example of a graph generated from feature vectors 11100 and 01110. For better readability,
edges are represented differently depending on whether they were added when considering 11100 or
01110, but the graph structure completely disregards this information.

(i.e. a graph with no edge). Then for each feature vector, add the required edges so

that each pair of vertices with signal value 1 are connected through an edge. Now, us-

ing edges instead of vertices to represent feature vectors, the deletion of an edge or the

creation of an edge does not create ambiguities. This is depicted for the same example

in Figure II.11. We can see two cliques of order 3 in the graph. One connecting ver-

tices 1, 2 and 3, and corresponding to feature vector 11100, and the other connecting

vertices 2, 3 and 4, and corresponding to feature vector 01110.

Indexing edges in the lexicographic order, we obtain representations 1100100000

and 0000110100. Interestingly, the erasure of any 1 in the obtained representation does

not cause ambiguity anymore: cliques can be used as error correcting codes. This idea,

that we developed theoretically in [35], is at the core of all results in Section II.3.2.

II.3.1.3 Error Correcting Codes for Neural Networks

Error correcting codes have been used in the context of neural networks. For example,

the domain of Error Correcting Output Coding [101] is interested in designing outputs

of neural network architectures that can benefit from the robust properties of error

correcting codes.

In [10], we introduced assembly codes for learning neural networks. The idea is the

following: usually, one one-hot-bit vector is used to represent the output of a network

for a given input, where the nonzero bit indicates the corresponding class. This cor-

respond to choosing
(
c
1

)
output dimensions where c is the number of classes in the

considered problem.

Instead, we can consider
(
c
k

)
output dimensions. These combinatorial factor can be

thought of as listing all binary vectors containing exactly k 1s. So, when processing an

input of class i, all output dimensions where the corresponding vector contains a 1 at
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position iwould be set to 1 and the others to 0. The resulting error correcting code was

proven in [10] to be powerful. By doing so, the decision of the network can be robust

even if some dimensions are wrong. We proved significant gains in performance on

toy datasets.

In [102], we introduced the idea of using error correcting codes to improve the ro-

bustness of Hopfield neural networks. Hopfield neural networks are associative mem-

ories that projects data to itself. By projecting data to random vectors (which are

known to be powerful error correcting codes), we were able to significantly increase

the robustness of the storing process. We developed later a similar idea in the context

of sparse associative memories [37], the latter being the core of the next section.

II.3.2 Associative Memories

II.3.2.1 Sparse Associative Memories

In the context of storing bag-of-words feature vectors in neural networks for indexing,

sparse associative memories have long been the reference [103].

Sparse associative memories are built from sparse vectors. So let us introduce some

parameters. We consider here binary vectors ({0, 1}) of dimension n, each containing

exactly c 1s. We are given a setM of such vectors that we typically consider to be uni-

formly distributed. Of course in practice, and in particular if these vectors are bag-of-

words representations, it is expected that the distribution can be highly nonuniform,

what we shall cover later in this document.

The classical model introduced by Willshaw in 1969 [103] proposes to store these

vectors as cliques in a graph, exactly the same way we described in Section II.3.1.2.

This can be mathematically formalized as follows: we create a graphG = 〈V,W 〉, where

V = {1, . . . , n} and:

W , max
x∈M

xx>. (II.14)

Note that here the max operator is treated componentwise.

Now to solve the exact match problem on a query vector x, a test procedure can be

implemented, which consists in computing the integer:

C(x) = x>Wx. (II.15)

As a matter of fact, C(x) is the number of (nonsymmetric) edges between vertices

corresponding to 1s in x. If x ∈ M, then we know that C(x) = c2. The converse is not

necessarily true, as edges forming the clique corresponding to x in G may have been

added by several distinct elements ofM. There is thus an error probability when using
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the test C(x) = c2 as a proxy for x ∈ M. However, when elements ofM are uniformly

drawn at random, it is expected that the error probability is small as long as cardinality

ofM remains small enough.

To solve the approximate match problem on a query vector x̃, an iterative process

can be performed, which consists in computing the sequence: x0 = x̃,

xt+1 = 1Wxt≥s,
(II.16)

where s is a given threshold.

In [104, 105], we introduced block coding to classical sparse associative memories

as a way to improve their storage abilities. The idea is to restrict vectors to be stored

to be in {1, . . . , `}c. To store such messages, we first embed them into a binary space

by converting each coordinate into the one-hot-bit encoded vector of dimension `,

then we use Equation (II.15). By doing so, we constrain the vectors to have specific

forms, instead of the more generic expression of classical sparse associative mem-

ories. But we can then exploit this constraint when solving the approximate match

problem for better performance. The idea of using block constraints is motivated by

bio-inspiration, since neurons in the brain have the tendancy of being grouped in cor-

tical microcolumns, with a winner-takes-all competition. If Figure II.12, we depict an

example graph corresponding to a sparse associative memory following the block cod-

ing constraint.

In [106] we introduced a new iterative procedure, benefiting from the block con-

straint. It consists in computing the following sequence: x0 = x̃,

xt+1[`i+ j] =
∑c

i′=1 max`
j=1W [`i′ + j′, `i+ j]xt[`i′ + j′].

(II.17)

In [33], we proved this new family of associative memories is optimal in the sense

of maximum-likelihood decoding. Then in [28] we introduced a formal description

and analysis of these associative memories using an adhoc semiring structure. In the

continuation of these works, we published in [107] an experimental comparison of

various types of algorithms to solve the approximate match problem.

A few years later, we published in [46] a theoretical comparison of the various fam-

ilies of sparse associative memories. For the first time we were able to mathematically

prove sharp bounds for these devices. If Figure II.13, we depict the performance in

retrieving vectors when 4 of the initial 8 1s it contains are erased, depending on the
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Figure II.12: Illustration of a graph corresponding to an associative memory obeying the block con-
straint. A vector correspond to a clique in the graph (e.g. thick edges) and connect one vertex from
each block. In this example, ` = 16 and c = 4.

number of stored vectors in the considered architectures. Are compared Amari, Will-

shaw and the block constrained models (GB) with the original and optimized retriev-

ing procedure.

II.3.2.2 Extensions

In the continuation of these works, we developed several variations of the previously

introduced model to cope with more diverse situations.

For example in [24], we introduced nonsymmetric graphs to store varying dimen-

sions vectors. The idea is to exploit orientation of edges to traverse the graph multiple

times during the retrieving procedure. In Figure II.14 we depict an illustration of this

procedure.

In [108] we considered using weighted connections to incorporate more informa-

tion during the storage process. In [109] we proposed an extension able to efficiently

treat input queries with a lot of spurious ones. In [110] we considered the case of stor-

ing vectors with varying number of 1s.
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Figure II.13: Comparison of performance of Amari, Willshaw and GB (block constrained) models (with
initial retrieving procedure and optimized one (called SUM-OF-MAX (SOM))). For each simulated
point, there are N = 2048 vertices in the graph (grouped in c = 8 blocks of l = 256 vertices for the
block constrained models), stored vectors contain exactly c = 8 1s each and the objective is to retrieve a
previously stored pattern when 4 out of the inital 8 1s are missing. Each point is the average of 100’000
tests. Figures in first column depict the evolution of the error rate as a function of the number of stored
vectors. Figures in second column depicts the evolution of the error rate as a function of efficiency,
defined by measuring the entropy of generated messages. First line correspond to fixed threshold dy-
namics, second line to varying threshold strategies and third line to exhaustive searches in the graphs.
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Figure II.14: Extension of sparse associative memories to dimension-varying vectors. Here squares
represent blocks of the graph.
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II.3.2.3 Implementations

A key motivation for the use of sparse associative memories is the fact the rely on

binary graphs that can be implemented very efficiently on dedicated hardware. In

a series of publications [44, 43, 40] we proposed efficient FPGA designs to implement

sparse associative memories.

