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Résumé

Introduction

Nous proposons et développons un modèle original de mémoires associatives

s’appuyant sur des réseaux de neurones codés. Les mémoires associatives sont

des dispositifs capables d’apprendre des messages binaires puis de les reproduire

à partir de fractions de leurs contenus. L’état de l’art est le réseau proposé par

Hopfield, dont la diversité de mémorisation - le nombre de messages qu’il peut

mémoriser - est inférieure à n
2 log(n) oùn est le nombre de neurones dans le réseau.

Notre travail a consisté à tirer parti des techniques de codage et de déco-

dage correcteur d’erreur, plus précisément celle des codes distribués, afin d’ac-

croître considérablement les performances des mémoires associatives. Pour ce

faire, nous avons introduit des codes originaux dont les mots de code sont portés

par des cliques neurales. Nous montrons que, combinées à des codes locaux par-

cimonieux, ces cliques neurales offrent une diversité d’apprentissage qui évolue

comme le carré du nombre de neurones.

Les gains observés viennent de l’utilisation de la parcimonie à plusieurs é-

chelles : d’une part les messages appris sont de longueur bien inférieure à n,

d’autre part ils n’utilisent qu’une partie du matériel disponible, que ce soit au

niveau des neurones ou de leurs connexions. L’apprentissage est donc localisé,

au contraire des réseaux de Hopfield. De plus, ces mémoires bénéficient d’une

efficacité - rapport du nombre de bits appris au nombre de bits utilisés - presque

maximale. Elles se présentent donc comme une alternative intéressante aux mé-

moires indexées classiques.

Au delà de l’aspect quantitatif, le modèle que nous proposons offre une plau-

sibilité biologique fortement accrue par rapport au modèle de Hopfield. Les con-

cepts de cliques neurales, de winner take all, ou encore de synchronisation tem-

porelle que ce modèle exploite rejoignent les observations récentes rapportées

par la littérature neurobiologique. Par ailleurs, elles pourraient ouvrir la voie à la

conception de machines cognitives capables de croiser des informations pour en

produire de nouvelles car les cliques neurales sont recouvrantes, par leurs som-

mets ou par leurs arêtes.

Réseaux de neurones biologiques et artificiels

Les réseaux de neurones biologiques peuvent être séparés en deux grandes fa-

milles. La première se définit par des réseaux feed forward, lesquels se prêtent

bien à la modélisation des comportements réflexes et aux couches réalisant l’in-



terface entre le corps et le cerveau, le cortex visuel par exemple. La seconde, qui

nous intéressera dans ce document, est fortement récurrente et permet la mo-

délisation de fonctionnements à un plus haut niveau informationnel comme la

mémoire et le raisonnement.

Afin de modéliser ces réseaux complexes, les réseaux de neurones artificiels

utilisent une abstraction adaptée au formalisme scientifique. Ces réseaux peuvent

alors à nouveau se séparer en deux grandes familles. La première représente ceux

où le temps est crucial et intervient dans des équations différentielles par exemple.

La seconde ignore la dimension temporelle et se rapproche du formalisme des

automates cellulaires. Nous montrons dans ce document que ce dernier modèle,

très simple, suffit pour obtenir de hautes performances de mémorisation sur des

réseaux biologiquement plausibles.

Nous comparons notre modèle à l’état de l’art qu’est le réseau proposé par

J. Hopfield en 1982. Ce dernier repose sur un graphe de n neurones entièrement

interconnectés à l’exception des boucles. Ce graphe est pondéré et symétrique,

ce qui signifie qu’il peut être entièrement spécifié à partir de ses
(
n
2

)
connexions.

Un tel réseau peut apprendre puis remémorer des messages binaires de lon-

gueur n. On dira qu’un message est appris s’il est possible de le retrouver à partir

d’une fraction de son contenu. L’apprentissage se fait en utilisant le poids des

connexions. Le nombre maximal de messages qu’un réseau de Hopfield peut ap-

prendre, qu’on appelle sa diversité, est M = n
2log(n) .

Cette limite est particulièrement restrictive. En particulier, un réseau de Hop-

field est incapable d’apprendre un grand nombre de messages courts, un diction-

naire par exemple. L’apprentissage d’un aussi grand nombre de messages dans

un tel réseau nécessite donc qu’ils soient de grande longueur et que le réseau

contienne un grand nombre de neurones (plus que de messages).

Pour estimer plus en avant ses performances, il convient d’introduire un se-

cond paramètre, que nous appelons capacité. Ce paramètre représente la quan-

tité maximale d’informations binaires qui peuvent être apprises par le réseau.

Dans le cas du réseau de Hopfield, où les messages appris sont de longueur n,

cette capacité est C = n2

2log(n) .

Il est à noter que la diversité, au contraire de la capacité, ne tient pas compte

de la longueur des messages appris. D’un point de vue informationnel, c’est donc

la capacité qui représente la limite intéressante du réseau. En revanche, d’un

point de vue cognitif, une meilleure diversité est toujours préférable, car elle aug-

mente le nombre de combinaisons et donc les analogies possibles entre mes-

sages.

La capacité est à comparer à la quantité d’informations binaires utilisées pour



stocker le réseau en mémoire. Cette dernière s’obtient en multipliant le nombre

de connexions par le nombre de bits nécessaires pour en quantifier les poids, soit

Q =
(
n
2

)
log2(M + 1).

Le rapport E = C
Q

, appelé efficacité du réseau, représente la quantité de bits

des messages appris portés en moyenne par chaque bit représentant le réseau.

Dans le cas du réseau de Hopfield, on a limn→∞E = 0. Ainsi plus le réseau de

Hopfield est grand, moins il est efficace.

Il est à noter que l’efficacité d’un réseau de neurones utilisé en mémoire as-

sociative peut dépasser la valeur 1, parce que les messages appris ne sont pas

ordonnés.

Réseaux de neurones récurrents

Lors de l’apprentissage, le réseau de Hopfield modifie les poids de l’intégralité de

ses connexions, affectant ainsi tout ce qui a déjà été appris. C’est cette approche

qui est responsable de la dégradation progressive de la précision de l’informa-

tion portée par chaque connexion. Cette dégradation se répercute ensuite sur les

performances du réseau.

Afin de contourner cette limitation, à chaque message appris peut être asso-

cié une localisation différente dans le réseau. Ces localisations, éventuellement

recouvrantes, peuvent être de différentes natures : cycles, populations, cliques. . .

Nous avons dans un premier temps considéré les cycles. Les cycles sont po-

tentiellement très nombreux dans un graphe mais néanmoins limités par leur ré-

silience trop faible : la perte d’une unique connexion peut transformer un cycle

en un simple chemin de déroulement fini. De plus, des cycles recouvrants sont

difficiles à contrôler, car l’activation de l’un mène souvent à l’activation de cer-

tains autres. D’un autre côté, considérer des cycles non recouvrants en limiterait

le nombre à celui des noeuds dans le graphe.

Nous avons observé que des réseaux aléatoires, générés de sorte à avoir des

paramètres proches de ceux du néocortex, font apparaître des populations de

neurones réagissant à des stimuli donnés. Ces populations, s’appuyant sur des

cycles, sont malheureusement peu diverses et peu nombreuses.

Notre démarche nous a ensuite conduit à considérer les cliques. Les cliques

sont des ensembles de noeuds d’un graphe entièrement interconnectés. Contrai-

rement aux cycles, les cliques sont très résilientes puisque le nombre de leurs

connexions augmente comme le carré de celui de leurs sommets. En particulier,

après la perte de quelques connexions dans une clique, celle-ci maintient une

forte redondance au sein de ses connexions restantes.



Nous proposons alors un modèle simple qui permet d’associer des messages

à des cliques virtuelles dans des graphes bipartis. Dans ces graphes, une partie

des noeuds représente les neurones du réseau, une autre partie les cliques dans

ce réseau. Chaque clique virtuelle est ainsi modélisée par un unique noeud dans

la seconde partie. Ce noeud est relié à l’ensemble des neurones appartenant à

la clique virtuelle qu’il représente. Ces graphes ont des performances encou-

rageantes puisqu’ils permettent de dépasser la limite sous-linéaire de diversité

dans les réseaux de Hopfield pour arriver à une diversité linéaire.

Les limites en performances de ce procédé viennent de la difficulté à contrô-

ler les cliques recouvrantes.

Codes correcteurs d’erreurs et réseaux de neurones

Le domaine du codage correcteur d’erreurs a proposé depuis les années 1950

une pléthore de codes de plus en plus performants. Une découverte majeure a

été l’invention des turbo codes au début des années 1990, lesquels ont initié un

fort intérêt pour les codes distribués.

Un code correcteur d’erreur a pour rôle d’ajouter de la redondance aux mes-

sages afin de les protéger durant leur transport à travers des canaux susceptibles

de les bruiter. Le décodeur associé pourra alors tenter de retrouver le message

transmis malgré les éventuels erreurs ou effacements survenus lors de la trans-

mission.

Un exemple de code correcteur d’erreurs est celui qui contient tous les mots

binaires sur {0; 1} de taille n et qui n’ont qu’un seul bit de valeur 1. Étant donné

son faible coût en caractères 1, nous avons baptisé ce code “code économe”. Le

code économe est relativement peu robuste puisqu’une unique erreur qui insé-

rerait l’un quelconque des symboles d’un mot de code mènerait à une ambiguïté

lors de son décodage. En contre partie, ces mots de code sont particulièrement

simples à décoder. En effet, si les mots sont bruités par l’addition d’une valeur

aléatoire et indépendante sur chacun des bits, le mot de code le plus probable-

ment émis est celui qui contient un 1 là où la valeur reçue était maximale. Cette

règle de décodage trouve une parfaite correspondance dans la littérature neuro-

biologique sous le nom de winner-take-all.

Nous introduisons également un code original, gratuit et performant qui existe

dans n’importe quel graphe. Ce code est simplement constitué des cliques conte-

nant c noeuds de ce graphe. Il est particulièrement performant. Deux cliques

de tailles c différent au minimum de seulement deux noeuds (un noeud ayant

été remplacé par un autre), mais en termes de connexions ce nombre devient



2(c − 1). Par ailleurs, seules ⌈ c2⌉ connexions suffisent à identifier sans ambiguïté

une telle clique, alors qu’elle en contient
(
c
2

)
au total. La comparaison du nombre

de cliques de taille c à leur distance minimale permet de conclure que les cliques

de taille c forment les mots de codes d’un code intéressant (même pour des appli-

cations en télécommunications). De plus, les cliques ne requièrent aucun maté-

riel supplémentaire dans un réseau de neurones : elles sont naturelles. Enfin, les

neurobiologistes sont familiers avec la terminologie de cliques neurales, puisque

celles-ci ont été observées dans certaines régions du néocortex.

Les autres codes correcteurs d’erreurs peuvent avoir des propriétés analy-

tiques intéressantes, comme par exemple l’orthogonalité de leurs mots de code :

c’est le cas du code de Hadamard par exemple. Ces codes peuvent être directe-

ment introduits dans les réseaux de Hopfield pour accroître leur diversité d’ap-

prentissage, en leur apportant à la fois le bénéfice de leur orthogonalité et de leur

pouvoir de correction. Les messages à apprendre sont alors directement asso-

ciés à des mots du code considéré, lesquels deviennent le coeur du processus de

décodage.

La diversité d’apprentissage peut encore être accrue en combinant ces codes

les uns avec les autres à la manière des codes distribués. Cette association néces-

site cependant l’ajout d’un autre code plus grand et plus puissant. Les gains en

diversité observés sur des réseaux de taille moyenne (environs 1000 neurones)

sont d’un facteur de l’ordre de 50.

Ces diverses techniques permettent de considérablement accroître les per-

formances d’apprentissage des réseaux récurrents, mais les ajouts sont techni-

quement complexes et écartent toute plausibilité biologique.

Parcimonie et réseaux de cliques neurales

Afin de mieux tirer parti des propriétés des codes distribués tout en respectant

la contrainte de plausibilité biologique, nous proposons d’utiliser à présent des

codes économes et des codes sur cliques. Ces codes, introduits dans le chapitre

précédent, sont compatibles avec cette contrainte.

Cette association nous permet de proposer un réseau très performant qui

fonctionne de la façon décrite ci-après.

D’abord, les messages binaires à apprendre sont découpés en sous-messages

de taille κ. Ces sous-messages sont associés de façon unique à des mots d’un

code économe plus long de taille l = 2κ. Cette transformation étant bijective, il

est équivalent d’apprendre l’association des sous-messages de départ ou d’ap-

prendre celle des mots des codes économes correspondants.



Chacun des mots de codes économes ainsi obtenus est projeté sur une partie

différente du réseau, appelée grappe ou cluster, chacune de taille l (une grappe

est associée aux premiers sous-messages, une seconde aux seconds. . .). Cette

projection n’active qu’un unique neurone dans chaque grappe, celui correspon-

dant au bit à valeur 1. Ces différents neurones sélectionnés, que nous appelons

fanaux parce que seul l’un d’entre eux est allumé dans la pénombre de sa grappe,

sont ensuite entièrement reliés deux à deux, ce qui inscrit une clique dans le ré-

seau. Ces connexions ne pouvant qu’être entre parties distinctes, le réseau est

multiparti. Il est également entièrement binaire, ce qui signifie qu’une connexion

ne sera pas renforcée si elle est utilisée plusieurs fois. Cette différence avec le ré-

seau de Hopfield, très importante vis-à-vis de la plausibilité biologique, vient du

fait que c’est la présence de connexions qui code l’information plutôt que leurs

poids, le graphe n’étant pas complet.

La remémoration d’un message appris à partir d’une fraction de son contenu

s’effectue ensuite en exploitant les deux codes. D’abord, les sous-messages ayant

une information, même partielle, sont projetés sur leurs fanaux correspondants.

Ensuite, les activations de ces neurones sont transmises via les connexions du

réseau, en particulier celles de la clique correspondant au message à retrouver.

D’autres connexions peuvent être utilisées lors de cet échange de signaux, elles

agissent alors comme du bruit. Les neurones se comportent ensuite comme des

intégrateurs qui additionnent les signaux entrants. Le second décodage, corres-

pondant aux codes économes, peut alors débuter : dans chaque grappe, seul le

(ou les) fanal le plus actif est sélectionné.

Il se peut que plusieurs fanaux, à l’intérieur d’une même grappe, atteignent le

score maximal, menant alors à une ambiguïté qui ne peut être levée que par des

itérations supplémentaires des deux décodages : global par les cliques puis local

par les codes économes.

Nous montrons que ces réseaux compartimentés en c grappes de tailles l

peuvent apprendre un nombre considérable de messages, proportionnel au carré

du nombre de neurones n = cl, si c est constant. Leurs capacités sont très voi-

sines des quantités d’informations binaires nécessaires pour stocker le réseau en

mémoire, ce qui conduit à des efficacités proches de 1, bien supérieures à l’effi-

cacité tendant vers zéro des réseaux de Hopfield.

