Networks of neural cliques

Vincent Gripon

Télécom Bretagne, Lab-STICC SICMA doctoral school

2011, Jul. 20th

In a word...

Learning messages in recurrent neural networks

Learning diversity

Learning capacity

Our contribution

State of the art

In a word...

Learning messages in recurrent neural networks

Learning capacity

Our contribution

Sparsity Error correcting code

State of the art

In a word...

Learning messages in recurrent neural networks

Learning capacity

Our contribution

 $\begin{array}{c} {\sf Sparsity} \\ {\sf Error\ correcting\ code} \end{array} \left(\begin{array}{c} \\ \end{array}\right) {\sf Biologic\ plausibility} \\ \end{array}$

State of the art

Starting idea

LDPC decoder

Neocortical "decoder"

noeuds = neurons
decoding = remembering
parity = ?
? = learning

Outline

- Associative memories and error correcting codes
 - Associative memory
 - Error correcting codes
 - Code of cliques
- Sparse networks, principles and performance
 - Learning
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Sparse messages
 - Global winner-take-all
 - Time synchronization
- 4 Conclusion, openings

Plan

- Associative memories and error correcting codes
 - Associative memory
 - Error correcting codes
 - Code of cliques
- Sparse networks, principles and performance
 - Learning
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Sparse messages
 - Global winner-take-all
 - Time synchronization
- 4 Conclusion, openings

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

Learning: M binary messages d^m:

$$w_{ij} = \sum_{m=1, i \neq i}^{M} d_i^m d_j^m,$$

Retrieving: iterates

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning: M binary messages \mathbf{d}^m :

$$w_{ij} = \sum_{m=1, i\neq j}^{M} d_i^m d_j^m,$$

Retrieving: iterates

 $\forall i, v_i \leftarrow \operatorname{sgn}(\sum v_j w_{ij}).$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning: M binary messages \mathbf{d}^m :

$$w_{ij} = \sum_{m=1, i\neq j}^{M} d_i^m d_j^m,$$

Retrieving: iterates

 $\forall i, v_i \leftarrow \operatorname{sgn}(\sum v_j w_{ij})$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning: M binary messages \mathbf{d}^m :

$$w_{ij} = \sum_{m=1, i\neq j}^{M} d_i^m d_j^m,$$

Retrieving: iterates

 $\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{i=1}^{n} v_j w_{ij}).$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

Learning: M binary messages d^m:

$$w_{ij} = \sum_{m=1, i\neq j}^{M} d_i^m d_j^m,$$

• Retrieving: iterates

$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{i \neq i} v_j w_{ij}).$$

- Diversity : $M = \frac{n}{2\log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2 \log(n)}$, =
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$,
- \Rightarrow Efficiency $pprox rac{1}{log(n)log_2(M+1)}$.
 - Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

- Diversity : $M = \frac{n}{2 \log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2\log(n)}$, \blacksquare
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, \square
- \Rightarrow Efficiency $pprox rac{1}{log(n)log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network,
 messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

- Diversity : $M = \frac{n}{2\log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2\log(n)}$, \blacksquare
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, $ext{}$
- \Rightarrow Efficiency $pprox rac{1}{log(n)log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

- Diversity : $M = \frac{n}{2\log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2\log(n)}$, \blacksquare
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$,
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

- Diversity : $M = \frac{n}{2\log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2\log(n)}$, $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, \blacksquare
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

- Diversity : $M = \frac{n}{2\log(n)}$, \leftrightarrow
- Capacity: $\frac{n^2}{2\log(n)}$, =
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, \blacksquare
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with
$$n = 790$$
:

Example: the thrifty code

Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$:

But easy to decode and minimise the energy:

These codes can be associated like the distributed codes...

Example: the thrifty code

Code containing only binary words with a single "1":

• Drawback: $d_{min} = 2$:

But easy to decode and minimise the energy:

winner-take-ali

 I hese codes can be associated like the distributed codes...