Since it mostly relies on matrix multiplication, the retrieving procedure can also

benefits from Graphics Processing Units. In [9] we thus also designed a GPU-based

solution with order of magnitude acceleration compared to a CPU implementation.

Another interesting aspect of sparse associative memories is that they are able to

not only retrieve previously stored vectors when queries are approximate, but also

when the graph storing the vectors is noisy. Motivated by this fact, we published in [25]

a study of the fault tolerance of these associative memories. Interestingly, we observed

that the information retrieval capabilities of these devices is very close to the informa-

tion theoretic capacity.

II.3.3 Applications

II.3.3.1 Nonuniform Distributions

A key limitation of many results about associative memories is that they hypotheses

the stored vectors are uniformly distributed. This assumption is known to favor most

methods, where uneven distributions can have the effect of strongly biasing the re-

trieving procedure.

To overcome the effect of uneven distributions, we introduced several works mod-

ifying the graph structure. In these works, the core idea remains that overcoming un-

even distributions requires to augment the size of the graph.

In [111], we introduced twin vertices. The idea is to identify vertices in the graph

that are overloaded with neighbors, and to duplicate them so that the charge is evenly

distributed among the two copies. As a result, the graph can adapt to specifically

match a desired neighbor count for each vertex, resulting in a much better perfor-

mance in storing nonuniformly distributed data.

In [112, 37] we introduced the idea of adding uniformly distributed random one-

hot-bit encoded vectors to stored vectors. When performing an approximate search,

the extra dimensions created at training are simply disregarded at input and output,

but are used for all intermediate retrieving step. Because they are uniformly distributed,

they have the effect of compensating for the noneven portion of the network.
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II.3.3.2 Sets and Nearest Neighbor Search

As stated in the introduction, associative memories are devices particularly adapted to

implementing set datastructures and to solving approximate nearest neighbor search.

In the context of block constrained sparse associative memories, in [31] we theoreti-

cally derived the error probabilities when solving the exact match problem with uni-

formly distributed stored vectors.

In [113, 114, 45], we proposed to use associative memories to accelerate approxi-

mate nearest neighbor search in the context of dealing with real data. The main prob-

lem is that real data rarely takes the form of the concatenation of one-hot-bit vectors.

To create a correspondence between real data and vectors to be processed through

block constrained sparse associative memories, we proposed to rely on the use of

Product Quantization [115]. Product Quantization consists in splitting raw vectors

into disjoint subvectors, each quantized independently. Often authors use random

sampling of cluster centroids or variations of the k-means algorithm. Then, quan-

tization of the raw vector is obtained by assembling concatenated versions of each

sub-vector.

Interestingly, this quantization procedure has the effect of creating block constrained

quantization, where a unique quantized representation is chosen for each block (i.e.

for each sub-vector). Therefore these quantized vectors are perfectly suited for block

constrained associative memories.

In Figure II.15, we compare various methods for the approximate nearest neighbor

search of vectors of the GIST1M dataset, composed of 1 million Gist feature vectors

with dimension 960 each. We draw curves using a standard Random Sampling (RS)

clustering, the proposed method using associative memories on top of product quan-

tization, and a hybrid method combining both approaches. The parameter r refers to

the number of clusters and the parameter k to the number of associative memories

used.

In [22] we proposed another technique where vectors to be searched are averaged

in groups. This can be seen as an order 1 associative memory, where instead of look-

ing at the Gram matrix of the dataset (order 2 statistics) we look at the average (order

1 statistics). Again, we demonstrated an interesting ability of the proposed method to

reduce the computational cost compared to an exhausive search or to existing alter-

native methods, for real data in vision.

II.3.3.3 Other Applications

We used associative memories to solve a variety of real world problems.
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Figure II.15: Approximate match accuracy (or “recall at 1”) on the GIST1M dataset as a function of
the relative complexity of various methods with regards to an exhaustive nearest neighbor search, for
various values of k or r.
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In [116] we introduced associative memories as classifiers to be used on top of well

chosen feature vectors. Their ability to solve approximate match make them interest-

ing candidates to compare with simple nearest neighbor classifiers.

In [42, 36] we used associative memories to design and implement low-power con-

tent addressable memories. Content addressable memories are often used to store

bindings between an input domain and an output domain, and can benefit from the

approximate match capabilities of associative memories. In the same vein, in [39, 41]

we designed and implemented a context-driven search engine using memristors.

In [111] we used associative memories to retrieve pre-computed ideal regimes of

power management in complex circuits. The idea here was to exploit the ability of

associative memories to retrieve the preregistered ideal power voltage for a situation

similar to that encountered.

In [16] we extended associative memories to list all items corresponding to an input

query, instead of selecting the closest match. In [117] we extended to all operations of

relational algebra.

In [38], we used associative memories to provide efficient implementations of ori-

ented edge detection for low-level image processing.

II.3.3.4 A Novel Look at the Brain

There is no doubt that the brain is one of the most fascinating device that is being

heavily studied today. There are multiple ways to look at it. In biology, it is mostly the

chemical properties of brain cells that is under the light of research. In neuropsychol-

ogy, the functional abilities of brain regions. In neuroanatomy, the complex network

of white matter.

In the field of artificial neural networks, it is mostly the computational abilities

of the brain that have been the source of inspiration for many works. Within this

paradigm, the brain is thought of as a device implementing a complex mathematical

function, and artificial neural networks are a simple way to model this behavior.

In the field of computer science, there are two main ways to look at the semantic

of a program. The first one is to rely on denotational semantics, in which a program

is thought of as a mathematical function that associates an input with an output. The

second one is to rely on operational semantics, in which a program is a series of trans-

forms that act upon the memory state of the machine it is run upon.

Interestingly, almost all the neural network literature focus on this first aspect. As

such, understanding how these algorithms process, store and modify pieces of infor-

mation is a challenge, since these aspects are not explicitly mentioned in their defini-
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Figure II.16: The brain as an information processing device.

tions.

When we started working on the subject of neural networks in 2008, we wanted to

bring a new paradigm to the table, namely looking at neural networks as algorithms

that transform information, instead of as functions. Indeed, in the field of informa-

tion theory, a common way to describe a model processing pieces of information is to

use the Shannon-Weaver representation. Using the proof of the Channel Coding The-

orem [118], it is possible to show that an optimal way to transmit information consists

in concatenating two steps. The first step is to compress the input data, so that any

natural redundancy is removed. The second step is to protect the obtained represen-

tation using exploitable redundancy, so that errors happening during transmission or

storage can be corrected.

Looking at the brain using this representation led us to an original reading of its

functioning, that would be split into two parts. In the first part, the brain acquires in-

formation from the outside world, and finds compressed inner representations of it.

This first step, which corresponds to the perception, is where deep neural networks

excel. The second step consists of finding reliable ways to store obtained representa-

tions, so that they are not lost through the aging of cells and connections, that irreme-

diably affect the support of mental information. This novel vision of the functioning

of the brain is depicted in Figure II.16.

Perception is definitely the ability of the brain that has been the most inspiring to

generations of computer scientists. For example, in previous works [92, 93], we intro-

duced models inspired from the retina and low levels of the visual cortex to process
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visual information. But surprisingly, the admirable ability of the brain to reliably store

pieces of information at the scale of a lifetime has been mostly disregarded in the sci-

entific literature. And yet, the brain is a biological machine that faces lots of defects:

about one neuron dies every second in the neocortex, synapses fail to release neuro-

transmitters more than half of the time, it is estimated that about 80% of the metabolic

energy consumed by the brain is due to spontaneous firing of spikes [119]. In front of

these attacks, the robustness of long-term memory can only be explained by the use

of redundant coding of information, what error correcting coders have been studying

for decades in the context of telecommunications.