Ces bonnes performances s’accompagnent d’une meilleure robustesse et flexi-

bilité des réseaux. En particulier, les connexions sont binaires et donc bien plus

résistantes au bruit et la taille des messages appris n’est plus donnée par la taille

du réseau.

Nous proposons ensuite plusieurs développements, dont la considération des



sources corrélées et de messages de longueurs variables. Dans le premier cas,

nous montrons que l’addition de redondance aléatoire aux messages à apprendre

permet de combattre l’effet néfaste de la corrélation sur les performances du

réseau. Dans le second cas, nous montrons que l’exploitation de la dimension

temporelle, qui n’avait pas été utilisée jusqu’alors, permet de sélectionner lors

du décodage les parties qui doivent être utilisées. Cette sélection repose sur la

détection de coïncidences temporelles.

En dehors de leurs performances, ces réseaux sont très plausibles du point de

vue biologique. Les cliques neurales et le décodage par winner-take-all trouvent

des échos dans la littérature neuroanatomique. Le découpage en grappes est

analogue à la structure en colonnes du néocortex. Les fanaux sont spécifiques

des valeurs de certains sous-messages, au même titre que des neurones du cor-

tex visuel peuvent être spécifiques à la détection d’une caractéristique particu-

lière (un angle précis par exemple). Enfin, le réseau converge en pratique avec

un nombre très faible d’itérations vers un point fixe, au contraire des réseaux de

Hopfield.

Conclusion, ouvertures

Les réseaux que nous avons introduits dans ce travail de thèse ont permis de

considérablement augmenter les performances des mémoires associatives. Ces

gains s’observent à la fois en diversité et en capacité.

Ces résultats ont pu être obtenus grâce au principe de parcimonie et à la puis-

sance des codes correcteurs d’erreurs distribués comme ceux de type LDPC, par

exemple.

Un résultat important de ce travail est l’étonnante constatation qu’aucun com-

promis n’a été nécessaire entre plausibilité biologique et performances.

Il reste que ce travail n’est qu’un point de départ qui ouvre une immense po-

tentialité de développements dans de nombreux domaines, dont certains sont

introduits ci-dessous.

D’abord, des questions se posent sur le transport de ce modèle vers le monde

de la biologie. Notamment, l’introduction des comportements temporels de neu-

rones à spikes s’impose alors comme une étape incontournable. Plus spécifique-

ment, ce réseau pourrait être suffisamment riche pour modéliser des pathologies

liées à la mémoire et aux problèmes de synchronisation.

Dans les domaines de l’informatique et de l’électronique s’ouvrent des pers-

pectives diverses, allant de la conception de circuits dédiés à l’exploitation dans

la conception d’algorithmes innovants. Il est certain que ces mémoires requièrent



des paradigmes de programmation spécifiques, bien différents de ceux qui sont

habituellement utilisés.

Enfin ces mémoires ouvrent la voie à des conceptions de machines cogni-

tives originales. Leur utilisation nécessitera probablement l’utilisation d’ontolo-

gies adaptées. Un travail important est à faire sur les notions de pertinence et

d’attention, qui sont indispensables pour favoriser l’émergence de “consciences”

virtuelles. Ces réseaux de neurones ont pour particularité de représenter les mes-

sages sur des cliques recouvrantes, par leurs noeuds et par leurs arêtes, et ouvrent

donc la voie à de nombreuses pistes sur leur capacité à combiner ces messages

pour en créer de nouveaux, que l’on espère pertinents.



Abstract

We propose and develop an original model of associative memories relying on

coded neural networks. Associative memories are devices able to learn messages

then to retrieve them from part of their contents. The state-of-the-art model is

the Hopfield Neural Network, whose learning diversity - the number of messages

it can store - is lower than n
2 log(n) where n is the number of neurons in the net-

work.

Our work consists of using error correcting coding and decoding techniques,

more precisely distributed codes, to considerably increase the performance of

associative memories. To achieve this, we introduce original codes whose code-

words rely on neural cliques. We show that, combined with sparse local codes,

these neural cliques offer a learning diversity which grows quadratically with the

number of neurons.

The observed gains come from the use of sparsity at several levels: learned

messages length is much shorter than n, and they only use part of the avail-

able material both in terms of neurons and connections. The learning process

is therefore local, contrary to the Hopfield model. Moreover, these memories of-

fer an efficiency - ratio of the amount of bits learned to the amount of bits used

- nearly optimal. Therefore they appear to be a very interesting alternative to

classical indexed memories.

Beside the performance aspects, the proposed model offer much greater bio-

logical plausibility than the Hopfield one. Indeed, the concepts of neural cliques,

winner-take-all, or even temporal synchronization that we introduce into our

networks match recent observations found in the neurobiological literature. More-

over, since neural cliques are intertwined by their vertices and/or their connec-

tions, the proposed model offers new perspectives for the design of cognitive ma-

chines able to cross pieces of information in order to produce new ones.





“La Science remplace du visible compliqué par de l’invisible simple.”

“Science replaces complicated visible with simple invisible.“

Jean Perrin,

Nobel laureate in physics.
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1
Introduction

“I visualize a time when we will be to robots what dogs are to humans” said

Claude Shannon, the father of Information Theory. Most people probably do not

consider we are close to this time. Maybe they ignore that supercomputers are

able now to process up to 1015 elementary operations per second. In comparison,

a human brain neocortex has typically some 1010 neurons with a response time of

10−3s, that is to say approximately the same computing ability. One could argue

that human brains are not comparable with Turing machines: if the former can

emulate the latter (considering infinite time), too many metaphysical questions

arise to consider the reciprocity.

We are probably close to a singularity, as described by futurists like Ray Kurz-

weil, which shall correspond to the moment when machines will be able to store,

retrieve, merge and produce pieces of information by themselves. Added to their

effective ability to communicate, for instance through the Internet, this would

lead to an incredible increase in overall knowledge. Not only will those machines

considerably help any research, but they will also likely be able to lead to the

design of higher performance machines and so on.

Yet it is still unclear how these machines could be developed. Although com-

puting abilities are following an exponential increase, we lack the methods to

efficiently manipulate cognitive1 information. Actually, there is just one known

device able to do it: the brain. Obviously, machine designers are not the only

community of scientists interested in studying the mechanics of the brain. Neu-

rologists, psychologists, philosophers, and many more are willing to understand

its functioning. However, and despite the astronomic quantity of intelligence in-

volved, some basic questions have not yet found a convincing answer. Among

them, the mental principles of information storage are still unknown. Yet there

have been some proposals, associative memories being one of them.

1Cognition, according to Wikipedia, “refers to information-processing abilities of humans”.
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Associative memories are devices that mimic the brain memory in some as-

pects: they can learn messages and retrieve them in presence of errors or era-

sures. Of particular interest are such devices targeting biological plausibility as

they offer an opportunity to decrypt the principles of information storage in the

brain.

Evolution eventually gave man a complex neural network, structured into mi-

cro, macro and hyper-columns whose roles are partially known. This increas-

ing knowledge of the brain’s organization allows neurologists to draw constantly

more accurate semantic maps of it. Of course, the interest of such an approach is

unquestionable as far as medical issues are concerned. Nonetheless, it seems less

obvious with regards to the question of information in the brain. There are many

reasons justifying this remark. One among them comes from cellular automaton

theory, which describes models with very simple dynamic rules that can result in

chaos. Consequently, the observation of such automaton evolution cannot lead

to the understanding of its rules. The brain is, of course, a formidable machine

with very complex chemical rules. It seems therefore difficult to imagine that

the observation of its architecture could be sufficient to deduce its functioning

principles.

It is a surprising fact that there exist only a few connections between infor-

mation theory and cognitive sciences. All the more since the term “artificial in-

telligence” originally proposed by McCarthy was largely expanded thanks to the

conference of Dartmouth in 1956 where one of the main speakers was Claude

Shannon. Actually, some papers cross the domains, as for instance some works

using error correcting codes to increase perception learning process [1] or on the

other hand decoding with the help of artificial neural networks [2]. These contri-

butions are nevertheless limited to the search for optimization of already existing

techniques.

This observation summarizes the surprising context in which the work de-

scribed in this document began: principles of information storage in the brain

are an open issue which is not considered by information theorists. Yet Claude

Berrou2 has been presenting in the last few years a large list of similarities be-

tween the functioning of modern error correcting decoders and our knowledge

of the brain: uniqueness of thoughts and fixed point decoding, resilience and

noise resistance, macro-columns versus small local codes, etc. . . These observa-

tions, illustrated in Figure 1.1, are the guiding principles of this thesis.

2Claude Berrou is mainly known as the inventor of turbo codes, a family of error correcting
codes that achieves near optimal performance and that dramatically improved the previous state-
of-the-art in the early 90’s.
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Figure 1.1: Error correcting decoding versus neocortex decoding. We can draw a parallel
between the adder nodes of the LDPC graph and the neurons. But there is no direct
correspondence for the parity nodes.

As a matter of fact, error correcting decoders are very similar to associative

memories: they find the most likely message associated with a given input. Yet

similarities have their limits, as on the one hand decoders treat intrinsically de-

pendent messages (generally linearly dependent) and associative memories con-

sider arbitrary ones.

The results presented in this document are obtained using two distinct mea-

sures of performance: the first one is the capacity, that is to say the total amount

of information a device can learn, in bits3. The second one, the diversity, is the

number of messages the same device can learn. If the former has been signif-

icantly increased by our work, the latter has dramatically grown. As far as cog-

nitive issues are concerned, the diversity of a network seems to be the most im-

portant parameter. Indeed, it is better to be able to learn a lot of short messages

than to learn a small amount of long messages as it is the ability to confront many

pieces of information which is the very foundation of human thinking.

Given this fact, it is easily understandable that the most important word in

this document will be sparsity. Sparsity will be introduced at multiple levels to al-

low us to reach unprecedented performance. Actually, the very principle of learn-

ing is based on sparsity. Let us imagine, for instance, that one want a neural net-

work to learn the word “brain”. Our idea is that this word will be projected onto

a geometric figure. Such a process is depicted in Figure 1.2. Actually, the strategy

is simple: the word “brain” is only made of five characters and is therefore close

to many other words such as “train”. Consequently, an erasure on a single char-

acter would likely result in an ambiguity. By considering words as connections

between characters, the minimum number of distinct connections between the

3According to broad estimates, the amount of bytes memorized in a human brain during its all
life is around 1109 (Ralph C. Merkle, Foresight Update, No. 4, Oct. 1988).
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letters of “brain” and another five letter word becomes at least eight, when a sin-

gle character has changed. In other words, the small initial space of words with

five characters has been projected to a bigger space: the one of connections be-

tween characters. The advantages are many. A first one is that a bigger space

allows a larger minimum distance between messages, giving a better separabil-

ity. Additionally, when two characters differ, a lot of connections also differ: the

learning thus adds a spatial diversity. On top of that, the material used to learn is

connections, which are quadratically more numerous than characters.
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Figure 1.2: A simple strategy to learn the word “brain” with an error resistant scheme.

The objective of the work described in this document was originally to explore

whether the human brain can be seen as an error correcting decoder or not. It is

why it constantly oscillates between biological plausibility and effectiveness. It

is remarkable that eventually both motivations are completely fulfilled without

having needed to ignore one to enhance the other.

In order to have a clear presentation, important results are presented in

boxes like this one.
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If this result is also an original contribution of our work, the box will be

presented with double lines.

Actually, we will present a lot of strategies to combine error correcting codes

with associative memories in order to improve their performance tenfold. Those

converge at the end of the document to a very effective and biologically plausible

network (Chapter 5). This network is at the heart of the work presented in this

document and all the preceding chapters just aim at introducing it.

In the second chapter, we present the tools that are at the basis of this work:

graphs, and then biological and artificial neural networks. The Hopfield model

for associative memories is also analysed, as it will serve as the state-of-the-art

reference.

The third chapter emphasizes our interest for cycles as support of informa-

tion in recurrent neural networks. Actually, if those cycles are numerous, they

do not necessarily lead to dynamically observable properties. We then consider

populations of neurons and finally cliques (fully interconnected subsets of neu-

rons). The latter appear to be the perfect candidate for storing pieces of informa-

tion. A very simple and effective original associative memory, exploiting cliques,

is then analysed.

Chapter 4 introduces the notion of error correcting code through classic ex-

amples (repetition code, Hadamard code). Some important contributions of our

work are presented in this chapter, such as a result on optimal constant weight

codes and a completely original code that will be at the very foundation of the

model described in Chapter 5: clique-based codes. Then original neural error

correcting decoders are presented working on any code, yet with a large num-

ber of neurons. Finally, the Hopfield model is mixed with error correcting codes,

providing a very large increase of performance.

Chapter 5 finally introduces the main contribution of this thesis: sparse neu-

ral networks. Those networks present unprecedented performance with very in-

teresting biological plausibility. Various improvements are proposed, from the

consideration of correlated inputs to the construction of distributed sparse sub-

networks to get around performance limitations.

The different issues that are considered in each chapter are listed in the fol-

lowing list.

• Chapter 2: What are graphs? How can one model the neocortex? What are

artificial neural networks? What are Hopfield neural networks (HNN) and

what are their limitations?
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• Chapter 3: Why are cliques good candidates for the storage of pieces of infor-

mation in recurrent neural networks? How is it possible to associate pieces of

information with cliques? What is the performance of the obtained networks

compared to HNN?

• Chapter 4: What are error correcting codes? Is it possible to design efficient

easily decodable error correcting codes on graphs? Are neural networks able

to decode such codes? How can we mix efficient codes and associative mem-

ory to bypass the HNN limitations?

• Chapter 5: Why is adding sparsity a very good way to improve performance

of associative memories? Can we benefit from sparsity and error correcting

codes conjointly? What is the performance of the obtained networks with

respect to HNN? How can we improve furthermore performance in these net-

works?
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Graphs, biological and artificial neural
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In this chapter, graphs and associative memories are introduced. Those tools

will be at the basis of all the results presented in this document. The biological and

artificial neural networks are also discussed.

2.1 Graphs

Graphs were originally introduced by Euler in 1741 [3]. In this famous paper, he

proved one could not walk passing by every bridge of the city of Königsberg once

and only once. Such a path that contains every edge of a graph has since been

called Eulerian.

The formalism he introduced has since been largely studied, especially these

past decades. So much so that several domains such as computer science use it
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at every level, from the design of circuits to the research of winning strategies in

abstract games (for example, but not by chance [4]).

Yet the model is simple: a graph is a set of vertices - or nodes - connected

through edges - or connections. The latter can be weighted and/or directed, for

instance if they represent a distance map between cities in Brittany. Actually,

graphs can be arbitrary complicated to fit a specific domain of application.