Example: the thrifty code

Code containing only binary words with a single "1":

• Drawback: $d_{min} = 2$:

• But easy to decode and minimise the energy:

These codes can be associated like the distributed codes

Example: the thrifty code

Code containing only binary words with a single "1":

• Drawback: $d_{min} = 2$:

• But easy to decode and minimise the energy:

 These codes can be associated like the distributed codes...

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ d_{min} = 6 edges

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6 \text{ edges}$

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ d_{min} = 6 edges

- $d_{\mathsf{min}} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2}$
- \Rightarrow $F = rd_{\min} \approx 2$
- Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ d_{min} = 6 edges

- $d_{\mathsf{min}} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2}\binom{c}{2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$
- Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ d_{min} = 6 edges

- $d_{\mathsf{min}} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\mathsf{min}} \approx 2$
- Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ d_{min} = 6 edges

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6 \text{ edges}$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- $\longrightarrow F = rd_{\mathsf{min}} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6 \text{ edges}$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Plan

- 1) Associative memories and error correcting codes
 - Associative memory
 - Error correcting codes
 - Code of cliques
- Sparse networks, principles and performance
 - Learning
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Sparse messages
 - Global winner-take-al
 - Time synchronization
- Conclusion, openings

- ullet Example: c=4 clusters made of l=16 neurons each,
- \bullet 1000 = 8 0011 = 3 0010 = 2 1001 = 9

- Example: c=4 clusters made of l=16 neurons each,
- $1000 = 8\ 0011 = 3\ 0010 = 2\ 1001 = 9$

 j_1 in c_1

- Example: c = 4 clusters made of l = 16 neurons each,
- 1000 = 8 0011 = 3 0010 = 2 1001 = 9

 j_1 in c_1

- Example: c=4 clusters made of l=16 neurons each,
- 1000 = 8 0011 = 3 0010 = 2 1001 = 9

- Example: c=4 clusters made of l=16 neurons each,
- $\underbrace{1000 = 8}_{j_1 \text{ in } c_1} \underbrace{0011 = 3}_{j_2 \text{ in } c_2} \underbrace{0010 = 2}_{j_3 \text{ in } c_3} \underbrace{1001 = 9}_{j_4 \text{ in } c_4}$

1000 0011 0010 ????,

- Local connection
- Global decoding: sum,
- Local decoding winner-take-all,
 - Possibly iterate the two decodings.

$$\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3}$$
 ????,

- Local connection,
- Global decoding: sum
- Local decoding: winner-take-all
- Possibly iterate the two decodings.

$$\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3}$$
 ????,

- Local connection,
- Global decoding: sum
- Local decoding winner-take-all,
- Possibly iterate the two decodings.

$$\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3}$$
 ????,

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all.
- Possibly iterate the two decodings.

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
 - Possibly iterate the two decodings.

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $dpprox 1-\left(1-rac{1}{l^2}
 ight)^M$.

Curves

Remarks

 d = 1: no more distinction between learned and not learned messages,

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- ullet If messages are i.i.d.: $dpprox 1-\left(1-rac{1}{l^2}
 ight)^M$.

Curves

Remarks

 d = 1: no more distinction between learned and not learned messages,

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- ullet If messages are i.i.d.: $dpprox 1-\left(1-rac{1}{l^2}
 ight)^M$.

Remarks

d=1: no more distinction between learned and not learned messages,

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d pprox 1 \left(1 rac{1}{l^2}
 ight)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,
- $d \approx \frac{M}{l^2}$, for $M \ll l^2$.

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d pprox 1 \left(1 rac{1}{l^2}
 ight)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d pprox 1 \left(1 rac{1}{l^2}
 ight)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,
- $d \approx \frac{M}{l^2}$, for $M \ll l^2$.

Performance (1/3)

As an associative memory

c=8 clusters of I=256 neurons each (\sim messages of 64 bits),

Error probability when retrieving messages half erased.

Hopfield network (n = 790)

Our network

Performance (2/3)

Classification

Second kind error rate for various sizes of clusters c and for l=512 neurons per cluster.

Hopfield network (n = 740)

Our network

Comparison of capacities of our network and of the Hopfield one

Performance (3/3)

Comparison of the capacities of the Hopfield network with ours (as associative memories) and for the same amount of memory used.