To be fair, it is worth mentioning that some works have been conducted to stress

the abilities of neural networks to maintain a good accuracy when subject to imple-

mentation defects, such as the reduction of the number of bits used to represent each

value (e.g. [120]). Also, dropout [121], that consists in randomly erasing the activation

value of neurons during the forward pass, is a commonly used technique to prevent

overfitting.

In [1], we introduced the problem to the information theory community. We also

introduced mathematical models of noise in the brain, and analyzed the robustness

of proposed associative memories in [11, 13, 12, 14].

A popularization version of these works was published in [122].

II.3.4 Summary of Contributions of the Section

The main contributions in this Section are:

1. Fundamental questions:

(a) Looking at the brain as an information processing system [1, 11, 13, 12, 14],

(b) Proposing new models of associative memories with increased storage capa-

bilities [104, 105, 33, 28, 107],

(c) Extending associative memories to related problems [24, 108, 109, 110, 16,

117, 38, 111, 116],

(d) Providing a theoretical comparison of associative memories [46].

2. Applications:

(a) Proposing implementations of associative memories [44, 43, 40, 9, 25],

(b) Dealing with nonuniform distributions [111, 112, 37],

(c) Solving set-membership and approximate nearest neighbor search [31, 113,

114, 45, 115, 22],
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Figure II.17: Example of two deep learning architectures for processing images. The left example is a toy
architecture with a cascade of layers, generating increasingly deep representations. The right example is
the so-called ResNet18 architecture [126], in which shortcuts (represented through dashed lines) allow
to directly transmit the information to deeper layers. As such, convolutions compute small differences
to be applied to the directly transmitted input and act as residual filters.

(d) Implementing content addressable memories and light search engines [42,

36, 39, 41].

II.4 Neural Networks for Learning

II.4.1 Compression of Deep Learning Architectures

If neural networks have been successfully used to store and retrieve vectors, they are

much more celebrated for their use in learning systems. As a matter of fact, during the

past few years neural networks have become the state-of-the-art solution for many

problems of machine learning, ranging from classification in vision [123], to sound

recognition [124], speech processing [57] or even playing games [125]. In many of

these cases, and specifically in vision, the success of these methods heavily depends

on the use of appropriate filters in the considered architectures, such as convolutions.

Indeed, deep learning architectures are obtained by assembling layers, as depicted

in Figure II.17. But of primary importance are the assembled layers.
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Figure II.18: Example of a fully connected layer, connecting the input space with dimension 5 (left)
with the output space with dimension 4 (right). In this example, the linear part of the layer consists in a
matrix containing 20 free parameters.

When the input of a layer has no known explicit structure, we often use “fully con-

nected layers”. In such a case the input is typically represented as a vector and the

linear part simply consists in a simple matrix multiplication. An example of a fully

connected layer is depicted in Figure II.18.

On the contrary, if the input domain has strong regularity, such as an existing un-

derlying 2D discrete euclidean domain, one can use “convolutional layers” instead. In

that case, the input is typically a tensor of dimension 3, where two dimensions cor-

respond to spatial axis, and the last one to the number of feature maps of the input.

Feature maps are parallel representations: for example in the input domain and when

considering images, a feature map is considered for each primary color (red, green

and blue). The linear part of the layer consists in a collection of convolution matri-

ces, that operate on all feature maps of the input at the same time. These convolution

use most of the time very localized kernels, so that the number of free parameters is

independent on both the input and output space spatial dimensions. An example is

depicted in Figure II.19.

II.4.1.1 Pruning

What is often hidden behind the outstanding achievements of deep learning systems

is the fact they typically require lots of memory, computations and power. For example

we depicted in Figure II.20 a representation of the error rate of several popular archi-

tectures on the ImageNet 2012 challenge, as a function of the memory size. We can
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Figure II.19: Example of a 1D convolutional filter. Contrary to a fully connected layer, parameters are
shared among lines of the matrix and a lot of 0s (not represented here) correspond to the fact kernels
are localized. Since the input is composed of multiple feature maps, matrices are replaced with tensors.
Typically convolutions are used jointly with downsampling techniques, such as strides or pooling.

clearly see that there exists some Pareto-type curve between accuracy and memory.

One of the first introduced technique to reduce the size of deep learning architec-

tures was pruning [127]. Pruning usually consists in removing neurons in hidden lay-

ers of the architecture. In that case, we talk of “nonstructured pruning”. The problem

of nonstructured pruning is that it might be hard in practice to leverage the sparsity of

matrices. Consider a trivial example where a matrix contains weights encoded using 8

bits each. And suppose that there are 1’000’000 parameters in the considered matrix.

Then a sparse implementation with k remaining parameters would cost (8 + log2(k))k

bits to encode using a list of pairs (address, value). Such a process becomes beneficial

compared to a dense matrix when k ≈ 300′000, so about 70% of the values are pruned.

To achieve a reduction of an order of magnitude, this would require to reach more than

96% of sparsity. Instead, other popular methods [128, 129] considered pruning entire

feature maps. The interest of pruning feature maps is that the resulting architecture is

effectively reduced, with no need to store any indexing.

In [17] we introduced a pruning method that removes all weights in convolutional

kernels but one. As a consequence, the effect of the kernel on the corresponding input

feature map is a simple multiplication, with a possible shift in the spatial domain. An

illustration of the method is in Figure II.21. As a result, considerable gains in both

memory size and number of operations required to perform a feedforward pass have

been obtained, as reported in Table II.1, Table II.2 and Table II.3.
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Figure II.20: Comparison of the error rate of several popular architectures on the ImageNet 2012 chal-
lenge, as a function of the memory size of the corresponding model.

Table II.1: Comparison of accuracy and number of parameters between the baseline architecture
(ResNet20), ShiftNet, ASNet, and SANet (the proposed method) on CIFAR10 and CIFAR100.

CIFAR10 CIFAR100

Accuracy Params (M) Accuracy Params (M)

CLs Baseline 94.66% 1.22 73.7% 1.24

SLs ShiftNet [130] 93.17% 1.2 72.56% 1.23

SANet (ours) 95.52% 0.98 77.39% 1.01

Interpolate ASNet [131] 94.53% 0.99 76.73% 1.02

Table II.2: Comparison of accuracy, number of parameters and number of floating point operations
(FLOPs) between baseline architecture (Resnet-56), SANet (the proposed method) , and some other
pruning methods on CIFAR10. Note that the number between () refers to the result obtained by the
baseline used for each method.

CIFAR10

Accuracy Params (M) FLOPs (M)

Pruned-B [129] 93.06%(93.04) 0.73(0.85) 91(126)

Pruning NISP [132] 93.01%(93.04) 0.49(0.85) 71(126)

PCAS [133] 93.58%(93.04) 0.39(0.85) 56(126)

SANet (ours) 94%(93.04) 0.36(0.85) 42(126)
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Figure II.21: Overview of the pruning method proposed in [17]: we depict here the computation for a
single output feature map d, considering a 1d convolution and its associated shift version. Panel (1)
represents a standard convolutional operation: the weight filter Wd,·,· containing SC weights is moved
along the spatial dimension (L) of the input to produce each output in Yd. In panel (2), we depict the
attention tensor A on top of the weight filter: the darker the cell, the most important the corresponding
weight has been identified to be. At the end of the training process, A should contain only binary
values with a single 1 per slice Ad,c,·. In panel (3), we depict the corresponding obtained shift layer: for
each slice along the input feature maps (C), the cell with the highest attention is kept and the others
are disregarded. As a consequence, the initial convolution with a kernel size S has been replaced by a
convolution with a kernel size 1 on a shifted version of the input X. As such, the resulting operation in
panel (3) is exactly the same as the shift layer introduced in [130], but here the shifts have been trained
instead of being arbitrarily predetermined.