Formally, a graph is a couple < V, δ >, where:

• V is the set of vertices,

• δ ⊂ V × V represents the set of edges.

This definition is the largest possible, in the sense that it covers any possible

elaboration of the model, and is equivalent to the definition of a mathematical

relation. An example of such a directed graph is that associated with the relation

≤ on integers, containing a non finite number of vertices and of edges.

If the graph is weighted, for instance over R, δ becomes a function w : V2 → R

which associates a weight with any edge.1

Some particular graphs are noteable, for instance a graph that contains no

connections - called an empty graph - or all the possible edges - called a complete

graph. For instance, the graph of euclidean distances between cities of Brittany

is a complete graph. Sometimes, a graph with all edges except for those between

the vertices and themselves - called loops - are also called complete graphs; this

convention would hold only if loops are nonsense.

Also, some graphs have the property that their set of vertices can be split into a

partition such that every subset contains no edges; these are called multipartite.

In this case, it is usual to specify (minimum) number of subsets when possible:

one could consider bipartite or tripartite graphs for instance. Figure 2.1 depicts a

bipartite graph with a typical representation: vertices are represented by circles

or squares, depending on their belonging to the first or to the second subset. As

it is a bipartite graph, there is no connection between two circles or two squares.

Note that by definition a bipartite graph cannot contain any loops. The graph

that models the associations between the cities of Brittany and their belonging

to any of the historical five departments is another example of a bipartite graph.

It is often useful to colour the graph, which means to provide it with a func-

tion C : V → C where C can be any set, which associates a colour with each

vertex. The colour can represent the measure of various concepts. For example,

the previous bipartite graph representing cities of Brittany and their belonging to

1In all cases considered in the sequel the absence of a connection is equivalent to the same
connection with weight 0, such that weighted graphs are a generalization of graphs.
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Figure 2.1: Example of a bipartite directed graph.

departments could be coloured by the population of cities. Colours can also be

introduced on connections, the weight being an example.

Many other aspects of graphs will be discussed later in this document, and

will be introduced when needed.

2.2 Biological neural networks

Neurons are specific types of cells found mainly, but not only, in the brain of

animals. They can be sensors or actuators, as well as devoted to memory func-

tionalities. Their connections materialize a network. Those are called synapses

and axons; they allow the transport of signals from one neuron to another using

spikes.

Impulses coming from neurons will either favour or inhibit the excitation of

other ones. If those excitations surpass some threshold, these are likely to fire.

When a neuron fires, it releases a fresh impulse through the outgoing axon. This

impulse will then supply synapses connected to other neurons.

Chemically speaking, this dynamic is explained by an electrical potential that

exists in neurons. A chemical reaction only occurs if this potential is sufficient.

If it does, the potential is reset to a lower value while the impulse is transmitted.

The neuron is not likely to transmit again soon after it fires, providing the neurons

with a relaxation time.

It seems that there exist a lot of types of neurons in the human brain [5],

having possibly different behaviours. A similarity in their functioning is that

they have the ability to aggregate their different inputs and to somehow combine

them into a global information signal.

The ability a man has to store and combine information is given by the prop-
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erties of his neocortex2. The human neocortex is a hull composed of six lay-

ers which cover the human brain. It has a particular organization of its neu-

rons in columns3. A typical human brain contains about half a million of micro-

columns, grouped into macro-columns, themselves grouped into hyper-columns.

Micro-columns contain about a hundred neurons each. The neocortex is known

to be devoted to some functions as language and conscious thoughts.

With this specific cognitive architecture comes a particular connection dis-

tribution. Those are very present locally, inside micro-columns and with close

ones. Distant connections are sparse. This distribution has been the source of

inspiration for a part of the scientific community, modelling it as a small world

network [6]. This consideration is however controversial.

Our idea is that it is not necessary to understand the extremely rich and com-

plex chemistry of the brain to propose biologically plausible models for the in-

formation storage principles. Actually, we began our work considering the neu-

rons as fundamentally “nodes in a graph”. This is not a bad idea according to

the medicine Nobel price Eric Kandel who wrote “Learning and memory cellu-

lar mechanisms do not reside in the specific properties of the neuron itself but

in the incident and outgoing connections it establishes with the other cells of

the neural circuit it belongs to”4. We discovered recently that the original net-

work, presented in Chapter 5, matches perfectly with how the functioning of the

neocortex is described by some neurologists. This functioning is described in [7]

where memory is linked to the notion of neural cliques, in [8] where sparse cod-

ing and time synchronization are used to represent pieces of information and

in [9] where the neural network is split into clusters where only the neuron with

the maximal activity has the ability to fire. This latter rule, introduced in the fol-

lowing subsection, is called winner-take-all.

2.2.1 The winner-take-all rule

A very important and recurrent rule found in the neurobiologic literature is the

winner-take-all ( [10,11]). It corresponds to a selection of the neuron (or the small

set of neurons) that achieves maximum activity in a given region of the neural

network.

2The name neocortex comes from the fact it is considered to be the latest contribution of evo-
lution to the brain.

3They are called columns as they are orthogonal to the layers of the neocortex.
4“Les mécanismes cellulaires de l’apprentissage et de la mémoire ne résident pas dans les pro-

priétés spécifiques du neurone lui-même, mais dans les connexions entrantes ou sortantes qu’il
établit avec les autres cellules du circuit nerveux auquel il appartient,” À la recherche de la mémoire,
Eric Kandel, Nobel prize of Physiology or Medicine, 2006
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This rule can be compared to an election in a democratic system. The candi-

date that achieves the most important score is the only one authorized to express

itself, as an echo to the (relative) majority.

Yet the neuroscience community is divided on the question of the implemen-

tation of this selection process. Some models consider a construction of this se-

lection using specific architectures of neurons [12]. Others attribute to glial cells

a crucial role in this selection process [13].

Figure 2.2 illustrates the functioning of this rule.

n1

n2

n3

n4

n5

n6

n1

n2

n3

n4

n5

n6

winner-take-all

Figure 2.2: Illustration of the winner-take-all rule. The filled partially filled rectangles
represent the activity level of the associated neurons.

2.2.2 Sparse coding

It is important to clarify the sparsity concepts that are going to be considered

in this document. We introduce sparsity at different levels in the neural net-

works [14].

The first level is that of information itself. Attentiveness is such that, at a pre-

cise time, the brain is focused on only a few primary elements of thoughts (which

have been estimated to be seven on average [15]). This means that among the

generous amount of information received at this time, only a small part of it will

be considered relevant and actually used.

Once in the neocortex, this information will address a restricted part of neu-

rons, most often in specific, specialized regions of the brain. This induces an-

other level of sparsity, which corresponds to the regions used at a specific time.

The winner-take-all rule introduces another level of sparsity, which is more

local, and finds a direct correspondence to precisely what biologists call sparse
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coding in the brain [16]. They present it as the fact that only a few neurons are

firing at a specific time.

Finally, a last level of sparsity is given by the network connections. It has been

estimated that the number of connections from a neuron in the human brain is

about 104. Compared to the number of neurons (≈ several 1010), this shows the

very low average density of the neocortex graph, which could be represented by

a sparse connection matrix.

It is not a surprise that sparsity is present at every level of the information

processing in the brain. Actually, sparsity has a direct analogy to energy minimi-

sation which is often a good explanation of the life strategies.

2.3 Artificial neural networks

If biology offers a large amount of literature on biological neural networks, com-

puter science has also proposed its share for artificial ones.

These models can be split into two categories. In the first category, the dy-

namics of the entire network is given by that of neurons, taken independently.

This means that the overall system can be seen as a cellular automaton. In the

second category, the dynamics of all neurons is set at once through a differential

(or iterative) system. The second model is obviously richer as it contains the first

one, the reciprocal predicate being false. On the other hand, considering high

order partial differential equations can result in intractability.

The main difference when considering a neural network rather than a graph

is that a time-based evolution will be considered. In the case of neural networks,

some values are time-dependent, such as the input/output of neurons. In the

sequel, this time (or iteration) will be denoted as an exponent t on any notation.

We point out that the notion of time which is introduced here is orthogonal

to that which may be contained in the processed information.

First category:

In the first category, neurons receive different inputs and produce an associ-

ated output. One can restrain this general model to the one of Figure 2.3, consid-

ering that the aggregation process is comparable to a sum of the different inputs.

Most often, the f function possesses a threshold σ such that when surpassed

the neuron fires (in the case of this static model, saying that the neuron fires

means that it becomes active). If we postulate that the output value is set to 0

when the neuron is inactive, and 1 otherwise, which will be considered true in
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Figure 2.3: Generic neural model used in this document.

the sequel, then the function f can be written as:

f(v) =

{
1 if v ≥ σ

0 otherwise

Actually, this writing captures a lot of neuron models frequently encountered

in the literature and will be adequate for all those presented in this document.

Neurons are then connected through an edged-coloured graph. An edge-

coloured graph is a tuple < V, w, C > where:

• V is the set of vertices (here: neurons),

• w : V × V → R is the edge function,

• C : V × V → Rs is a colour function on edges - and not on nodes.

The colour function associates some properties with each edge such as time

propagation or frequency filtering considerations. Except for a specific network

presented in the last chapter (5.3.2.2) of this document, the considered networks

will never need this colouring function.

Second category:

The other category of neural networks considers a higher level of neuron dy-

namics. An example in this category is the Kohonen model [17]. This model is

used mainly in classification and is thus provided with two phases: learning and

retrieving.

In the Kohonen model, neurons are connected according to an underlying

grid, in such a way that they describe a map. The functioning has two phases:

first, during the learning phase, weights are updated such that some regions of

the grid are made more responsive to the input that is currently presented to the
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Model Learning Retrieving
Perceptrons [18] Back-propagation [19] Feedforward

Hopfield neural networks
(and the original model

we propose in Chapter 5)
Feedforward Iterative

Boltzmann machines [20] Iterative Iterative

Table 2.1: Table of three popular neural networks models using different algorithms for
the learning and the retrieving phases. The type of the used algorithm for each phase is
indicated.

network. Then, during the retrieving phase, an input is presented to the net-

work and only the neuron that achieves the maximum activity is activated. This

behaviour corresponds to the winner-take-all rule previously introduced. The

learning also echoes to biological observations in the brain: namely Hebb’s rule5.

Actually, in classification and associative memories, many artificial neural

networks models use different algorithms for the learning and retrieving phase.

Table 2.1 gives some famous examples.

Those two models correspond to two distinct, but yet complementary, visions

of the brain. In the original network presented in Chapter 5, both aspects are

present.

2.4 Hopfield model

2.4.1 Associative memory state-of-the-art

Among all these models, Hopfield neural networks (HNN) [21] are the state-of-

the-art reference we will consider in associative memories. Actually, a lot of work

has been done since the introduction of this model but the efficiency (which is

introduced below) has not been increased.

An associative memory, or more precisely an autoassociative memory, is a de-

vice able to learn then retrieve a set of messages. The learning process is done in

perfect knowledge of messages whereas the retrieving one is assured in presence

of errors or erasures. More precisely, associative memories that are of interest

to the neuroscience community are those using a biologically plausible material;

basically a neural network. To ease the comparison of performance, most of the

models introduced in this document will consider binary messages. Yet some

5Hebb’s rule was published in 1949 as “The general idea is an old one, that any two cells or
systems of cells that are repeatedly active at the same time will tend to become ’associated’, so that
activity in one facilitates activity in the other.” Source: Wikipedia



2.4. Hopfield model 15

of them, as the sparse neural network presented in Chapter 5, could trivially be

adapted for any kind of messages.

If one is not concerned about plausibility, he can design an optimal associa-

tive memory. This device would just put every message it has to learn in a mem-

ory. Then, during the retrieving, it would compare every of those with the one

presented as its input and select one (or the one) that best matches it. Obviously

the complexity of such device is unrealistic, and this offers no biological plausi-

bility.

HNNs are fully interconnected neural networks, thus relying on a complete

graph, with no loops, and in which connections are weighted over Z. Formally, a

HNN is supported by a graphH =< n,w : [|1;n|]× [|1;n|]→ Z > where:

• n is the number of neurons, each neuron being associated with a unique

index,

• w : [|1;n|]2 → Z is the edge weight function.

Note that HNNs are bidirectional - or symmetric -, which means that ∀i,∀j ∈
[|1;n|], wij = wji. Moreover, HNN contain no loops: ∀i ∈ [|1;n|], wii = 0. The

number of connections in a HNN with n neurons is therefore
(
n

2

)
=

n(n− 1)

2
.

The model for n = 8 neurons is depicted in Figure 2.4.

i

j

wij

Figure 2.4: 8 node-Hopfield network model. All nodes are connected to each other
through a total of 28 bidirectional edges.

2.4.2 Learning and retrieving

There are two behaviours for the HNN dynamics corresponding to the two mod-

els described in the previous section. The first one considers that neurons are

updated asynchronously - that is independently and sequentially - an iteration
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being achieved when all neurons have been updated. In the second one, all neu-

rons are updated at once in a synchronous way. In both cases, HNN convergence

is assured through iterations. At iteration t, the value of the i-th neuron is given

by vti . Given initial conditions
(
v0i
)
1≤i≤n

, and if the update is asynchronous, each

iteration is then assured using the following rule:for i from 1 to n:vt+1
i =





1 if
n∑

j=1

wijv
t
j ≥ 0

−1 otherwise

(2.1)

Note that neuron values are binary and in {−1; 1}, with the exception of the

initialization where neurons values can be advantageously set to 0. This neutral

value would correspond to an erased unknown character. Note also that HNN

can be modified to use the alphabet {0; 1} instead with no impact on perfor-

mance. Those are not considered in the sequel.

The dynamics correspond globally to a matrix product, which ease some proofs

on convergence. In particular, bipartite HNNs always converge [22].

In order to enable the retrieving of randomly generated messages from part

of them, associative memories require the number of those messages to be rea-

sonable. If not, an erasure of part of a learned message would likely lead to a

retrieving ambiguity. This ambiguity would not be caused by the functioning of

the device but by the learning set itself and therefore would be inescapable. Let

us illustrate this with the following example: if an associative memory, treating

Latin alphabet messages, has learned messages “meat” and “meet” and is asked

to retrieve a message from “me*t” where “*” represents an erased character, there

is no a priori reason to choose one rather than the other.

An HNN with n neurons is able to learn binary messages of length n over

{−1; 1}. After the learning of M such messages d1 . . . dM , the weights are given

by the following formula:

∀i,∀j ∈ [|1;n|], wij =





M∑

m=1

dmi dmj if i 6= j

0 otherwise

(2.2)

This learning process implicitly requires each neuron to be associated with

a bit position in the messages. More precisely, the i-th neuron corresponds to

the i-th bits of the messages to learn. It is interesting to note that the learning of

a message or of its inverse would lead to the same effect on the network. Thus

one should say a HNN learns both the messages and their inverse. Note also that
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the connection between two neurons is increased if these have the same value,

which is compatible with Hebb’s rule.

