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Two operations:

® Learning messages,

» Retrieving previously learned messages from part of their content.

» Learning: M binary messages d™":

M
W,'j = Z d,'mdjm,
m=1,i#j
* Retrieving: iterates
Vi, vi < sgn(z Vi wjj).
J#i
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‘Bxample: the thrifty code
[]

» Code containing only binary words with a single “1":

{
O O-____
N O ___O0_
l ® Drawback: dmin =2 :
O AL o e
S e __ O
RN e But easy to decode and minimise the energy:
O+
dmin |:| DDDDjQUD__> _____ O___
1 winner-take-all
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‘Bxample: the thrifty code
[]

» Code containing only binary words with a single “1":

1
O ___ O_____
N O ___O0_
l » Drawback: dmin =2 :
), B o
T s __ O
N e But easy to decode and minimise the energy:
O
dmin |:| DDDDjQUD_ RO O___
l winner-take-all
|:| ® These codes can be associated like the distributed

codes. . .
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Clique .
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. = .
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one to another. LIS Lt 2 distinct nodes

Ol W 7 = dmin = 6 edges

e
.... {3
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Set of nodes that Symbols = edges
are all connected
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= dmin = 6 edges

® dmin =2(c — 1) = 2¢, rate r = %(;)_1
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Set of nodes that Symbols = edges
are all connected
one to another.

2 distinct nodes
= dmin = 6 edges

* dnin =2(c — 1) ~2¢, rate r ~ §(5)

* = F =rdy, = 2,

e Cliques are codewords of a very interesting error correcting code. .. and
they are free!
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» Example: ¢ = 4 clusters made of / = 16 neurons each,
» 1000 =8 0011 =3 0010 =2 1001 =9,
—_——— ——— —— — —

Jiincy J2 in c2 Jjzincs Jaincg
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1000 0011 0010 1001,
— =~ =~ =~

® Local connection,
» Global decoding: sum,

» Local decoding:
winner-take-all,
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1000 0011 0010 1001,
S = =~

jiinecy jaincy jzincs jsincy

Local connection,

Global decoding: sum,

Local decoding:
winner-take-all,

Possibly iterate the two
decodings.
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* Density d is the ratio of the number of used connections to the total
number of possible ones,

* If messages are i.i.d: d ~1— (1— —)M.

» d = 1: no more
distinction between

] learned and not learned

1 messages,

o e e d=f(l,M), not

) e ] depending on c,

‘ ‘ ‘ Odz,Mz,forM<</2.
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Our network Neuroscience litterature
Cliques of neurons Neural cliques
Local decoding Winner-take-all

Clusters Neocortical columns
Thrifty code Specific neurons

» Necessity to provide a perfect - yet incomplete - content,

—
—
—
—

» Messages must not be correlated,
» Clusters must be large and few,
» Constant messages length,

» Systematic use of all clusters.
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® Developments
* Blurred messages
» Correlated sources

* Sparse messages
® Global winner-take-
® Time synchronization
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With correlations grows the number of Type Il errors.

® There are two effects of correlation:

« An inescapable effect: brain and train are learned — xrain ?
« Another effect coming from our network:

brain +4c1
grade +c2
gamin +c3
grain 4c?
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» Clusters must be large and few,

* Learned messages are all of the same length.

00100101
()

® Shorter messages,
® Clusters and thrifty codes,

® Sparse network,

P,
O
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» Clusters must be large and few,

* Learned messages are all of the same length.

® Shorter messages,
® Clusters and thrifty codes,
® Sparse network,

® Sparse messages.

» Global winner-take-all,

B
O

* Time synchronization.
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passing. . .

» After local maximum
selections. . .

# Global maximum selection.

» Diversity e

» Learned messages length
EVAYET
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» Independent sub-networks,
* Locally: aggregation and
winner-take-all,

» Globally: time coincidence
detection.

Approximation possible to the
modeling of diseases related to
synchronization.
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Designing an associative memory —
\
T T ,

sparsity

distributed codes

o Nearly optimal capacities, substantial diversities,

Massively parallel architecture,

Analogies with neurobiological architecture and functioning,

® Robustness, resiliency, synchronization. . .,

Degrees of freedom: inhibitions, time, weights,

No trade off required between performance and plausibility.
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® An article in IEEE Transactions on neural networks.

® A communication in Proc. of 6" Int’| Symposium on Turbo Codes and
Iterative Information Processing,

* A communication in Proc. of IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and Brain.

» A first patent filed in 2010: presented network,

» A second one currently being filed: learning sequences.






Thank you for your attention. | am at your disposal if you have any
question.
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