Table II.3: Comparison of accuracy, number of parameters and number of floating point operations
(FLOPs) between baseline architecture (Resnet-50), SANet (the proposed method) , and some other
pruning methods on CIFAR100. Note that the number between () refers to the result obtained by the
baseline used for each method.

CIFAR100

Accuracy Params (M) FLOPs (M)

Pruned-B [129] 73.6%(74.46) 7.83(17.1) 616(1409)

Pruning PCAS [133] 73.84%(74.46) 4.02(17.1) 475(1409)

SANet (ours) 77.6%(78) 3.9 (16.9) 251(1308)
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Table II.4: Comparison of accuracy and memory usage when training CIFAR10 on ResNet20, for the
baseline architecture, the pruned one and the combination of pruning and quantization.

Accuracy (%) Memory usage (Mb)

Baseline 94.66 39.04

[17] 95.52 31.36

[17] + [134] 94.00 6.87

II.4.1.2 Quantization and Pruning

Given an architecture, another simple way to reduce its memory size is to quantize

its parameters, for example using binary weights instead of float-precision ones. For

example in [134] the authors propose to binarize parameters using a straight-through

method: they perform the forward pass to compute the outputs using the binarized

version of the weights, but then update the float-precision version of the weights dur-

ing the backward update.

In [48], we proposed to combine this quantization scheme with the pruning method

introduced in [17]. The interest is double: by using the pruning method in [17], it is

possible to replace the convolution with a simple multiplication (and a shift of the in-

put). By using the quantization method in [134], the multiplication is then replaced

by a low-cost multiplexer. As a result, the memory usage and energy consumption of

the architecture are greatly reduced. For example, in Table II.4 we observe the effect of

combining the methods on both the accuracy of the system and the memory usage.

II.4.1.3 Varying-bit precision

In [50], we introduced a regularizer that aims at reducing the bit precision of weight

values during the learning phase. The idea is to push the network into finding a good

compromise between bit precision and accuracy.

An example result is depicted in Figure II.22, where we show the result of the pro-

posed method when training a ResNet18 architecture on the ImageNet 2012 challenge.

On the left we see the number of bits that has been found for each layer, and on the

right we see how the number of bits evolved with the number of epochs of training.

II.4.1.4 Quantization and Factorization

Quantization can also be performed at the scale of small sets of parameters (sub-

vectors) [135]. In [136] we proposed to combine both quantization at the scale of in-

dividual weights and groups of weights for increased reduction in memory size. We
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Figure II.22: Depiction of the number of bits per layer found using the method in [50] (left). Depiction
of the evolution of the average number of bits per parameter in the architecture, as a function of the
number of epochs of training (right). In both cases the architecture was trained on the ImageNet 2012
challenge.

performed experiments on toy datasets (CIFAR10 and MNIST) and demonstrated an

ability to reduce by 40 to 50 times the memory consumption compared to the naive

full-precision baseline, without any significant drop in the corresponding accuracy.

To this end, we introduced a soft binarization term during the learning phase, that

pushed weights to become binary. We made use of a smoothing method that consists

in increasing the importance of this regularization throughout the learning phase. In-

deed, starting with a strong constraint of being binary would have the effect of creating

inescapable local minima in the loss function. We then combined this method with

product quantization to obtain the best reductions in size. If Figure II.23 we depict the

evolution of the classification error on MNIST (left) or the test accuracy on CIFAR10

(right) as a function of the compression rate (expressed here as a multiplicative factor,

so 20 means the size of the architecture has been reduced 20 times).

II.4.2 Applications and Methods

Deep Learning methods can be used for a variety of tasks in the context of machine

learning. In the coming subsections we present various use cases we considered in

the past.

II.4.2.1 Neural Networks as Accelerators

In [92] we proposed to use neural networks to solve the feature correspondence prob-

lem in image matching. The problem can be expressed as follows: given two images

A and B, we first extract a set of local feature vectors. Then, the question is to find the
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Figure II.23: Evolution of the classification error on MNIST (left) and the test accuracy on CIFAR10
(right) depending on the compression rate.

best one-to-one mapping between feature vectors of both images.

This problem is celebrated in computer science under the name of the assignment

problem. It is usually solved using the Hungarian method, which complexity can be

made O(n3), where n is the number of feature vectors in each image (or the maxi-

mum of the two, if they are different). The problem is that this complexity can be

too large for some applications, where the time required to find the best matching is

constrained.

This is why we proposed a specific architecture of neural networks in [92] to approx-

imately solve the feature correspondence problem with a low complexity. We applied

our proposed architecture to finding matches in synthetic datasets, and observed high

precision with greatly reduced computational costs.

II.4.2.2 Transfer

Training Deep Learning architectures can prove to be very costly in practice. For many

reasons, this procedure is poorly fitted to be implemented on resource-limited hard-

ware devices, for example in the context of embedded systems.

As a matter of fact, there are multiple reasons why deep learning training is de-

manding:

1. The training dataset has to be processed several times, and as such must be stored

in memory,

2. During the feedforward pass, all intermediate activations must be stored, as they

are used during the backward pass,

3. Some operations are costly to implement, such as Softmax or Cross-entropy,
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Figure II.24: Illustration of the principle of transfer learning.

4. The use of batch-norm layers, very useful to improve accuracy and training speed

of deep architectures, requires heavy computations.

Instead of trying to learn the deep learning architecture on an embedded device,

a possible workaround is to rely on transfer learning instead. In Figure II.24 we sum-

marize the principle of transfer learning: first a deep learning architecture is trained

on a big dataset, then this deep learning architecture is truncated to act as a feature

extractor for another dataset.

In [15] we were interested in showing that transfer learning features have specific

distributions that can be leveraged to improve the accuracy of downstream classifiers.

In particular it is expected that many of the dimensions of transfer learning feature

vectors are meaningless for the task and as such only convey noise. A simple strategy
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Inception V3, 1-NN

p 1 4 16 64 256

CIFAR10 0.8519 0.8652 0.8781 0.8651 0.8347

ImageNet1 0.9328 0.9354 0.9424 0.9439 0.9081

ImageNet2 0.9438 0.9451 0.9524 0.9464 0.9171

SqueezeNet, 1-NN

p 1 5 20 100 200

CIFAR10 0.6839 0.7069 0.7472 0.6890 0.6225

ImageNet1 0.8854 0.8900 0.9001 0.8784 0.8466

ImageNet2 0.8737 0.8802 0.8926 0.8669 0.8267

AudioSet

p 1 10 20 40 160

1-NN 0.605 0.704 0.698 0.724 0.660

5-NN 0.564 0.704 0.718 0.727 0.668

Table II.5: Accuracy of classification, depending on the feature extractor used, the dataset and the num-
ber of segments p.

to mitigate the effect of this noise consists in segmenting the transfer learning fea-

ture vectors into subparts that can then be processed independently. In Table II.5 we

show the effect of segmenting feature vectors on various architectures and datasets,

as a function of the number of segments p. The classifier used is Nearest Neighbor

(NN) with either 1 considered neighbor (1-NN) or 5 considered neighbors (5-NN). Im-

ageNet1 and ImageNet2 refer to datasets created from the ImageNet dataset that are

disjoint from the 2012 challenge used to train the deep learning architectures.