The retrieval of a learned message dm is then assured using the dynamic rule

(2.1): a distorted message is presented as an input6 of the network, with values

0 where bits have been erased. Then the system iterates until reaching a fixed

point, that is to say an iteration t+1 such that ∀i ∈ [|1;n|], vt+1
i = vti . The obtained

persistent values are then mapped reciprocally to a message to read the output

decision of the network.

2.4.3 Performance and limitations

A measure of performance of a HNN is to compute the message retrieval error

rate as a function of the amount of data erased in the input. Anyway, this does not

take into account the number of iterations needed, which is also an important

characteristic as far as biological plausibility is concerned.

The number of messages a Hopfield network can learn and retrieve with a

good retrieving probability is limited. We call this parameter, usually named ca-

pacity in the literature, the diversity in order to fit with the information theory

terminology. An upper-bound has already been expressed in [23] as:

Mmax(n) =
n

2 log(n) (2.3)

This is a very restrictive upper-bound (by comparison, a network with a single

neuron associated with each message to learn through the connections it share

with some input neurons would present a better diversity, that is n).

Figure 2.5 depicts the performance measured on HNN for various numbers of

learned messages and for n = 150. The corresponding bound is Mmax(150) ≈ 30.

This performance is measured and displayed using two parameters. The first

one is the message error rate (MER), that is to say the measured probability for a

learned message with some erased bits not to be retrieved correctly. The second

one is the bit error rate (BER), corresponding to the measured probability for

a bit in such a message not to be successfully retrieved. Note that the BER is

close to 0.5 when the input erasure rate is 1 since it is the probability to guess a

uniformly randomly chosen bit. This figure shows that, even without erasure at

the input, a number of learned messages less than Mmax(150) leads to non-ideal

performance.

6The input of the network is the initial values of neurons.
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Figure 2.5: Performance in terms of MER (message error rate) and BER (bit error rate)
of a HNN with n = 150 neurons and 3 different quantities of messages learned (M ) as a
function of the ratio of erased bits in the inputs.

Moreover, the length of messages must be equal to the size of the network.

It is therefore impossible to learn many short messages on such networks.

As Hopfield networks with n neurons learn binary messages of length n, (2.3)

states that the total amount of binary data learned, called the capacity, is bounded

by:

Cmax(n) =
n2

2 log(n) (2.4)

This equation is not really surprising as HNN are learning messages on con-

nections and those are growing quadratically with the size of the network (n).

Given a HNN after the learning of M messages, one can easily derive from

Equation (2.2) that the connection values are in {2m −M, 0 ≤ m ≤ M} and can

therefore be encoded over ⌈log2(M + 1)⌉ bits. A HNN with n neurons contains
n(n− 1)

2
such connections. So the memory used by a HNN with n neurons after

the learning of Mmax(n) messages is:

Qmax
used(n) ≈

n(n− 1) log2(Mmax(n) + 1)

2
(2.5)
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The efficiency is then obtained by comparing the amount of learned data with

the total amount of memory used with still retrieving capabilities. For the HNN,

it is expressed by the following formula:

E(n) =
Cmax(n)

Qmax
used(n)

≈ 1

log(n) log2(
n

log(n))
(2.6)

Note that this efficiency tends to 0 as the number of neurons tends to infinity.

This limitation is due to two factors: the edge weights that are growing with the

number of learned messages, and the loss in efficiency of the retrieving process

as the network size increases. This limitation is problematic as a HNN must con-

tain a large number of neurons to learn many messages. Note that some previous

works have shown it is possible to increase the diversity of HNN; those never-

theless require a larger amount of information used and do not lead to a better

efficiency than the HNN [20, 24]. Note also that the HNN weights are likely to

be close to 0 after the learning of many messages. Yet it is not possible to prune

weights as in some other neural networks targeting classification [25] without the

cost of a large decrease in performance.

Note that the notion of efficiency can be tricky. At first sight, it seems to be

upper-bounded by 1. Actually it can be larger than 1 in some cases as it

does not consider the ordering of messages (learning m messages of 1 bit is

different for instance from learning a single message of m bits).

To illustrate this property, let us consider the following toy example: the learn-

ing of M randomly generated messages of 1 bit. As we do not consider order-

ing, there are only four possibilities after such a learning: either no message has

been learned, or just message “0” has been learned, or just message “1” has been

learned or both messages “1” and “0” have been learned. Thus we can simply en-

code the result on two bits (for instance one bit to encode whether the message

0 has been learned or not and one bit to encode whether the message 1 has been

learned or not). The efficiency of this encoding is:

E(m) =
M

2
(2.7)

It is clearly possible to make this particular efficiency arbitrarily large. One could

object that this result comes from the fact some messages are learned a large

number of times. Actually a learning device could benefit from this non-ordering

aspect even if all messages are distinct one from another. Consider the example
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in Appendix A for more details.

More precisely, there exists a link between the number of learned messages,

their size, and the optimal efficiency. As given by the previous example, one can

easily show that if the number of messages is large compared to two to the power

of their size, the efficiency can be made arbitrary large. On the other hand, con-

sidering a single message of size n, obtained with an i.i.d. variable, the efficiency

is limited to one (universal source compression).

One can figure out a pretty good approximation of the optimal efficiency con-

sidering the following construction. A set of ordered messages can be obtained

from a set of unordered ones if their relative address is encoded directly inside

them. Considering M messages, this requires adding up to log2(M) bits to each

message. Thus, given n and M , an upper-bound on efficiency is:

Emax(n,M) =
n+ log2(M)

n

This is an approximation of the optimal efficiency as one could find a better

way to retrieve order from messages. However, some results presented in this

document are very close to this bound, showing its quality. Figure 2.6 depicts

this bound for different values of m and n.
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Another drawback of the HNN is that with its size n grows the number of
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iterations needed for each retrieval. In the case of an asynchronous network,

this number of iterations is unreasonable (up to several hundreds for a network

with several hundreds of neurons). Figures 2.7 and 2.8 depict the evolution of the

number of iterations in case of respectively an asynchronous and a synchronous

HNN, as a function of the number of learned messages for various learning set

sizes. We can see that random input messages also eventually converge but re-

quire a larger number of iterations.
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Figure 2.7: Average iterations of a asynchronous HNN with n = 150 neurons and 3 dif-
ferent numbers M of learned messages.

In conclusion, HNNs propose a simple way to learn and retrieve messages

using a neural implementation. However, their efficiency tends to 0 as their size

grows and the number of messages they can learn is sub-linear. The next chap-

ters will present how to combine neural networks and error correcting codes to

transcend these limitations.

In this chapter, we have introduced different tools: graphs and associative mem-

ories. We saw that the performance of the latter is limited in the case of the HNN:

both diversity and capacity are far from being optimal, not to mention the lack of

biological plausibility of the architecture.
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The notions of diversity, capacity and efficiency are going to be at the very heart

of all comparisons in this document. Moreover, we proved that efficiency can sur-

pass the value of 1, giving a harder challenge for models being introduced in the

next chapters.
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There are two families of neural networks: the feedforward and the recurrent

ones. The former have been particularly studied as they are more suitable for a

mathematical analysis. On the other hand, distributed codes, which we are going

to introduce into neural networks in the next chapter, rely on recurrent graphs.

In this chapter, we present different candidates for the support of information

in recurrent neural networks. We then present how to use cliques to build associa-

tive memories more efficient than HNNs.

3.1 Recurrent networks

3.1.1 Cycles, populations and cliques
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3.1.1.1 Cycles

An essential notion discussed in this document is that of a cycle. Cycles in graphs

are paths such that the starting and finishing points are the same. If the graph

is bidirectional, these paths should not use the same edge twice (in particular

cycles in bidirectional graphs contain at least three edges).

More formally, let us consider a graph < V, w >. We recall that V is the set

of vertices and w the weight function over the edges. A path in this graph is a

sequence [v1; v2; . . . ; vl] such that ∀1 ≤ i < l, wvivi+1 6= 0, that is to say a sequence

of vertices such that each one is connected to the next one. A cycle is a path

[v1; v2; . . . ; vl] such that vl = v1. Let us point out that if [v1; v2; . . . ; vl] is a cycle,

then ∀d ∈ [|1; l − 1|], [v1+d (mod l); v2+d (mod l); . . . ; vl+d (mod l)] is also a cycle. To

avoid any ambiguity, this set of cyclic permutations of cycles will be considered

to be an unique one. In other terms, cycles have neither starting nor ending ver-

tices.

Figure 3.1 shows an example of a cycle in a directed graph. Note that this

would remain a cycle if the graph was bidirectional.

Figure 3.1: Example of a directed graph containing several cycles. One of them is em-
phasized using bold connections.

An elementary cycle is one that does not contain any sub-cycle with the ex-

ception of itself and the empty cycle. This means that it does not contain the

same vertex twice. Note that this definition is reminiscent of prime numbers.

Moreover, any cycle can be decomposed in a unique way as a list of elementary

cycles.

Let us insist that the cycles entities are defined without consideration for

weights.1

In a fully interconnected graph (complete graph) with n vertices, it seems at

first glance that there are as many cycles of length l (containing l vertices) as tu-

ples of vertices of length l, that is
n!

(n− l)!
.

1This means that two graphs < V, w1 > and < V, w2 > share the same cycles if ∀v1, v2 ∈
V, w1(v1, v2) = 0 ⇔ w2(v1, v2) = 0.
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Actually, some cycles are counted several times. By removing these dupli-

cates, the number becomes:

Cn
l =

n!

l(n− l)!
(3.1)

This leads to the maximum numberBc(n) of elementary cycles (of any length)

in a graph of n vertices:

Bc(n) =
n∑

l=2

n!

l(n− l)!
(3.2)

Obviously, this number is astronomically large. For instance, a graph with

n = 100 vertices may contain more than 10150 distinct cycles.

However, thus far, cycles represent static properties. According to the model

considered, a cycle will not necessarily have a predictable temporal be-

haviour such as for instance an infinite recurring activity on it. Moreover,

cycles are not resilient entities: the loss of a single vertex can result in the

loss of the entire cycle. Finally, in most models the dynamic activity of a

cycle is reduced, at a given time, to that of one of its neurons. Thus in-

tertwined cycles would likely complicate the retrieval of stored pieces of

information.

In order to efficiently store pieces of information into our networks, we will

consider another grouping entity: populations of neurons.

3.1.1.2 Populations

Let us define a population of neurons as a set of neurons that activate infinitely

often given a certain impulse on the network. Let us point out that contrary to

the definition of cycles, this is a non-static one.

This terminology of populations is found in the neurobiological literature [26–

28], where populations of neurons are sets of neurons that activate at the same

time - one could also use the term population coding. It is most of the time asso-

ciated with the notion of synchronisation.

In realistic models, there exists a link between populations and cycles. More

precisely, let us make the assumption that a neuron does not activate infinitely

often if its inputs surpasses the threshold just once. Then the following theorem

stands:

Theorem 3.1.1 A cycle-free graph has no population of neurons.
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Indeed, one can prove this by contradiction: if a temporary input produces an

infinite activation of a neuron then this neuron receives inputs infinitely often.

This means that there exists a neuron connected to it which also activates in-

finitely often. As there are a finite number of neurons, one will eventually loop

back to a previously considered neuron by iterating this principle, building a cy-

cle in the graph. 2

However, the notion of population is defined on temporal activities and their

characterization can turn difficult. Actually, even minimalist models for neural

networks may lead to chaotic behaviors, preventing any simulated way to find

them. Yet populations can be fairly accurately inventoried through simulation,

contrary to cycles.

There may be as many populations as there are subsets of neurons in the

graph, that is to say 2n, which is still astronomically large. Nevertheless, actual

simulations with random neural networks based on physical observations lead

to a much more smaller number.

Figure 3.2 shows the evolution of the number of estimated populations in a

randomly generated typical neural network as a function of a parameter T . This

parameter is the number of times a neuron has to activate to be considered as be-

ing part of a population. Thus, the quality of the approximation of populations

increases with T . Neurons are randomly generated using parameters that fit bi-

ological observations: they have multiple characteristics such as relaxation time

about 10−3s, exponentially decreasing outputs, various thresholds, a proportion

of 20% of inhibitive neurons (which harden the activation of others). Twelve of

them are input neurons which are initially activated or not. The network is based

on a small-world construction and coloured by time propagations according to

an euclidean distance, weights and directionality. A neuron is considered to be

part of a given population if the number of times it switch as activated is more

than T . The populations are computed this way for all possible inputs and the

figure draws the number of different outputs thus obtained. For instance, for

a number of times equal to 100, it shows that among the 4096 possible inputs,

about 500 different populations were observed. After a reasonable simulation

time estimated populations seem to converge to a few ones. Note that the curve

is not decreasing with T since it does not represent the number of neurons that

are part of populations but the number of populations with no consideration for

their size.

However, the number of measured populations is dramatically smaller than

expected. This phenomenon can be eventually explained: each population relies

on a kind of a self-persistent engine. This engine is based on a recurrent entity,
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which is self-providing. As those engines are self-persistent, they are likely to

be disjoint. If not, the activation of one would lead to the activation of another

every time, making them indistinguishable. In such conditions, there can only

be a sub-linear number of populations.

Thus, populations and cycles are too difficult to control. In order to store

information in neural networks, we will have to consider more efficient

and controllable entities.

3.1.1.3 Cliques

One can refine the notion of cycle by considering cliques. A clique in a graph

is a set of vertices such that each one is connected to each other. Due to this

definition, it is much simpler to consider a symmetric graph, meaning that if

there exists a connection from vertex n1 to vertex n2, a connection with the same

properties links vertex n2 to vertex n1. Figure 3.3 draws an example of a clique in

a symmetric graph.

Characterizing cliques is much simpler than characterizing cycles. This as-
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n1n2

n3

n4

n5

n6

Figure 3.3: Example of a clique in a graph. The clique is characterized by the bold con-
nections.

pect will be described in section 3.3.1.1. Obviously, the maximum number of

cliques in a graph with n nodes is 2n, corresponding to each subset of neurons.

Note that a clique defines Bc(l) cycles since the sub-graph containing only

this clique is complete.

Finally, one could insist that a clique is a strong entity, which means that any

subset of nodes of a clique defines another clique. A clique that is not a sub-

clique of a bigger one will be called a maximal clique.

Thus cliques define different groupings of neurons in a neural network.

The number of cliques in a graph can be astronomically large. Moreover,

as we will detail this in Chapter 5.1, they give very redundant and resilient

properties to the network, making them good candidates to store pieces of

information in a neural network.

3.2 Importance of cycles

Cycles, through cliques, are excellent candidates for the storage of information.