Analogies

Analogies

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length
- Systematic use of all clusters.

Analogies

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length
- Systematic use of all clusters.

Analogies

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length
- Systematic use of all clusters.

Analogies

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters

Analogies

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.

Plan

- Associative memories and error correcting codes
 - Associative memory
 - Error correcting codes
 - Code of cliques
- Sparse networks, principles and performance
 - Learning
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Sparse messages
 - Global winner-take-all
 - Time synchronization
- 4 Conclusion, openings

Limitation

Partial messages must contain perfect information.

Noise mode

Limitation

Partial messages must contain perfect information.

Noise model

Limitation

Partial messages must contain perfect information.

Noise model

Limitation

Partial messages must contain perfect information.

Noise model

Limitation

Partial messages must contain perfect information.

Noise model

Limitation

Partial messages must contain perfect information.

Noise model

Performance

Simulations

Comparison of performance when messages are partially erased and when they are blurred (b=5).

Why performance are better?

- Erasing: \searrow competitive cliques $(\approx l)$ \nearrow probability $(\approx d^{c-1})$,
- Bruit : \nearrow competitive cliques $(\approx b^c) \searrow$ probability $(\approx d^{\frac{c(c-1)}{2}})$.

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned o *rain?

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - ullet An inescapable effect: *brain* and *train* are learned o *rain?
 - Another effect coming from our network:

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain grade

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain grade gamin

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain grade gamin grain

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
 - Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Illustration -10 - 01

Idea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

- Global winner-take-all,
- Time synchronization

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Illustration -10 - 01

ldea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

- Global winner-take-all,
- Time synchronization.

Idea

- After global message passing. . .
- After local maximum selections...
- Global maximum selection.

Interests

ullet Diversity $\propto a$

Learned messages length

Idea

- After global message passing. . .
- After local maximum selections...
- Global maximum selection.

Interests

Diversity of

Learned messages length may vary.

Idea

- After global message passing. . .
- After local maximum selections...
- Global maximum selection.

nterests

Diversity o

Learned messages length

may vary.

Idea

- After global message passing. . .
- After local maximum selections. . .
- Global maximum selection.

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Interests

- Diversity $\propto c^2$,
- Learned messages length may vary.

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Interests

- Diversity $\propto c^2$,
- Learned messages length may vary.

Idea

- Independent sub-networks,
- Locally: aggregation and winner-take-all,
- Globally: time coincidence detection.

Interests

Idea

- Independent sub-networks,
- Locally: aggregation and winner-take-all,
- Globally: time coincidence detection.

Interests

Idea

- Independent sub-networks,
- Locally: aggregation and winner-take-all,
- Globally: time coincidence detection.

nterests

Idea

- Independent sub-networks,
- Locally: aggregation and winner-take-all,
- Globally: time coincidence detection.

Interests

Plan

- Associative memories and error correcting codes
 - Associative memory
 - Error correcting codes
 - Code of cliques
- Sparse networks, principles and performance
 - Learning
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Sparse messages
 - Global winner-take-al
 - Time synchronization
- Conclusion, openings

Approach Designing an associative memory sparsity distributed codes

Results

Nearly optimal capacities, substantial diversities,

Approach Designing an associative memory percentage of the control of the contr

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,

distributed codes

- Robustness, resiliency, synchronization...
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach Designing an associative memory sparsity neocortical architecture

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,

distributed codes

- Robustness, resiliency, synchronization.
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Designing an associative memory sparsity distributed codes

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach Designing an associative memory page 1.5 page

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,

distributed codes

- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Designing an associative memory sparsity distributed codes

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Publications and valorization

Journal

• An article in IEEE Transactions on neural networks.

Proceedings

- A communication in Proc. of 6" Int'l Symposium on Turbo Codes and Iterative Information Processing,
- A communication in Proc. of IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain.

Patents

- A first patent filed in 2010: presented network,
- A second one currently being filed: learning sequences.

Openings

Thank you for your attention. I am at your disposal if you have any question.

LDPC decoder

Neocortical "decoder"