II.4.2.3 Incremental Learning

One of the main interest of transfer learning is that it usually provides features that are

so good that even very simple downstream classifiers can achieve outstanding perfor-

mance. Among others, incremental learning classifiers can be of interest in applica-

tions where data is streamed over time. Incremental refer to the ability of a classifier

to deal with new classes or new examples over time, without the need to retrain the

whole system.

For example in [137] we introduced an incremental classifier using sparse associa-

tive memories, to be used on top of pretrained deep learning architectures. In [6, 16,

138], we proposed algorithms and implementations of transfer incremental learning

methods, able to compete with state-of-the-art nonincremental methods on off-the-

shelf datasets. In Figure II.25, we illustrate the principle of the method introduced

in [6]. In Figure II.26, we depict the performance of the method in a class-incremental

scenario (top) and in an example-incremental scenario (bottom). In both cases we
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Figure II.25: Illustration of the principle of the method proposed in [6]. First input signals are aug-
mented using standard data-augmentation techniques. Then, these augmented signals are trans-
formed into feature vectors thanks to the use of a pretrained deep learning architecture. The corre-
sponding feature vectors are segmented, and classified independently using Nearest-Class Mean Clas-
sifiers (NCMC). A majority vote is first performed on various segmented parts, then on all augmented
input signals.

compare the proposed method in [6], denoted TILDA-DA, with popular alternatives.

Note that we removed the data-augmentation when performing comparisons to be

fair with other methods.

II.4.2.4 Robustness

In [139], authors have shown that deep learning architectures can easily be fooled

when facing unconventional perturbations. More recently in [140], a standardized

benchmark has been proposed to stress the abilities of deep learning architectures to

resist common perturbations in the context of computer vision: blur, change of con-

strast, environmental conditions. . .

To improve the robustness of trained deep learning architectures to perturbations,

numerous contributions have been proposed. For example in [141], the authors pro-

pose to increase robustness of the decision process by using an ensemble composed

of k-nearest neighbor classifiers at each layer of the architecture. In [142, 143], the idea

is to constrain the network function to be Lipschitz, so that small perturbations of the

input cause small perturbations of the output. In [144, 145, 146, 147], the authors sug-

gest to augment the training dataset with perturbated versions.

In [20], we proposed a new formal definition of robustness for deep learning ar-
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Figure II.26: Evolution of the accuracy of incremental learning methods on various datasets
(left:CIFAR10, middle:CIFAR100, right:ImageNet1).

chitectures. Contrary to the usual Lipschitz constraint, our proposed definition takes

into account locality. As a matter of fact, the Lipschitz constraint is applied to all the

input domain. But we advocate that network functions should be allowed sharp tran-

sitions between class domains, far away from the training examples. By conducting

experiments, we show that our proposed robustness criterion can help predict the ro-

bustness of trained architectures.

II.4.3 Graph Neural Networks

A very active field of research is that of graph neural networks. In this area of research,

authors are interested in various problems, ranging from link prediction for recom-

mender systems, to node embedding, semi-supervised learning or extension of con-

volutional neural networks to irregular domains.

II.4.3.1 Node Embedding

In [96], we introduced a method to project vertices of a given graph to a grid, so that

the topology is essentially preserved. As a consequence, it becomes possible to treat

graph signals as signals on a grid and to rely on classical convolutional neural net-

works afterwards. To obtain such a projection, we use an optimization procedure that
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Figure II.27: Illustration of successive steps in the proposed optimisation procedure in [96]. Left column
is initial random embedding, middle column is after the first gradient descent, and right column at the
end of the process.

first aims at projecting vertices to R2, and then gradually increases the importance of

pushing vertices to integer coordinates. This principle is known as smoothing in the

context of optimization. An illustration of the procedure is depicted in Figure II.27.

II.4.3.2 Visualization of Deep Architectures

In [18], we proposed for the first time to use Graph Signal Processing to visualize inter-

mediate representations of deep learning architectures. This visualization tool allows

to monitor the training process and even to detect overfitting in some cases. An illus-

tration of the the monitoring of label smoothness at various layers of a PreActResNet18

architecture is depicted in Figure II.28. Note that the sudden changes in smoothness

are due to a change in the learning rate.

II.4.3.3 Graph Smoothness Loss

In [19], we proposed to go one step further and to use label smoothness as a way

to train deep learning architectures. As a matter of fact, most trained architectures

use cross-entropy on top of one-hot-bit encoded outputs. This has important conse-

quences:
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Figure II.28: Comparison of accuracy and label smoothness for PreActResNet18 under different condi-
tions.
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Figure II.29: Illustration of the smoothness loss effect on the output distribution when training
ResNet18 on CIFAR10. Comparison with a standard cross-entropy when using a bottleneck layer.

1. Both the initialization of the parameters and the dataset are ignored when choos-

ing which class is associated with which one-hot-bit vector. As a result, the train-

ing process may have to strongly deform the topological space during training,

2. The number of dimensions in the output vector is determined by the number of

classes, making it harder to adapt in a class-incremental learning scenario,

3. The classifier is not only forced to separate inputs of distinct classes, but also to

merge those of a same class, even if classes are actually formed of well-defined

disjoint subclasses.

By using label smoothness as a loss, we can avoid these shortcomings. We empiri-

cally demonstrated the effectiveness of the proposed method in reaching state-of-the-

art accuracy in [19]. An illustration of the process is depicted in Figure II.29, where we

specifically chose the output dimension to be 2 for easy visualization.

II.4.3.4 Deep Learning with Irregular Signals

We also made several contributions to the problem of extending convolutions to ir-

regular domains. As a matter of fact, we saw earlier in this section that when deal-

ing with regular input signals, convolutional neural networks can be used. They offer

outstanding gains in performance, specifically for vision datasets. For example, with

the CIFAR10 dataset, the state-of-the-art performance while disregarding the input

structure is 31% error rate [148]. When using state-of-the-art convolutional neural

networks, the error rate drops at 2% [149].

Of course there has been numerous works in the literature in this domain. As

most reviews focused on an experimental comparison of methods, we proposed in [8]

a unified formalism where pros and cons of each methods can be made apparent.
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In [150, 151], we introduced methods to extend convolutions to slightly irregular do-

mains, by building on analogies with the regular case. In [152], we proposed a gen-

eralization of convolutions where weight-sharing can be learned jointly with the pa-

rameters for solving the considered task. In Figure II.30, we depict an illustration

of the methodology proposed in [150] to extend convolutions to irregular domains.

The methodology builds upon 5 steps: inferring a graph, inferring translations on the

graph, designing weight-sharing, designing data-augmentation and finally designing

subsampling.

II.4.4 Summary of Contributions of the Section

In the field of neural networks for learning, the main contributions are:

1. Fundamental questions:

(a) Contributing to the extension of convolutional neural networks to irregular

domains [96, 152, 150, 151, 8],

(b) Analysing transfer learning features for better downstream classification [15],

(c) Proposing formal definitions of neural network robustness [20],

(d) Defining new loss using graph representations of the output space [19].

2. Applications:

(a) Compression of Deep Neural Networks [17, 48, 17, 50, 136],

(b) Incremental learning on chip [137, 6, 16, 138],

(c) Solving the feature correspondence problem [92],

(d) Using graph signal processing for monitoring of deep neural network learn-

ing process [18].
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Figure II.30: Illustration of the method introduced in [150] to extend convolutional neural networks to
irregular domains.
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Chapter III

Future Work and Directions

Throughout the past sections of this document, I hope it appeared clearly how en-

thusiast I am about interdisciplinarity. The main question that drove my research so

far is that of the abilities of machines to learn and gain in autonomy, and I looked at

the question using multiple paradigms: information theory, machine learning, signal

processing... I have great hopes about how this field of research could be beneficial to

most in the coming decades. This is why this section mainly discusses these points.