The question addressed in this section is: reciprocally, does an efficient network

requires cycles? We show that a neural network without cycles (and therefore

without populations nor cliques) would not be reasonable as far as computing

aspects are concerned.

Considering a computational neural network, there are two reasons why cy-

cles have to be introduced. The first one is related to computing aspects: there

must be regions in the networks associated with the semantic of the while op-
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erator of common programming languages. The second one is associated with

the variables manipulated by the program. Indeed, if a variable is manipulated

by the program then it is likely to be accessed and modified at several steps of

the program. Two cases are then possible: either the location of a variable is at

most used once, meaning that the program needs linear space as a function of

the number of times a variable is accessed, or there is a cycle in the network.

But is there a way to produce an effective computational neural network with-

out cycles?

Let us consider a program trying to find a language known to be of NP-
omplete
complexity. And let us make the conventional assumption that NP 6= P. If the neu-

ral network obtained to simulate this program does not contain any cycles, then

each neuron will be visited at most once. So, if we use another Turing machine to

simulate this obtained network, the complexity, in terms of number of elemen-

tary operations, will not exceed the number of neurons (probably multiplied by

a constant factor). As the problem is known to be in NP, the number of neurons is

at least growing exponentially with the entry of the program.

This means that a neural network as considered in this section requires an

exponential number of neurons to solve NP-
omplete problems if no cycles are

allowed.

Thus, it appears reasonable to make the hypothesis that high order neu-

ral networks (able to store and use pieces of information) should contain

cycles. Added to the fact that cycles are a very interesting candidate for

storing pieces of information, this result gives the tone of the rest of this

document: how is-it possible to use cycles to store more pieces of informa-

tion in neural networks?

3.3 Designing networks from virtual cliques

In this section, we introduce an original way to design neural networks from vir-

tual cliques. Later, in Chapter 5, we will see how to use real cliques as support of

information in neural networks.

3.3.1 Bipartite association
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3.3.1.1 Model

We want to associate pieces of information with cliques in neural networks. To

achieve this, let us project neural networks onto another graph where cliques are

modelled as nodes.

Consider a symmetric bipartite graph G =< (V1 ∪ V2), w > where:

• V1 and V2 are two disjoint sets of vertices,

• w : V1 × V2 → Z is an edge weight function.

The graph is coloured using a threshold function T : V1 ∪ V2 → Z.

The dynamic function fn for node n, as defined in Figure 2.3, is set to:

fn : v →
{

1 if v ≥ T (n)

0 otherwise

This means that a node will dynamically be activated if the sum of its input

surpasses its threshold.

Applied to our abstract representation of cliques in neural networks, one can

map set V1 to neurons and set V2 to the cliques in the same network. With this

association, an impulse on the network will activate several cliques. After a few

iterations, it will eventually reach a fixed point. If one can associate messages

with cliques, then this fixed point would be the learned message corresponding

to the impulse. Let us call such a network a clique-node network.

Let us denote nt and ct the binary vectors representing respectively the state

of the neurons in V1 and V2 at step t. n0 is the impulse of the network, that is to

say the neurons originally activated. Formally, given an impulse the dynamic of

the network is defined as:

1. ∀j ∈ V2, ct+1
j ← fj(

∑

i∈V1

nt+1
i w(i, j))

2. ∀i ∈ V1, nt+1
i ← fi(

∑

j∈V2

ctjw(i, j))

Figure 3.4 represents a bipartite graph associated with the graph depicted in

Figure 3.3. Three maximal cliques have been identified. One may note that, more

generally, with any graph can be associated a unique clique-node network, where

only its maximal cliques are represented.

3.3.1.2 Performance

Theorem 3.3.1 Given a bipartite network as previously described and an impulse,

the network will eventually converge to a fixed point.
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n1 n2 n3 n4 n5 n6

c1 c2 c3

Figure 3.4: Bipartite graph representing the association between maximal cliques and
nodes of the graph depicted in Figure 3.3. Cliques are squares and nodes are circles.

Proof A first result is that the network will eventually reach a state from which

it will always loop back to it (such a state is called an attractor in non linear dy-

namic systems theory). Indeed, there are only a finite number of different states

in the network and therefore after an infinite number of iterations, some will be

encountered infinitely often. Moreover, as the state of the system only depends

on the previous one (memoryless system), the sequence of states between two

consecutive occurrences of such state will also be the same.

Finally, the network diminishes the value of ctW T
v
t where Wij = w(i, j) at

each step. As this value is specific to a given state of the network, it necessarily

eventually reach a fixed point. 2

Figure 3.5 depicts an example of a network which stores eight different mes-

sages. These messages have moreover good separability as they can be retrieved

in case of two erasures in the impulse.

n1 n2 n3 n4 n5 n6 n7

c1 c2 c3 c4 c5

Figure 3.5: Example of a clique-node network with 7 neurons and 5 cliques. This network
recognizes 8 different messages and retrieves the closest one in case of two erasures.
Note that, as the network contains 5 cliques, it could have recognized up to a maximum
of 25 = 32 different messages. Full lines represents weight 1 and dashed ones weight -1.
All thresholds for neurons are set to 1 whereas they are set to 2 for cliques.

3.3.1.3 Learning

Let us suppose that one wants to design a clique-node network able to learn m

binary messages d1, . . . ,dm of length k:
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Let < V1,V2, w > be a clique-node network such that V1 contains k elements,

V2 contains m elements and w is defined by:

w(vi, cj) =

{
1 if dj i = 1

0 otherwise

That is to say that one clique is associated per message and is connected to

the neurons accordingly to the bits of the message. Thresholds can then be ad-

justed depending on the targeted application. In particular, if thresholds are set

to m and k respectively for neurons and cliques the network realizes a go no-go

sort.

So, a network with k neurons and m cliques can learn and retrieve up to

m messages of length k.

Figure 3.6 shows the comparison between the HNN and the bipartite model

for the same amount of data learned. Note that the bipartite model contains only

binary connections and these are much less than in HNN.
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Figure 3.6: Comparison between the HNN and the bipartite model performance for the
same amount of data learned. The bipartite model contains many fewer connections
(approximatively 7.5 times fewer) and those are binary. Both the MER (message retrieval
error rate) and the BER (bit error rate) are depicted.
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This model is thus able to learn a linear number of messages, which is

slightly better than the Hopfield one. Moreover, it dissociates the length

of messages from the size of the network, making it useful for many more

applications.

However, that is still disappointing compared to the number of possible cliques

in a graph. To exploit a higher potential of cliques in the neural networks, one

must find a way to control their interactions.

We have shown in this chapter that cliques are very interesting candidates to store

pieces of information in neural networks. Moreover, cycles are necessary compo-

nents of them as far as computability is concerned. The question remains on how

to design such devices. From what we have seen so far, we should try to use en-

twined cliques, with some limitation since we want to keep control over them.
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There is one domain that has made its speciality of the retrieval of partially

erased or erroneous messages: error correcting coding. This field has known an

important breakthrough in 1993 with the introduction of turbo codes by Claude

Berrou and Alain Glavieux [29] and later with the rediscovery [30] of LDPC codes

[31]. Since then, distributive coding has been the center of interest for many scien-

tists of the community. In this chapter, we introduce the notion of error correcting

codes. We present some original contributions: the clique code, and an optimal

construction for constant weight code that will be used in Chapter 5.

We then present a novel way to decode any error correcting code using a large

number of neurons. Finally we present an original way to use these codes to in-

crease the performance of associative memories tenfold using both orthogonal codes

and HNNs.

4.1 Introduction to error correcting codes

A classic approach to error correcting codes is to consider them as a function

that adds redundancy to initial messages in order to protect them during their

transport to a destination. The image of such a message is called a codeword.

An example of a trivial code is the repetition code, which is defined through

the function:

C :
A∗ → A∗

m 7→ mm

Elements in the alphabetA are called symbols, andA∗ is the set of messages

made of symbols in A.1 Note that, in almost all examples presented in this doc-

ument, the length k of initial messages is unique as well as the length n of code-

words. In other words, codes will be specified by a function:

C : Ak → An

The obtained codewords are then transmitted via a channel, which is charac-

terized by a random function ˜: A∗ → B∗. Note that the channel function may

change the alphabet: a typical example is when a binary codeword is transmitted

into a Gaussian channel (In such case,A = {0; 1} for instance and B = R).

1We borrow this notation from language theory.
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The channel function usually alters the codewords it receives by adding errors

or erasures. Later in the section, Bwill typically be eitherA in case of errors (some

symbols are transformed to others) or A ∪ {⊥} where ⊥ 6∈ A denotes an erased

character.

A code will be said to be adapted to ˜ if it is such that one is likely able to

retrieve the initial message m given the altered codeword C̃(m). In that sense,

the previously defined repetition code is not strictly speaking an error correcting

code since an ambiguity will result if the channel function changes any single

symbol of a codeword (that is: adds an error). Nevertheless, if one considers

the function that adds twice the message as redundancy, such errors could be

corrected: the double repetition code is an error correcting code.

Figure 4.1 depicts this principle. An initial message (the square on the top)

is transformed adding redundancy to it (dashed). Both are transmitted through

a transmission channel such that the received signal has been deformed. The

decoding process will then try to identify the most likely transmitted codeword,

and then hopefully retrieve the initial message.

Adding redundancy

Transmission channel

Finding the most likely emitted codeword

Retrieving the initial message

Figure 4.1: Representation of the coding/decoding principle. Redundancy is added
(dashed) to an initial message such that even if both are altered through a transmission
channel, one will likely be able to retrieve the message.

A more general approach to codes is as follows. The codewords of a code C
are any subset ofA∗. Thus, contrary to the previous definition, we do not need to

have an explicit function to associate codewords with input messages.

In all cases, one must introduce a topology to perform the decoding, that is to

say introduce a metric that can measure the proximity between messages. Con-

sidering codewords are all of the same length n, let us define such a metric onAn
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as:

∀v1, v2 ∈ An, dh(v1, v2) =
n−1∑

i=0

v1i <> v2i

where v1i <> v2i =

{
1 if v1i 6= v2i

0 otherwise

This metric, which counts the number of distinct symbols between two mes-

sages, is called the Hamming distance. The Hamming distance represents some

kind of separability between messages: a high distance between two messages

means that they are very different whereas a distance zero means that they are

identical. Note that as a metric, dh also verifies the triangle inequality and the

symmetry properties.

In many cases, the channel function is such that the most likely transmitted

codeword is the closest one, according to the metric dh, to the received message.

In other cases, it is usual to adapt the definition of the distance to hold this

property.

4.1.1 Linear codes

Linear codes are a particular family of codes with handy properties.

Let us consider (A,+, ·) to be a K-linear space, K being a field. Then let us

denote by 0 the neutral element of + and endow An with + and · . A linear code

C over (An,+, ·) is a linear subspace of An, that is to say: ∀c1, c2 ∈ C,∀λ, µ ∈
K, λ · c1 + µ · c2 ∈ C. In particular, 0n (denoting the vector that contains n zeros)

is in C. The dimension of the subspace is denoted k. This means that the code is

entirely determined given k linearly independent messages in it.

One can define the weight w(m) of a message m as the number of its coordi-

nates which are non zero:

∀m ∈ An, w(m) =

n−1∑

i=0

mi <> 0

As for any messages m1,m2 in An, it holds that m1 = m2 ⇔ (m1 − m2) = 0,

one can relate weights to the Hamming distance:

∀m1,m2 ∈ An, dh(m1,m2) = w(m1 −m2)

4.1.2 Minimum Hamming distance

A characteristic of prime interest of a code, whether or not linear, is its minimum

distance, that is to say the minimum Hamming distance between two distinct
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codewords. This distance is directly related to the maximum number of errors

the channel function may add such that there is no ambiguity in retrieving the

initial codeword.

Formally, the minimum distance of a code C is:

dmin(C) = min
ci,cj∈C,ci 6=cj

dh(ci, cj)

Consequently to the previous remarks, and if C is a linear code, this minimum

distance can also be written as:

dmin(C) = min
c∈C,c 6∈0∗

w(c)

The maximum number of errors emax that can be corrected on any codeword,

given an infinite computing capacity, is obtained from the minimum distance:

emax =

⌊
dmin − 1

2

⌋

Also, such a code can correct dmin − 1 erasures.

In realistic cases, the channel function is such that the most likely transmit-

ted codeword ct is the closest to the received one m̃ according to the Hamming

distance:

ct ∈ argmin
c∈C

(dh(c, m̃)) (4.1)

A function that associates a message in C with the received message according

to Equation (4.1) is called a Maximum Likelihood (ML) decoder. Thus, an imme-

diate way to build a ML decoder of code C is to compute the distance between

every element of C and a received message and then to pick the one (or one of

those) that achieves the minimum distance. If several messages are as close as

others to the received one, a soft ML decoder would make a more subtle decision

than to chose one among them. For instance, it can erase the symbols where

there exist a contradiction among the different candidates.

As it is sometimes too complex to implement a ML decoder, one can consider

using an approximation. A decoder is basically a function that associates a code-

word in C with any received message m̃. Of course, the performance of a decoder

is to be compared to that of the associated ML decoder. The more similar the two

functions are, the more efficient the approximate decoder is.

It raises too many questions to propose a channel function model for the

brain as far as biological plausibility is concerned. In order to be comparable

with the HNN, we will only consider very simple ones. These functions mod-
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ify symbols of codewords independently (those channels are called memoryless

as they do not depend on what has been previously done). In this section, the

modification on symbols will be considered either to be coherent with a sym-

metric channel as depicted in Figure 4.2 or with an erasure channel as depicted

in Figure 4.3. Note that both are such that decoding according to the minimum

distance criterion gives the most likely transmitted message.

a1

a2

an

a1

a2

an
1− (n− 1)p

p

Figure 4.2: Model of the symmetric channel. Dashed transitions represent a unique
probability p and straight lines a probability 1 − (n − 1)p. Moreover 1 − (n − 1)p ≥ 0.5
which means it is more likely that a symbol will not be altered.

a1

a2

an

a1

a2

an

⊥

1− p

p

Figure 4.3: Model of the erasure channel. Dashed transitions represent a unique proba-
bility p and straight lines a probability 1− p. Moreover 1− p ≥ 0.5 so it is more likely that
a symbol will not be erased.
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4.1.3 Merit factor

To estimate the efficiency of a code, one has to compare the amount of redun-

dancy with the correction capability it offers. Without considering this trade-off,

it would be immediate and trivial to propose codes with arbitrary large minimum

distance.

For instance the repetition code previously defined is not very efficient as its

minimum Hamming distance is only 2, which means that it cannot correct any

error, while it doubles the size of messages.

A typical example of good code is the extended Hamming code (n = 8, k = 4

and dmin = 4). This binary code is defined as follows:

C(m) :
{0; 1}4 → {0; 1}8

m1m2m3m4 7→ m1m2m3m4r1r2r3r4

where mi is the i-th bit in m and:

rj = mj +

4∑

i=1

mi (mod 2)

It is trivial to show that the minimum distance of this code is 4, which is also

the number of bits added as redundancy.