I have thought of three main directions to take for my future research, in the con-

tinuity of what I did in the past few years. The first axis is dedicated to contributing

to the rise of reusable artificial intelligence, where methods are thought of outside the

bounds of a constrained problem. I have been greatly influenced by Yoshua Bengio

for this topic, who promoted curriculum learning during the past few years. The sec-

ond and third axis are dedicated to making AI systems accessible to most. The second

axis focuses on the problem of data-thrifty settings where either few data is available,

or few labels can be obtained. The third and last axis focuses on the problem of AI

computing at the edge.

III.1 Compositional AI

Most of the literature in machine learning focuses on well separated tasks: naming

objects in natural images [153], identifying faces [154], recognizing characters [155],

analyzing sentiments in texts (e.g. IMDB), classifying short sounds [156]. . . and bypass

the key problem of extracting common ground knowledge. However, human intelli-

gence is different: each newly processed data has the ability to enhance past, present

and future acquired knowledge, building increasingly adequate and adaptable rep-

resentations of the environment and inputs. Consequently, humans are much more

effective at dealing with small datasets through continual [157] and curriculum learn-
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Figure III.1: Example of characters extracted from the Omniglot dataset, illustrating the difficulty of
learning a new alphabet with only one example per character.

ing [158], leading to better performance than machines when facing few-shot or zero-

shot learning. Understanding how to efficiently transfer intelligence between prob-

lems is arguably one of the most important locks to be lifted to access the next level of

machine intelligence.

The machine learning literature has been interested in transferring previously ac-

quired knowledge to newly considered tasks. For example transfer learning meth-

ods [159, 160, 57, 161] propose to use representations optimized for a first task as fea-

tures for a second task. In meta learning [162, 163], representations or parameters of

systems are optimized on preavailable large datasets, to be fine tuned on smaller ones.

But in both cases the idea remains that newer tasks cannot help in finding better rep-

resentations for older ones or subsequent ones. The scope of the problem is indeed

most of the time narrowed to using a large dataset to increase accuracy on a smaller

one. These transfer methods consist more of a data augmentation than a real ability to

uncover and exploit the common ground. As a consequence, training over sequential

tasks and adaptability remain open scientific challenges, despite being applicable to

a vast number of practical problems [164].

There is one main reason to explain this shortcoming, and it is strongly related to

the supremacy of deep learning models in the literature. Indeed, deep learning mod-

els are usually trained through stochastic gradient descent algorithms, requiring to

cycle through datasets a large number of times. When processing streaming data,

the consequence is catastrophic forgetting [157] (i.e. the fact the procedure special-

izes on lastly considered data elements [165], at the cost of losing previously acquired

knowledge). Some alternative exists, but they usually achieve poorer accuracy. For ex-

ample, we proposed a technique at the 2020 CVPR Challenge on Incremental Learn-

ing and won the first prize for the New Instances and Classes subchallenge https:
//sites.google.com/view/clvision2020/challenge/challenge-winners.

If stochastic gradient descent remains (by far) the most efficient method to train

deep architectures, the fact it is deployed without explicit control of what exactly is
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being learned at each layer of the architecture makes it impractical to preserve previ-

ously acquired knowledge.

Deep learning systems are usually designed as a composition of layers – i.e. very

simple mathematical functions –, containing parameters to be trained. But in most

cases these layers are initialized randomly (i.e. they are only containers) when facing

a new task, or updated without taking into account the impact on other tasks. What

if, instead of assembling containers, we would consider assembling contents, in a way

that both previous and future tasks can benefit from the current training?

A key question I would like to investigate is that of training machines able to enrich

their representations of inputs and contexts with each newly processed data, being

able to adapt and transfer knowledge efficiently. The ambition is to open the way to a

plethora of new usages of AI in domains where data acquisition is expensive or chang-

ing, as well as contributing to the invention of sustainable artificial intelligence. Such

a technology would lead to a breakthrough in both fundamental and applied sciences,

by democratizing AI to small businesses and small datasets.

To offer this new generation of intelligent machines, several subproblems must be

addressed:

Subproblem 1: setting up systems able to semantically define and maintain the

purpose of a layer in a deep learning architecture. This step is necessary to ensure

that knowledge can be enriched and adapted without the downfalls of catastrophic

forgetting. This raises new question in the field of transfer learning, where the transfer

is not considered as a one-time forgettable adaptation, but instead as a sustainable

binding between multiple problems.

Subproblem 2: proposing learning methods able to uncover common ground be-

tween tasks. Indeed, it is by optimizing common ground that multiple tasks can be

mutually beneficial. Instead of an implicit reuse of previously acquired intelligence

that would risk obfuscating more and more the common ground, the idea here is to

explicitly identify and segregate reusable and specific knowledge for each newly con-

sidered task. This raises new questions in the field of transfer learning where the ulti-

mate goal would not be the performance on individual tasks, but the ability to factor-

ize most of the common ground knowledge for better adaptability and reusability. We

call this ability the disentangling transfer.

Subproblem 3: targeting the disclosure of atomic (fundamental) pieces of knowl-

edge allowing to solve a given problem. Only through the exposition of these elements

can a truly compositional AI system emerge, in the sense that it allows to express the

solution of any task as a combination of these atoms, along with some domain adap-

tation. The problem of finding causal variables is central in the field [166, 167], but
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remains a very difficult challenge. The idea would be to tackle this question using

continual and transfer learning as a mean instead of a constraint: it is because hu-

mans are forced to experience lifelong learning that they must acquire this ability to

find reusable and adaptable representations of the world. We call this objective the

atomization learning.

III.1.1 Congruent Updates

In computer science, a congruent update usually refers to the fact a library has been

updated while remaining fully compatible (backcompatible) with previous versions.

It can be ensured by looking at the semantics of the library, and checking that previ-

ous usages remain unchanged. In deep learning, layers of an architectures are jointly

optimized on a given task. As a consequence, there is no controlled or even explicit

semantics about them.

In the context of distillation [168], authors have shown that it is possible to train an

architecture by mimicking the outputs at each layer, thus showing that the semantics

of a layer can be fully captured by the associated pairs of inputs/outputs of each layer

on the training set. Despite exploratory, these ideas show it is possible to capture the

semantics of a layer. Once the semantics is defined, it is then possible to propose a

formal definition of congruent updates in the context of deep learning layers.

In order to better understand the transforms induced by a given layer in the man-

ifold of the input domain it has been trained on, we think that Graph Signal Process-

ing [169] (GSP) representations is a promising line of research. Indeed, we showed in

a previous work that GSP can successfully be used to visualize the effect of individ-

ual layers in the dynamics of deep learning architectures [18, 19]. Graphs have the

interest of capturing higher order statistics than the mere input-output associations

previously mentioned, and as such can precisely model the mathematical transform

associated with a layer.

Based on recent works in the field of distillation and graph signal processing, we

thus propose to define the semantics of a layer for a given task so that congruent up-

dates (updates maintaining the semantics) can be performed. We split this work in

two parts:

1. In a first part we aim at characteriz-

ing which portions of space are used

on the given task and at the given

layer. Thus we can allow updates in

all unused directions of space with-

out compromising the performance

on previous tasks.
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III.1.2 Disentangling Transfer

In most cases in transfer learning or meta learning, the main idea is to exploit the

knowledge acquired on previously considered datasets (called support) in order to in-

crease performance on a newly considered dataset (called query). As a consequence

of this asymetric paradigm, it is usually the case that the support is much larger than

the query, and therefore the query is not considered helping the performance on the

support. For example, in [6, 137], we look at strong versions of transfer in continual

learning settings.