More generally, a good trade-off is to offer a large correcting ability despite a

relatively low redundancy. In order to estimate the redundancy added, we intro-

duce the rate rC of a code C ⊂ An as:

rC =
log#A(#C)

n

A rate value close to 0 corresponds to a lot of added redundancy whereas a

value of 1 is obtained when no redundancy has been added.

The merit factor F of a code C is defined as the product of its rate and of its

minimum Hamming distance. It has been shown that it has to be greater than

one to be interesting in telecommunication applications.

The extended Hamming code previously introduced is such that F = 2, the

repetition code only achieves F = 1.

4.2 Examples
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4.2.1 Hadamard codes

For this subsection, let us set A to be the binary alphabet over {−1; 1}. One can

define a recursive family of codes CH(k) on An with n = 2k using the following

definition:

CH(1) =

(
1 1

1 −1

)

CH(k + 1) = CH(1)⊗ CH(k)

where⊗ denotes the Kronecker product:

∀A ∈Ma,b,∀B ∈Ma′,b′ , A⊗B =




a1,1B . . . a1,bB
...

. . .
...

aa,1B . . . aa,bB




Thus, the recursive formula of CH can be rewriten as:

CH(2n) =

(
CH(n) CH(n)

CH(n) −CH(n)

)

The code of length n is then made of the lines of CH(k) and will be mingled

with this matrix. This family forms the Hadamard codes. They have interesting

properties: for instance, one can prove by induction that CH(k) has minimum

Hamming distance n
2 .

Moreover, they present orthogonal properties. Let us endowAn with the sum

and product over R. One can define the euclidean scalar product as:

∀m1,m2 ∈ An, < m1,m2 >=
n∑

i=1

m1im2i

Given this scalar product, one can easily shows once again by induction that

the family CH(n) is orthogonal, which means that:

∀c1, c2 ∈ CH(k), c1 6= c2 ⇒< c1, c2 >= 0

Moreover, the rate of the code CH(k) is:

rCH (k) =
k

n
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which leads to a merit factor:

F =
k

2
=

log2(n)

2

4.2.2 Constant weight codes

Another singular family of codes are the constant weight codes [32]. For better

readability, we will only introduce binary constant weight codes. A binary con-

stant weight code of length n, weight w and overlapping r is a code Ccw(n,w, r)

such that every codeword is a binary (over {0; 1}) message of length n, containing

exactly w “1”s, and such that two distinct codewords cannot share more than r

“1”s at the same locations.

Note that due to the structure of the code, the Hamming distance between

two codewords is necessarily even. Moreover, the constraints of the codes force

the minimum Hamming distance to be larger than d = max(2(w − r), 0).

4.2.2.1 Weight one

A very particular subfamily of such codes is the one with weight w = 1. As a direct

consequence, the parameter r is useless.

To obtain the best merit factor, constant weight codes with w = 1 must con-

sider all the possible messages (as it increases the rate of the code). For instance,

with length n = 3 and weight w = 1, the optimal binary constant weight code, as

far as the merit factor is concerned, is {100, 010, 001}.
Those codes are obviously not efficient, offering a factor merit F = 2 log2(n)

n
.

On the other hand, they are in most cases ML decodable with a low computing

complexity.

Consider for instance that the channel function adds a positive random value

to each bit of the codeword. Formally, the channel function is such that ˜: c 7→
m where ∀i,mi = ci + X, X being an i.i.d. random variable. The most likely

transmitted codeword is then the one with its “1”s where the received message

has its largest value. Figure 4.4 depicts this process. Among all the values, only

the one reaching the maximum is kept.

This decoding corresponds exactly to the winner-take-all rule previously

introduced.
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Figure 4.4: A representation of the principle of the constant weight code decoding with
w = 1.

4.2.2.2 Overlapping one

A more general case is when r = 1 which means that two words cannot share

more than a single “1” at the same location. It is possible to find an upper-bound

on the number of codewords such a code can contain. This upper-bound is given

by:

U b

C
(
cwn,w,1)

=
n(n− 1)

w(w − 1)
(4.1)

Moreover, if w is a prime number, and if ∃p, n = kp, this upper-bound can

be achieved by some codes. See Appendix B for more details.

4.2.3 Cliques

A last example of error correcting codes is the c-clique code. We introduce this

code as it will be at the very foundation of the sparse network introduced in

Chapter 5. This is one of the main contributions of our work.

Let us consider a complete graph with n vertices and no loops. This graph

defines a code which consists of every c-clique in it.

We first point out that this code can be seen as a particular constant-weight

code. Indeed, let us suppose that connections are indexed from 1 to Nc =
n(n−1)

2 .

Any c-clique is made of Sc =
c(c−1)

2 distinct connections, and therefore can be en-

coded as a codeword of length Nc and of weight Sc containing “1” at the locations

corresponding to its connections. However, this choice of representation would

lead to a very low code rate and therefore a very low merit factor. A more effi-

cient representation, with the same minimum Hamming distance, is developed

thereafter.

In this graph, a clique can be uniquely identified given ⌈ c2⌉2 distinct well cho-

sen connections (in such a way that every vertex of the clique is specified by one

2⌈x⌉ denotes the smallest integer greater than or equal to x.
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Figure 4.5: Example of a clique with 6 vertices that can be uniquely identified given only
3 connections (in bold). The clique is composed of a total of 15 connections.

connection: see Figure 4.5). If the number of vertices n is large enough, there is

not much of a difference between considering distinct connections or not. More-

over, if c is small, there is also not much of a difference between considering or-

dering connections or not and thus the number of c-cliques in a graph can be

approximated by N
⌈ c
2
⌉

c .3

To represent a clique, we can simply consider a codeword of length Sc which

contain all the connections of the clique. Still with the hypothesis that n is large

enough and c is small, this leads to the fact that c-cliques can be encoded over

log2
(
NSc

c

)
bits (which is in good cases much less than the Nc bits of the constant

weight representation).

Thus, the rate of the c-clique-code is approximated as:

rcliques ≈
log2(N

⌈ c
2
⌉

c )

log2

(
NSc

c

) ≈ 1

c− 1
(4.2)

Moreover, the minimum distance (in terms of the number of connections) be-

tween two cliques is reached when they have almost all the same vertices, with

the exception of one which has moved. This corresponds to the following num-

ber of connections:

dmin,cliques = 2(c− 1) (4.3)

3It is possible to obtain the same result considering the following reasoning: there are
(

n

c

)

c-
cliques in the graph. When c is small and n large, this number is close to nc. As there are about

Nc = n2 connections in the graph, this number can also be written N
c

2
c .
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(see Figure 4.6). Thus, the merit factor is:

Mcliques = rcliquesdmin,cliques ≈ 2 (4.4)

when n is large enough.

This means that c-cliques, for c small in a large graph, form an efficient

error correcting code.

Figure 4.6: Minimum Hamming distance (in terms of connections) between two 4-
cliques (cliques of 4 vertices) in a graph. The first one is represented by squares and
dashed connections, the second one by circles and dotted connections. The difference
(thick) is 2(4− 1) = 6 connections.

4.3 Decoding linear codes using neural networks

4.3.1 A first approach

A neural decoder is a neural network associated with a code C such that given

an impulse corresponding to a received message m̃, it produces an output cor-

responding to a decoding of m̃ in C. One can easily build neural decoders which

achieve ML performance in some cases.

If the alphabet is well chosen, the Hamming distance computation between

a received message and a codeword can be expressed as a scalar product.

Let us consider a code over {−1; 1}n. Depending on the channel function,

some symbols in messages can be erased (that is: transformed to ⊥ 6∈ {−1; 1}).

Let us consider that in such case, ⊥ = 0. Thus, either B = {−1; 1} or B =
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000000
001110
010101
011011
100011
101101
110110
111000

Table 4.1: Code made of 8 codewords of length 6. The minimum Hamming distance is 3.
0 represents the value−1 for a better readability.

{−1; 0; 1}. Then the following equations hold:

∀m ∈ Bn,DC(m̃) = argmin
c∈C

(dh(c, m̃))

= argmax
c∈C

< c, m̃ >
(4.5)

Based on this remark, one can set up a neural decoder with good perfor-

mance. Such a network is built this way: let us consider a bidirectional bipartite

graph < N , CN , w > where:

• N is a set of n neurons and is provided with an indexed one to one function:

In : [|1;n|]→ N ,

• CN is a set of #C different neurons also provided with a one to one function:

IC : C → CN ,

• w : N×CN → {−1; 1} is such that ∀ni ∈ N ,∀cn ∈ CN , w(ni, cn) = I−1
C (cn)I−1

n (ni)
.

This means that connections in the bipartite graph correspond to the code-

words of C. More precisely, the inputs of a neuron in CN are exactly the bits of the

associated codeword in C. This way, the input of the functions f defined for each

neuron in CN is the scalar product of the values of neurons in N and the code-

words of C. Figure 4.7 gives an example of the neural decoder associated with the

code specified in Table 4.1.

Given Equation (4.5), the ML decoding of a received message m̃ is a codeword

maximizing the scalar product.

Therefore, to decode a received message m̃ using the proposed neural de-

coder, one just needs to project m̃onto the neurons inN and then select a neuron

in CN which achieves the maximal input value. Then, in order to read the corre-

sponding selected codeword, a successive iteration from the codeword neurons
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n1 n2 n3 n4 n5 n6

c1 c2 c3 c4 c5 c6 c7 c8

Figure 4.7: Neural decoder architecture associated with the code defined in Table 4.1.
Input values are represented by circles and codewords by squares. Solid lines represent
weight 1 and dashed lines represent weight -1.

back to the neurons in N will print the codeword to the input where was origi-

nally the received message m̃.

Selecting the correct neuron in CN

The decoding process thus works thanks to a selection of the neuron with the

maximum input among CN . Actually, it is not necessary to provide the network

with a winner-take-all implementation: a simple trick on the neural function en-

ables this unique selection. In order to do this, let us define the functions fC for

all neurons in CN as:

fC(v) =

{
1 if v > n− dmin(C)
0 otherwise

Moreover, the functions associated with the other neurons inN are set to:

fN (v) =





1 if v ≥ 1

0 if v = 0

−1 otherwise

Given a received message m̃, there can be only one neuron in CN that acti-

vates. To prove this latest property, let us first point out that if a neuron cn ∈ CN
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is activated, then:

(< m̃, I−1
C (cn) >) > n− dmin(C)

≡
dh(m̃, I−1

C (cn)) ≤ ⌊
dmin − 1

2
⌋

(4.6)

It is impossible that two distinct neurons c1 and c2 satisfy Equation (4.6). By

contradiction, it would mean that there exist c1 and c2 such that

d(c1, m̃) + d(c2, m̃) ≤ 2⌊dmin − 1

2
⌋ < dmin

The triangle inequality leads to d(c1, c2) < dmin which contradicts the mini-

mum Hamming distance definition. Therefore, a message m̃ will correspond at

most to one activated neuron among CN . In such case, the output of the network

will correspond to the ML decoding of m̃. If no neuron switch activated, this

means that the message m̃ is distant from all codewords of at least ⌈dmin − 1

2
⌉.

It is thus possible to decode any code using this simple neural construction.

Figure 4.8 shows the neural decoder associated with the CH(2) code, which is

an ML decoder. This decoder is also an encoder since it can produce the code-

word associated with the provided, possibly partial, pieces of information.4

m̃2 m̃4

m̃1 m̃3

c4

c3

c2

c1

CH(2)

Figure 4.8: ML neural coder/decoder of the CH(2) code. The message m̃ is decoded us-
ing codeword neurons. Dashed edges represent weight −1 whereas full lines represent
weight 1. The thresholds defined for the codewords neurons are set to 2.

Figure 4.9 shows an example of a neural decoder with the neural network un-

folded to illustrate the iteration process.

An immediate drawback of this method is the number of neurons it requires.

4This comes from the fact that this specific code is such that it is possible to retrieve two missing
bits in any of its codewords.
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n1 n2 n3 n4 n5 n6 n7

m̃1 m̃2 m̃3 m̃4 m̃5 m̃6 m̃7

c1 c2 c3 c4 c5

n1n2 n3 n4 n5 n6 n7

o1 o2 o3 o4 o5 o6 o7

Figure 4.9: Example of a neural decoder associated with the code described in Figure 3.5.
The network has been unfolded to illustrate the iterative process. Given an input mes-
sage m̃, it first projects this message to the input neurons N . Then, it selects among the
neurons in CN the only one corresponding to a codeword that is at less than a distance
1 to the message m̃. Finally, it projects back its decision to the input neurons, giving the
decoded answer (the vector o).

This number grows linearly with both the dimension of the space n and the num-

ber of codewords. If the first one is rarely an issue, the number of codewords can

grow exponentially with the dimension of the space (2k). Moreover, this con-

struction needs a prior study on the code to find its minimum distance. The

question of how to implement the winner-take-all rule in neural networks has

already been explored [33,34] but the proposed solutions require a lot of connec-

tions. The next subsection presents an alternative that require a small number of

added connections.

4.3.2 Maximum neural selector

4.3.2.1 Use of exponential neurons

Exponential neurons are among the various types of neurons found in the neuro-

biologic literature. An abstraction of these neurons behaviour is presented here:
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f(v) =

{
αβv − δ if αβv − δ ≥ γ

0 otherwise

with β, α > 0. γ is a threshold, α, β and δ are parameters that enable considera-

tion of a large panel of exponential functions.

One can use the variations of the exponential function to let only the highest

value expresses itself among the neurons in CN . The iteration back to the input

neurons will be processed as before. To illustrate this property, let us consider a

bipartite neural decoder with the same architecture as in the previous section.

Rather than using an a priori knowledge about the decoder, let us consider

that neurons have an exponential answer to their impulse. Considering the pre-

vious remarks and Equation (4.5), it is clear that the neuron in CN with the high-

est input is the one that should switch to active. Rather than preventing the other

neurons from activating also, we will force the good one to have an activity large

enough to mask all the other ones.

For instance, let us consider the code specified in Table 4.1. If the network is

initialized with the received message 000001 then the initial scalar product ob-

tained for each neuron in CN , just before the exponential modification, will be 4

for the codeword 000000, 2 for two 010101 and 100011 and at most 0 for the others.

Let us choose γ = −1, and α = 1.

The correct codeword will be retrieved only if the activity of the neuron cor-

responding to the codeword 000000 is strictly larger than the sum of the activities

of the other neurons in CN (we must consider the sum of those since it could

counter-balance the decision made by the correct codeword). This leads to the

condition that β4 > 2β2, that is β >
√
2.

This solution works in many cases, but still require to carefully choose the

parameters. Moreover, it could lead to the consideration of neurons with astro-

nomically large activity values, which hinders the biological plausibility.

4.3.2.2 Maximum selector with simple neurons

Another method for the selection of the maximal input among a population of

neurons can be realized using the neuron model as described in Figure 2.3. This
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selection uses the next formula, which holds for any real numbers x and y [35,36]:

∀x, y,max(x, y) =
x+ y

2
+

∣∣∣∣
x− y

2

∣∣∣∣

=
x+ y

2
+ max

(
x− y

2
, 0

)
+max

(
y − x

2
, 0

) (4.7)

Therefore, a simple network can be associated with the formula to compute

the maximum between two reals x and y (other solutions exist, see [37] for in-

stance). This network is depicted in Figure 4.10.

x y

x+y
2

max(0,x−y)
2

max(0,y−x)
2

max(x, y)

Figure 4.10: Maximum selector with neurons. Solid line edges represents weight 1

2
,

dashed lines weight− 1

2
, and double lines weigth 1.

One can recursively use this construction to find the maximum in a set of n

real numbers. This induction is depicted in Figure 4.11.

Figure 4.11: Maximum selector over 2q (here: q = 2) values with neurons. Solid line
edges represents weight 1

2
, dashed lines weight− 1

2
, and double lines weight 1.

When trying to decode the code described in Table 4.1, the exponential, max-

imum selection and (hard) ML decoders achieve exactly the same performance
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both in terms of MER or BER.

It is thus possible to decode any code using very simple neural networks

but with the cost of a lot (linear number) of neurons.

4.4 Coded Hopfield networks

4.4.1 Hopfield networks and orthogonality

4.4.1.1 Orthogonal Hopfield networks

In some specific conditions, Hopfield neural networks with n neurons may learn

up to n messages such that each one is correctly retrieved by the network if no

error nor erasure is added.

This happens when input messages dm are orthogonal:

if m1 6= m2 then < dm1 ;dm2 >= 0

To understand this property, let us write again the dynamic equations of the

model. If wij denotes the weight of the connection between neuron i and neuron

j and after learning M messages dm, the following set of equations holds:

wij =

M∑

m=1

dmi dmj

Moreover, contrary to the initial model, we accept looping connections.

The decoding process at first iteration then takes into account all the contri-

butions from the other neurons:

v1i = sign(
M∑

j=1

wijv
0
j )

= sign(

M∑

m=1

dmi

M∑

j=1

dmj v0j )

Thus, if the input to the neural network is a message dµ, the value of neurons

at step 1 is:

v1i = sign(

M∑

m=1

dmi

M∑

j=1

dmj dµj )

= dµi

(4.8)
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This means that the network has already reached a fixed point. 2

In other terms, a HNN made of n neurons may learn up to n orthonor-

mal messages such that all of them are recognized by the network. Never-

theless, a very small perturbation on a word lead to catastrophic perfor-

mance.

4.4.1.2 Bipartite Hopfield networks

One can use this specificity of the Hopfield neural network to increase the num-

ber of learned messages (we published this idea in [35]).

The idea is basically to associate orthogonal messages with message to learn

such that the decoding process will benefit from this added orthogonality. To re-

alize this association, we will consider a bipartite Hopfield neural network, which

is a Hopfield network on a bipartite graph. Figure 4.12 depicts this structure.

Part I

Part II

Figure 4.12: Model for the bipartite Hopfield network. In this example, the network is
made of a part I with 6 neurons and a part II with 8 neurons. It contains a total of 48
connections.

As a direct consequence, the number of connections is greatly reduced. This

property brings to the Hopfield model a simplified dynamic divided into two

movements: neurons are updated consecutively, one part after the other.

Let us consider that part I contains k neurons indexed by i and part II con-

tains L neurons indexed by j. In this network, one can learn messages on part

I, completing part II by orthogonal messages that will be used for the retrieving

process.
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If part II is provided with correct information, the dynamic process will project

the correct pattern back to part I. This property is directly given by Equation (4.8).

However, one still has to obtain the correct pieces of information on part II.

The best way to retrieve information from part of it is to use a code designed for

it. For instance, Hadamard codes can be used, as they are orthogonal. The next

subsection presents a model that inserts such a code into the Hopfield bipartite

model to increase its performance.

4.4.1.3 Orthogonal codes

Let us now consider orthogonal messages generated thanks to a certain code.

During the learning phase, these codewords are associated one to one with input

messages using a bipartite HNN.

In order to maximize the probability of success during the retrieving phase,

part II will use a decoder. And as we are considering associative memories, this

decoder will be a neural one. The dynamic of the network is thus updated to take

into account this new device. Figure 4.13 depicts this new dynamic.

Update of part IIstart

Neural decoding of part II Update of part I

Figure 4.13: The dynamic of the bipartite coded Hopfield network.

The performance of the system depends mainly on two aspects: orthogonal-

ity and minimum distance of the code. Hadamard codes provide both of them

perfectly.

The network learning process is as follows. When a new message is presented

to part I of the network, a fresh unused codeword is presented to part II such

that both of them are learned together as if they were forming a unique larger

message.

Figure 4.14 shows a comparison of a classical HNN with n = 150 neurons

where 25 messages have been learned with a bipartite coded HNN as previously

described with 40 input neurons facing 256 code neurons where 256 messages

have been learned. This is a fair comparison as the amount of stored connections

in both cases is similar.
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Figure 4.14: Comparison of performance between a classical HNN and a bipartite coded
network with the same number of connections.

This result shows the considerable increase in performance coming from

the use of a code in the Hopfield network. The number of learned messages

(diversity) has increased a lot. Even the total amount of information learnt

(capacity) has increased by a factor of 2.7.

Nevertheless, the maximum number of messages such a network can learn is

bounded by the size of the code on part II. Moreover orthogonality restrains this

number to the number of neurons. This use of orthogonal codes is therefore just

a first step in the seek for better associative memories.

4.4.2 Projection onto large codes

4.4.2.1 Model

To transcend this limitation, a more subtle analysis is necessary.

Actually, the network failings in retrieving the learned messages is due only to

the first step of the iterative decoding process. If the decoded codeword is correct

on part II, the associated part I message will also be correctly retrieved.

Thus, in order to enhance performance one would try to limit this loss of in-

formation during the first step. A possible solution is to associate orthogonal
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codewords with other orthogonal codewords. Nevertheless, a direct confronta-

tion between two codewords would not allow more messages to be learned. There-

by two other transformations are added to the network: first part I is split into

several sub-parts, each one associated with a perfectly orthogonal code as pre-

sented before. Then those codes are put face to face with a larger one, with a

lower constraint on orthogonality.

This way, both the perfection of the orthogonal coded Hopfield networks are

kept locally and the error correcting ability of a large code is maintained on part

II.

Figure 4.15 depicts this new model: messages are split into c sub-messages

addressing κ = k
c

bits, each one connected locally to a bipartite coded Hopfield

network with a Hadamard code. Those codes are then connected via another

Hopfield network to another code through a larger network. If the orthogonal

codewords are locally successfully retrieved, the entire message will also be cor-

rectly retrieved.

lκInput1

lκInput2

lκInputc

L

Hadamard
codewords

Large length
codewords

Figure 4.15: A way to associate a message composed of sub-messages of length κ with a
large code through local orthogonal (Hadamard) codes of length l = 2κ.

The large code, containing L neurons, is not necessarily orthogonal.

4.4.2.2 Performance

In the proposed model, pieces of information are stored in the connections of

the network. Thus, a HNN to compare to would be one with a similar number of

connections.

One could object that our network requires a lot more connections: those
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of the different neural decoders. Nevertheless, this number is insignificant in

comparison to the number of connections in the HNN. Moreover, this material

is independent of the set of learned messages and should thus not count in the

amount of memory used.

On the other hand, a fair objection is that the number of learned messages

being largely increased in our model, the connections of the coded Hopfield net-

works we are using are specified on more values than the classical HNN and

therefore require a larger amount of information used. Yet this increase is no

more than logarithmic with the number of learnt messages.

Figure 4.16 depicts the performance of the proposed model and the HNN

with a similar number of connections and as a function of the number of learned

messages.
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Figure 4.16: Compared performance of the proposed model with three different sizes
for the orthogonal code (L = 256, L = 512, L = 1024) with a HNN with 515 neurons,
containing roughly the same number of connections (than the one with L = 512). The
large codes are random codes. Input messages, in the case of coded HNN networks, are
made of c = 4 sub-messages of length κ = 6 bits each. For a targeted error rate of 10−1,
the coding gain in diversity is about 22, 45, and 75 for the three values of L.

Obviously, this is not a very surprising result as the network learns more but

shorter messages.
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Yet this model allows, with the same number of connections, to dramati-

cally increase the number of learned messages. The capacity has also in-

creased, but to a lesser extent.

In this chapter we have combined error correcting codes with neural networks.

This allows us to considerably increase the number of learned messages in asso-

ciative memories.

Two important codes have been introduced: constant weight codes and cliques.

They are of prior interest as they can both be decoded in very simple neural net-

works. The next chapter explains how to combine these codes in order to increase

once more the performance of associative memories.
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Sparsity is a very hot keyword in many domains, including associative memo-

ries [38–40]. Actually, codes and sparsity are not typically mixed as they are often

incompatible: one has generally to choose between minimum distance or sparsity.

However, the clique code and the constant weight code are two codes that en-

able the considerations of sparsity. This chapter will show how one can combine

them to produce a high performance associative memory.

Some improvements on the model are also presented: consideration of cor-

related messages and turbo-approach. Finally, a method to hold performance

asymptotically is introduced.

5.1 Sparse networks

5.1.1 Sparsity benefits

In terms of information theory capacity, it is clear that a well-built device should

be able to learn more messages if they are shorter.

This result can be mathematically expressed as follows. Let us suppose that

the network is built on a symmetric graph with n neurons and no loops (as in a

Hopfield neural network). If connections can take P different values, the maxi-

mum total amount of used information is:

Smax =
n(n− 1) log2(P )

2

since there are n(n−1)
2 connections.

Now let us suppose that a network is able to achieve efficiency 1. The diversity,

in the case messages are of length n, is thus:

Mmax =
(n− 1) log2(P )

2

This means that, considering P to be reasonable (i.e. a sub linear function

of n), the network cannot expect to learn much more than a linear number of

messages.

If one restrains messages to length k, this number becomes:

M sparse
max = n(n−1) log2(P )

2k
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The bound has become quadratic with n.

Thus, the sparsity of messages, seen as the short length of messages com-

pared to the number of neurons, brings a dramatic increase in the diversity of

the network.

5.1.1.1 Sparsity in Hopfield networks

Hopfield networks are not directly suited to short messages representation. With

no modification on the structure, one cannot learn such sparse messages and

then retrieve them without adding additional information. This is easily under-

standable: the decoding process will give values to every bit as if they were all

erased.

If it was possible to work on sub-regions of a Hopfield network, the diversity

and capacity would greatly increase.

A possible alternative is to add to any retrieval process the information on the

bits locations in the sparse message. This implies to add a character to denote

the absence of a symbol and therefore to change the representation space to a

sparse one. This idea seems interesting as the efficiency of the Hopfield network

tends to 0 as n tends to infinity, a lot of smaller more effective networks could

result in better performance.

Let us consider a classic Hopfield model with n neurons. Messages to learn

are now of length k < n and over a new alphabet A = {−1; ǫ; 1} where ǫ denotes

the absence of a character. Let us insist that ǫ 6= 0 as it does not represent an

erased bit that has to be retrieved but a bit that should not be considered during

the decoding process. The learning process can be slightly modified: after the

learning of M messages dm, Wij - the weight of the connection between neurons

i and j - is such that:

Wij =
∑

m≤M

dmi ⊗ dmj (5.1)

where

a⊗ b =

{
0 if a = ǫ or b = ǫ

ab otherwise
(5.2)

In the retrieving process, the alphabet of input messages is enlarged toAin =

{−1; 0; ǫ; 1}. During the decoding process, only the neurons with a value different

from ǫ will be updated.

There are several ways to implement this new representation in order to in-

crease diversity.

A first one consists of splitting the network in several totally independent sub-
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networks. It is then possible to theoretically express the gain of such a network

as follows: the diversity of the HNN is close to Mmax(n) =
n

2 log(n) . If one splits the

network into n
k

parts of k neurons each, those sections will be able to learn each

up to Mmax(k) =
k

2 log(k) messages each, which leads to a total diversity of:

Mparallel =
n

k

k

2 log(k)
=

n

2 log(k)
(5.3)

if k is large enough.

Thus, in comparison to Equation (2.3), it is possible to increase the number

of message simply by considering parallel and independent networks.

In this perspective, a lot of connections are unused (all those between dis-

tinct sub-networks). Another solution would be to learn messages of length k

anywhere on the network. The performance will be similar to that of a paral-

lel HNN if all connections have been used, on average, a comparable number of

times - that is k
2 log(k) . There are n(n−1)

2 connections, and each time a new mes-

sage of length k is learned, k(k−1)
2 are used. The number of messages one can

learn - considering they are perfectly uniformly distributed over the network - is

therefore:

Msparse =
n(n− 1)

2

k

2 log(k)

2

k(k − 1)
=

n(n− 1)

2(k − 1) log(k)
(5.3)

leading to a quadratic number of learned messages. This equation holds if k is

large enough.

Figure 5.1 depicts the performance of this sparse HNN compared to the clas-

sical one and the parallel one in terms of diversity and for the same amount of

neurons. It insists on the dramatic increase of diversity due to the use of sparsity.

Figure 5.2 depicts the performance of the sparse HNN compared with the par-

allel HNN and the classical HNN in terms of capacity and for the same amount

of information stored. This figure shows that besides its interest in terms of di-

versity, sparsity may also produce important gains in capacity. Note also that

the results are identical for parallel and sparse networks since the former offers a

lower diversity but also use much less connections.

Nonetheless, these considerations require modification of the input alphabet.

The next sections show how associative memories can benefit from this sparsity

consideration without any need for modifying the learning space.
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Figure 5.1: Comparison of the diversity of the sparse HNN with the parallel HNN and
the classical HNN with the same error probability and as a function of the number of
neurons.

5.1.2 Network sparsity

5.1.2.1 Minimum distance versus sparsity

The idea presented in this section can be seen as the natural continuation of

many models presented thus far.

The simplest way to “sparsify” information is to associate it with a sparse

code, for instance the constant weight code with w = 1.

Figure 5.3 represents such an association where input messages are coded

over binary values ({−1; 1}). Each possible sub-message is then associated one

to one with a neuron.

It is interesting to note that such a transformation can be obtained by invert-

ing the neural network decoders introduced in Section 4.3. Actually, these de-

coders associate a unique neuron with each codeword.

The idea is thus to consider this neuron as the index of a codeword rather

than a representation of its content.