In this work, we consider introducing disentangling transfer. Basically transfer learn-

ing hypothesises that there are two types of information that help solve a task. The first

type of information is reusable knowledge, that is to say knowledge that is inherently

more generic than the task. For example, when learning to classify cats and dogs in

images, it is expected that part of the knowledge learns to ignore the background of

the image, which can be considered reusable knowledge for most tasks of recognizing

objects in natural images. Then, the second type of information is specific knowledge.

Continuing the previous example, learning to distinguish between the nose of a cat

and the nose of a dog is a very specific feature of the dataset, and there is little chance

it can be of use to other tasks.

When performing transfer (or meta-learning) the usual way, it is expected that train-

ing on the query set will implicitly update the reusable features and disregard the

specific ones. But such a strategy only makes sense for very simple applications of

transfer, where the goal is to use previously acquired knowledge to the sole purpose

of solving a new one. In the more general setting of transfer across multiple sequen-

tially treated and mutually profitable problems, it is essential to process reusable and

specific knowledge as heterogeneous features. Following this idea, in a previous work

we already showed that transfer features have specific distribution traits that can be
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leveraged to enhance transfer performance [15].

Disentangling transfer refers to the idea that it is possible to perform transfer with

explicit identification of reusable and specific knowledge. The idea is that congruently

fine tuning reusable knowledge while learning specific knowledge from scratch should

considerably help in achieving transfer in competitive lifelong learning settings. To

this end, we split the work in two parts:

1. First we want to introduce and pro-

mote a new look at transfer learn-

ing in the community, where the ob-

jective is not simply to exploit data

available in a large training set to per-

form better on a new, smaller one,

but to establish sustainable bind-

ings between problems, where im-

provement on a problem is leading

to improvement in other problems.

We consider introducing meaningful

benchmarks and reviews of the exist-

ing methods in the fields of transfer

learning, meta learning and domain

adaptation on these benchmarks, to

convince the community of the inter-

est to look at strong versions of trans-

fer, that would benefit to all research

with small datasets.

task 1 task 2

knowledge

knowledge

2. Then we aim at introducing ways to

identify and segregate reusable and

specific knowledge, in the context

of transfer learning. The idea is to

introduce invertible transforms that

project reusable and specific knowl-

edge in disjoint dimensions of space

(disjoint feature maps in the case of

convolutional neural networks). This

process can be performed during fine

tuning. By using previously intro-

duced benchmarks, we aim at show-

ing the specific interest of looking

for meaningful common ground fea-

tures.
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III.1.3 Atomization Learning

Fundamentally, the purpose of machine learning is to uncover causal (explaining)

variables from data. Indeed, the rational behind most machine learning literature is

that data can be seen as a (stochastic and noisy) process, which associates causal vari-

ables to a realization. Understanding how data can help in retrieving the procedure

and the causal variables is the grail of the field.
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Classification can be seen as a partial answer to the problem, where data is asso-

ciated with part of the content. But classification often looks at only a portion of the

problem, since the content of interest is only part of the causal variables that helped in

creating the data. In most deep learning architectures, the procedure (i.e. the mathe-

matical formulation of how inputs are associated with outputs) is fixed, and only latent

variables (i.e. parameters) are trained.

When it comes to solving multiple tasks and creating reusable knowledge, the prob-

lematic comes from the fact the most efficient architectures, in terms of accuracy on

the task, are not necessarily the most efficient in terms of reusability.

Instead of fixing the architecture and looking for the best parameters, the idea of

atomization learning is to reverse the problem: what if we looked for the best archi-

tecture to solve the problem, knowing that we want to obtain a latent representation

that is aligned with our objectives: independent coordinates, sparse response to envi-

ronment changes, no loss of information and reusability?

There are thus two sub-challenges to be addressed:

1. The first step is to find atomiza-

tion methods through constrained

latent representations. The idea is

to build upon the emerging litera-

ture on generative adversarial net-

works [166] and sparse and varia-

tional autoencoders [167, 161] in or-

der to find new ways to perform both

classification and atomization at the

same time.
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2. Then, the idea is to find atomiza-

tion methods in the specific context

of learning multiple sequential tasks.

Indeed, while atomization learning

can be seen as an additive constraint

when learning to solve a single task

from an agnostic starting point, it

becomes an asset in the context of

lifelong learning, where finding an

atomic common decomposition of

each task with a common base al-

phabet could dramatically improve

the accuracy of systems facing highly

challenging problems, such as the

ones introduced in the previous sub-

problem.
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III.2 Few-Label and Few-Shot Learning

In many cases, data labelling can be expensive despite its acquisition is cheap (i.e. few-

label). In other cases, data acquisition can be complex or expensive (i.e. few-shot). In

such cases, deep learning systems are likely to be hard to train, due to the discrep-

ancy between the number of parameters to tune and the available information in the

dataset to use. In the past few months, we have worked on solutions to address few-

shot learning [170, 171, 172, 173]. We are currently ranked first on papers-with-code
on the related benchmarks using the miniImageNet dataset1.

More generally, authors have looked at many options to address these problems:

1. Transfer learning and meta learning have already been presented in the previous

section. They both consists in using another dataset to enrich representations for

the newly considered one.

2. Generative methods, including GANs [166] and sparse and variational autoen-

coders [167, 161], can help in artificially enriching the labelled data.

3. Semi-supervised graph methods [174] propose to use two types of information:

feature vectors (typically obtained through transfer), with a similarity additional

information represented through edges of a graph.

4. Finally, active learning [175] is a field where data labelling is performed interac-

tively with the learning process.

There are many ways graph methods could be used to enhance the quality of few

label or few shot learning performance.

III.2.1 Improved Transfer

Most often, transfer refers to the idea of truncating a pretrained neural network right

before the ending fully connected layer in order to exploit the corresponding acti-

vations, computed on the considered dataset inputs, as feature vectors. This idea is

largely based on the fact deep learning methods are often considered as the concate-

nation of a representation extraction function with a classifier (here: a simple logistic

regression).

Instead, we could use graph signal processing, where vertices would correspond

to data points in the query set, to detect which layers (or combination of layers) of-

fer the best representation. For example, this could be performed by looking at the
1https://paperswithcode.com/sota/few-shot-image-classification-on-mini-2 and https://paperswithcode.com/

sota/few-shot-image-classification-on-mini-3
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smoothness of the label signal [18, 171]. This could interestingly help in distinguish-

ing between layers of the architecture that are good feature vectors for classification

in general and which one are overspecialized to the support set.

In a second time, this would open the way to specific training techniques for the

support set, where the training is not agnostic of the task to be processed afterwards.

III.2.2 Controlled Data-Augmentation

Data augmentation is a standard procedure when training deep learning systems. It

consists in artificially increasing the size of the training set by considering combina-

tions of transforms that are known to preserve the class of represented objects. For

example, in the context of vision, data augmentation techniques usually consists of

small shifts, flips, rotations of input images.

In the field of deep learning architecture robustness, data augmentation is used to

train architectures to be robust to small deviations of inputs. In this area, transforms

can be in any direction of space, but with a limited radius. Again, the rational is that

a small deviation of the input is unlikely to change the nature of what is being repre-

sented in the image.

One can say that the inherent objective of classification is to find the domain of

each class. A simpler, yet challenging problem, consists in finding the class domains

in the vicinity of training examples. If we disposed of a system able to do so, this would

open the way to a whole new level of data augmentation, where inputs no longer be

points of space but large portions of space.

Determining the local structure of the manifold of a class domain is something that

could be performed using graph techniques. For example, graphs could be generated

as a proxy to represent the structure of a class domain. New points generated through

data augmentation could be compared against this graph to be tested for belonging to

the corresponding manifold or not. This first step could then be used to feed classifi-

cation procedures.

III.2.3 Learnable Semi Supervision

In the field of Graph Signal Processing, many techniques have been proposed to in-

fer graphs based on signal observations [83, 84, 80, 23, 176]. But in these examples,

graphs are inferred agnostically of the the task being solved. As a consequence, pos-

sible disposable information, such as weak supervision, is disregarded at this step of

the process.

Instead, we could propose techniques to infer graph structures with weak supervi-
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sion. This could take the form of the method described in [177], where supervision

is used to determine the low spectrum of graphs, that are then inferred using some

prior desired property about them (e.g. sparsity). The obtained graphs could then be

used in order to apply graph supported semi-supervised techniques on the considered

problems.

As a further step, graphs could be learned jointly with parameters while solving the

task, using some regularization to avoid overfitting, in a continuation of what we tried

in [152].

III.3 Training Deep Learning on Chip

III.3.1 Context

There are many reasons to think that deep learning on chip is a key challenge for the

coming years.

From the technical perspective, deep learning faces challenges where it has to be

deployed on embedded resource-constrained devices, sometimes for realtime pro-

cessing (e.g. assisted surgery), sometimes for memory-limited or energy-limited de-

vices (e.g. smartphones). In both cases, the trend is to perform learning partially on

chip as a way to accommodate for the specific environment of the user.

From the scientific perspective, reducing the size of architectures while training

could open the way to better visualization and understanding of the core principles

that allow these systems to reach state-of-the-art performance. Understanding and

interpretation is extremely important in domains where decision must be explainable

(e.g. automatic diagnostic). Also, Deep Learning is a field of research that is mostly

experimental, and thus such that progress is limited by the ability to train fast. Accel-

erating training could dramatically improve the speed of research in the domain.

From the societal perspective, it becomes more and more clear that AI is going to be

one of the most significant source of energy consumption in the coming years, lead-

ing to an environmental impact. There is thus urgency in reducing power consump-

tion of these systems. On a related note, deep learning requires expensive hardware

to reach state-of-the-art performance on challenging datasets, thus preventing small

businesses from being able to compete with major companies. A possibility to ap-

proach this performance with limited hardware could help in reaching a better bal-

ance between small and big companies in the field.

The main problem is that deep learning systems trained through gradient descent

are very poorly fitted to existing hardware. Most of the literature in the field of com-
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pression (c.f. Chapter II) is focused on reducing architectures that were trained offline.

Inventing new techniques to replace gradient descent, adapting compression meth-

ods to the learning phase, and improving transfer learning are thus very promising

directions of research (already mentioned in the two previous sections). We develop

these ideas in the next sections.

III.3.2 Replacing Gradient Descent

Stochastic Gradient Descent is a key feature of deep learning systems. For many rea-

sons it is believed to be the most adapted learning procedure to find adequate minima

of the loss function [178, 179]. However, it is also the main reason why training deep

learning architecture on chip is a challenging problem. In [180], the authors show that

it is possible to express the training objective as the minimum of an energy function,

which is a very promising direction of research.

Instead of searching ways to implement the exact gradient descent through back-

propagation, it could also be promising to look at approximate methods. For example,

the gradient of a function can be approximated by looking at its variation when sug-

gest to a small perturbation. Given a very fast implementation of the forward pass,

an alternative to backpropagation would be to estimate the gradient by looking at the

effect at the output of small random perturbations. Random descents are another

possible alternative, where directions to explore would be randomly chosen, instead

of focusing on the gradient.

Another line of research is layer-wise training. Given adapted layer-wise represen-

tations of the loss function, an architecture can be trained layer-wise, with potential

significant drops in the performance [181]. Considering our recent contributions to

the monitoring of the training of deep learning architectures using Graph Signal Pro-

cessing [18, 19], it would be interesting to see if the old ideas of layer-wise training can

benefit from the recent advances in the field. In particular, residual architectures have

the interest of directly propagating the input representation to intermediate layers, so

that there is no information loss when performing layer-wise training.

Finally, in [182], the authors show that at initialization (after random generation

of the parameters of the architecture), there exists subnetworks of the given architec-

ture that can achieve the same performance as the complete initial one. These ideas

suggest that initialization of parameters is key to the success of deep learning, and

that randomness somehow create good starting points that are obfuscated with a lot

of superfluous unimportant weights. Finding ways to identify which subnetworks are

promising could significantly reduce the cost of training.

109



III.3. TRAINING DEEP LEARNING ON CHIP CHAPTER III. FUTURE WORK AND DIRECTIONS

III.3.3 Compressing the Learning Phase

Most of the compression methods introduced so far in the literature, including quanti-

zation [134], clustering [183], pruning [127], distillation [168], are only fully effective if

they are optimized during training, so that only the result architecture can fully benefit

from the reduction.

As a way to benefit from reduction during training, a solution would consist in using

progressive compression, where part of the compression would be performed while

the training process is still unfinished. This would imply to revisit the proposed meth-

ods and to stress whether they can be beneficial when applied at early stages of the

training process. For example, pruning could be performed gradually, starting from

0% to the targeted value at the end of the training. Finding the best profile of pruning

during training would then be a fair question.

Instead of revisiting existing methods, signal processing tools could be invented to

prematurely identify excessive parts of the trained architectures, along the training

process. Based on statistics of the gradient or the parameters, these tools could help

in improving the quality of compression, both in terms of time and quantity.

Finally, the fact it is possible to considerably reduce the size of trained architec-

ture with no impact on accuracy suggest that gradient descent is not as effective as

one could think, particularly when dealing with efficiency of the obtained parame-

ters. Being able to directly efficiently train smaller architectures, without the need to

start from a larger one, could be investigated by looking at modifications of the back-

propagation algorithm or the random initialization of parameters.

III.3.4 Privacy and Edge Computing

Jointly with the rise in popularity of deep learning methods, concerns grow about how

these methods could interfere with privacy. As a matter of fact, since deep learning

models are best trained with large datasets, it is often more efficient to gather lots of

data in cloud datacenters, where models are optimized.

When privacy is a major concern, training at the edge becomes necessary. It brings

multiple challenges: compression of models, so that they can run with limited com-

putational power, lack of data diversity, since the data used for training is mainly ac-

quired locally, and lack of supervision, as in many contexts it is not reasonable to ask

for a local user to perform labeling.

These three challenges open exciting questions that are related to the previous two

sections: reusable AI and few-shot solutions, with the added difficulty of real-world

streaming acquisition of data. Conducting research with the aim of making edge sys-
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tems competitive in terms of accuracy with centralized solutions could become a ma-

jor step towards the rise of trustworthy AI.

III.4 Ethical and Societal Discussion

I see it as my job to motivate and set an example for the students I mentor. This in-

cludes promoting the scientific method, remaining sensitive to issues of integration

and equity, and putting the common interest ahead of personal ambition.

I strongly believe that developing a trustworthy AI is one of the key issues for the

coming years. It is in any case necessary if its development is to take place in a demo-

cratic context. As a civil servant, participating in creating this trust between citizens

and technology is a primary objective that I wish to follow in the years to come.

This is all the more true in a scientific context that is constantly under pressure

from funding sources guided by simplistic indicators, which may ultimately question

the meaning of the researcher’s profession. The field of AI is developing fast, maybe

too fast sometimes to ensure reliability or reproducibility. This is why since I obtained

my position in 2013, I have always sought to push open science by publishing codes

on github, early preprints on ArXiv, and sharing the expertise I acquired through pop-

ularization communications.

I have been very fortunate to have bright and motivated students, and it is with im-

mense pride that I see them taking on responsibilities in the companies and academic

circles they work with. I hope that by obtaining my HDR, I will be able to continue this

exciting work and give it an even greater impact.
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