Those codewords can then be associated as in the coded Hopfield network

model.
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Figure 5.2: Comparison of the capacity of the sparse HNN with the parallel HNN and the
classical HNN with the same error probability and as a function of the total amount of
information stored.

Note that this model can also be obtained from the bipartite structure intro-

duced in Section 3.3 where a coding rule has been added to the way cliques are

built.

5.1.2.2 Getting rid of the large code

The large code introduced in Section 4.4 was necessary as the amount of learned

information largely overpass the bound of classic Hopfield networks. Thus con-

nections were used a large number of times, decreasing significantly their dis-

criminative abilities.

Because of the structure of the sparse code, it is now possible to get rid of

the large code and of the HNN principles.

We published this construction in [36, 41]. The messages to learn are divided

into several sub-messages, each one addressing a specific cluster in the network.

To each sub-message will actually correspond a unique neuron in each cluster,

as in Figure 5.3. Those neurons are then all connected together, printing a clique

into the network. As the process only affects a very small number of connections,
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Figure 5.3: Example on how to associate a constant weight code with weight w = 1 with
input messages using a neural network. Input bits are indexed from I0 to I3 and asso-
ciated codewords from C0 to C15. In this network, neurons on the right are activated if
their input is at least equal to three. An input with no erasures will correspond to the
activation of a unique neuron on the right part. Note that this network is a specific case
of the one depicted in Figure 4.7 with the restriction that every input corresponds to a
unique associated codeword.

we can get rid of the connection weights. Therefore, the network becomes a bi-

nary one: a connection exists or not. Figure 5.4 depicts this new learning process.

So the learning of a message mixes two codes. First, messages are mapped

to sparse representations using a constant weight code with weight one. Then

obtained messages are learned through a clique in the network.

Obviously, a first importance parameter to assure a good categorization be-

tween learned and not learnt messages is the network density. A density close to

1 would lead to an over-loaded network, which cannot retrieve learnt messages.
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Figure 5.4: Learning process illustration. The pattern to learn (with thick edges) con-
nects neurons from 4 clusters of 16 fanals each (filled circles, filled rectangles, rectangles
and circles). It represents a geometric figure (in this case a tetrahedron) which is finally
printed in the network.

Let us denote by c the number of clusters in the network and by l the num-

ber of neurons per cluster (there are a total of n = cl neurons in the network).

After the learning of M uniformly distributed random messages, connections in

the network may be considered independent, which is not much of an approxi-

mation if M ≫ c. The expected density d is then directly connected to M by the

following formula:

d = 1−
(
1− 1

l2

)M

≈ M

l2
when M ≪ l2 (5.2)

Figure 5.5 shows the evolution of the density d with the number M of random

messages learned, for four values of l. Note that this density does not depend on
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the total number of neurons n nor on the number of clusters c but on the cluster

size l, meaning that from this point of view, and given a total number of neurons,

a small number of clusters is preferable. The choice of c may also depend on

other criteria, such as the targeted retrieval error rate.
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Figure 5.5: Evolution of the network density when learning random messages for 4 clus-
ter sizes.

Note that the organization of the network in clusters has reduced the number

of possible connections with respect to the complete graph ( (c−1)n2

2c to be com-

pared with n(n−1)
2 ) but this reduction, and therefore the reduction in available

memory, is low and acceptable (25% for c = 4, for instance).

5.1.2.3 Decoding process

The decoding process is divided into two steps, global and local - that is one for

each code.

Once a partially erased or erroneous message has been presented to the net-

work and the associated neurons have been selected using networks as depicted

in Figure 5.3, the decoding process iterates the two steps : first the global decod-

ing, using cliques in the network, then the local one, using the winner-take-all

rule. This way the neurons have binary values between each iteration.

The network stops once it reaches a stable state, that is a fixed point in the

decoding process (usually 1 or 2 iterations are sufficient).
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Note that input messages do not need to be binary. The only important aspect

is to keep a unique neuron associated with each possible character. Nevertheless,

the binary consideration allows a direct comparison with the Hopfield network.

We call the neurons associated to each sub-message fanals1 as an input un-

altered message will correspond to only one of them in each cluster. Also, it is

more likely that fanals should be associated to populations of neurons in the

brain (micro-columns for instance) rather than neurons.

Let us denote by nij (i ≤ c, j ≤ l) the j-th fanal of the i-th cluster and by

v the function that associates these neurons with their values. Then the global

decoding can be written as:

∀i, j, v(nij)←
c∑

i′=1

l∑

j′=1

w(i′j′)(ij)v(ni′j′) + γv(nij) (5.3)

Let us point out that Equation (5.3) formalizes a message passing algorithm

including a memory effect, with parameter γ. The memory effect is necessary, as

it prevents the network from rejecting a learned message. On the other hand, its

value may have a very important influence on the performance of the network:

if it is too large, the network will not be able to correct errors. If it is too low, a

correct decision may be counter-balanced during the decoding process.

Actually, the memory effect, if equal to 1, presents the same behaviour as if

the graph had loops on all its neurons. We consider that it is preferable to use

the former since loops are not biologically plausible. Moreover, loops offer less

control on the activity of the network.

The local decoding process in the i-th cluster is then described by the follow-

ing algorithm:

vi,max ← max
j

v(nij) (5.4)

∀j, v(nij)←





1 if v(nij) = vi,max

and vi,max ≥ σ

0 otherwise

(5.5)

This algorithm formalizes a “winner-take-all” process. Nevertheless, (5.5) al-

lows several fanals to switch on simultaneously in the case they achieve the same

score. This property is very important as it puts on hold ambiguous characters

while others are being retrieved without ambiguity. The process will hopefully

1Fanals are beacons in the sea that help guide boats. They are often the only light source in the
night.
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later be able to make a unique decision.

Step (5.5) uses a threshold σ to control the activity of this local decoder if

needed. This threshold depends on the application: in classification the largest

possible value leads to the best results whereas in associative memories it ben-

efits from being more carefully chosen. In the latest part of this document, the

threshold will also be used to prevent an epileptic propagation of the signals to-

wards the entire network.

Thus, an iteration in the decoding process can be written as:

[
Use the global decoding

∀i, use the local decoding on cluster i
(5.6)

5.1.3 Performance

5.1.3.1 As a classifier

Neural networks have for long been studied in the field of classification.

Among the different applications aimed by classification, one is to general-

ize some learning sets in order to automatically classify unknown inputs, as in

OCR2 for instance. It is clear that the proposed network could be used as such a

classifier, yet these considerations have not been studied.

Another branch of classification is interested in set implementations, which

can be seen as a degenerated form of the previously described application where

learning sets are exhaustive, like in intrusion detection systems for instance. This

document considers only this latter aspect.

More formally, let us denote E the set of messages to learn. A perfect classifier,

as we consider them, is thus a device that recognizes all the messages (and only

them) in E.

If we denote by F the set of learned messages - that is the messages that have

been actually learnt-, a measure of performance over the network is a measure of

differences between sets E and F . Equation (5.3) implies E ⊆ F , so the probabil-

ity that a learnt message is not recognized, called the error probability of the first

kind3, is zero. Hence the only possible errors remaining are of the second kind4:

unlearnt messages accepted by the network.

In the sequel two measures are presented. The first one is the probability

P (x ∈ F |x /∈ E), that is the error probability of the second kind. The second one

considers the size of F relatively to that of E. As a matter of fact, even with a good

2Optical Character Recognition.
3Or Type I error.
4Or Type II error.



72 Chapter 5. Sparsity and networks of neural cliques

error probability of the second kind, there may be a lot of unlearned recognized

messages in an exhaustive test.

The first measure P (x ∈ F |x /∈ E) is close to P (x ∈ F ) as E is supposed to

be of reasonable size (E ≪ 2k). Given a threshold σ = c coupled with γ = 1,

this latter probability can be easily estimated as follows. Indeed, an input on the

network will remain unchanged only if all the connections between its associated

fanals exist, that is only if the corresponding clique exists. Considering again that

connections are independent, as was the hypothesis to establish Equation (5.4),

this leads to the following formula:

P (x ∈ F ) ≈ d
c(c−1)

2 (5.7)
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Figure 5.6: Probability to accept a random message for 3 numbers of clusters with size
l = 512 and for σ = c. Both simulated points and theoretical curves are represented.

Figure 5.6 shows the evolution of this probability for three numbers of clus-

ters with size l = 512 and for σ = c. It is surprising to remark that even with

a very important density (up to 80% for c = 8), the performance remains very

good (around 10−2 in error probability). Coupled with Figure 5.5, it shows that a

network with n = 4096 neurons and c = 8 clusters may learn more than 400000

messages of length 72 with still very good discrimination ability.

Nevertheless, as pointed out before, an error probability of 10−2 corresponds

to a lot of unlearned messages possibly accepted by the network, and that could
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be more numerous in an exhaustive test than the number of messages learnt.

This number of accepted messages can be estimated from Equation (5.7) this

way:

#F = 2kP (x ∈ F ) ≈ 2kd
c(c−1)

2 (5.8)

A second measure of performance is to compare the size of F relative to that

of E. Figure 5.7 draws the evolution of the ratio #(F−E)
#E

for three numbers of

clusters with two sizes: l = 256 and l = 512.

Contrary to the previous consideration, this figure shows that this ratio is

rapidly bad for too large a density. Also one may note that increasing the size

of clusters does not improve performance as the number of possible messages is

considerably enlarged. For instance, changing l = 256 into l = 512 increases this

number by a factor of 256 in the case of c = 8. Meanwhile the number of learned

messages has only grown by a factor of four (for the same density). A good per-

formance considering a set implementation would be to restrict density to 0.15

approximatively.
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Figure 5.7: Ratio of the number of unlearned accepted messages over the learnt ones as
a function of the network density and for 3 different number of clusters of size l = 256
and l = 512.

Table 5.1 shows the comparison of performance obtained with the same amount

of memory used in an HNN and in the proposed network for c = 4 and l = 512.
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The material needed for the local decoders is not taken into account as it does

not depend on the learning sets. Those results show the very good performance

of the proposed networks to achieve a go/no-go sort. Note also that the efficiency

of the proposed network, in this experiment, exceeds 100%, which should not be

surprising since messages are not ordered (see 2.4.3).

Model HNN Proposed network ratio
Memory used (bits) 1.6× 106 1.6 × 106 1

n 740 2048 ×2.8
Message length 740 36 ÷21

First kind
error probability

9% 0% ÷∞
Second kind

error probability
almost 0 almost 0 ≈ 1

Diversity 56 60000 ×1071
Capacity 4.1× 104 2.2 × 106 ×52

Efficiency 2.6% 137% ×52

Table 5.1: Comparison of performance between the HNN and the proposed network
with c = 4 and l = 512 for the same amount of memory used, in the case of a go/no-go
sort application.

Compared to the estimated bound on efficiency depicted in Figure 2.6,

which is around 138%, this shows the remarkable performance in terms

of efficiency of the proposed network.

5.1.3.2 As an associative memory

To be fairly compared with the Hopfield network which was originally introduced

as such, a second comparison is to consider the performance of the proposed

network as an associative memory.

The network is thus provided with partial information, some clusters receiv-

ing no information at all. The network can then try to retrieve the missing data.

Contrary to the classification problem, error probability of the first kind is no

longer zero as clusters with no provided information may induce an ambiguous

decision on others. We will now consider the threshold σ to be zero.

The error probabilities, in the case of a single iteration, can once again be

estimated by very simple equations. However, unlike the classification problem,

iterations can significantly increase performance (see Figure 5.9).



5.1. Sparse networks 75

After a single iteration and when only one cluster is not provided with infor-

mation, the probability of electing the correct erased fanal is given by the follow-

ing equation:

Pretrieve =
(
1− dc−1

)l−1
(5.9)

The probability that the other clusters decisions is not counter-balanced by the

ambiguity produced by the one with no information is:

Premain =





((
1− dc−2

)l−1
)c−1

if γ = 0

1 otherwise
(5.10)

Considering that the memory effect is actually used (γ > 0), the error probability

of recovering the message is:

Pe = 1− Pretrieve = 1−
(
1− dc−1

)l−1
(5.11)

Given (5.4), this probability is such that:

Pe = 1−


1−

[
1−

(
1− 1

l2

)M
]c−1




l−1

(5.12)

This equation can be generalized as follows: if the number of clusters ce with-

out provided information is larger than one, the error probability becomes:

Pe = 1−
(
1−

[
1−

(
1− 1

l2

)M
]c−ce

)(l−1)ce

(5.13)

It is interesting to point out that the error probability decreases when c in-

creases. On the other hand, l has two impacts on it: the first one is the factor
1
l2

which is the most important parameter: large clusters lead to better perfor-

mance. The second one is the power parameter, which has a negative impact on

performance. Note that l has finally a positive impact on the performance of the

network but the asymptotic efficiency tends to zero as l tends to infinity, as in

the Hopfield network. The next section will introduce another level of sparsity to

avoid this drawback.

When the number of messages tends to zero, and for a reasonable cluster size:

l≫ 1, this probability is close to:

Pe ≈ lce

[
M

l2

]c−ce

(5.14)
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Figure 5.8 draws the evolution of the message retrieval error rate when one of

the four clusters of size 512 is not provided with information, as a function of the

number of learned messages. This figure also draws the theoretical curve from

(5.13).
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Figure 5.8: Evolution of the error rate when retrieving a learned message with 1 cluster
with no provided information in a network with 4 clusters of size 512 as a function of the
number of learnt messages. The simulated and theoretical curves as well as the network
density are represented.

The optimal number of clusters, given a targeted error probability P0, a num-

ber of neurons n and a proportion of clusters with no input information of 1
2 , can

be easily obtained from (5.14) as follows:

copt = log

(
n

2P0

)
(5.15)

For instance, the approximated optimal number of clusters for a targeted error

probability P0 = 0.25 with n = 2048 neurons is 8. Figure 5.9 draws the evolution

of the error rate in message retrieval when half the clusters of such a network with

c = 8 have no information, as a function of the number of learned messages and

after four iterations. The theoretical curve for a single iteration from (5.13) is also

drawn, showing the interest of iterative process in this situation.
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The simulation shows that such a network of 2048 neurons can learn up

to 15000 messages of 64 bits each and retrieve them with a very high prob-

ability even when they are erased up to a half. This is, to our knowledge,

unprecedented performance.
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Figure 5.9: Evolution of the error rate when retrieving a learned message after 4 itera-
tions with 4 clusters having no information in a network with 8 clusters of size 256, as a
function of the number of learnt messages. The theoretical curve for a single iteration
and the network density are also drawn.

Once again, the performance obtained with the model proposed in this paper

is dramatically better than that obtained by the HNN. Table 5.2 compares the two

models for the same amount of memory used and half the input erased.

Figure 5.10 depicts the gain of capacity from the HNN to the proposed net-

work. The given curve considers a network with c = 8 clusters where one is

not provided with information and the error probability in the retrieving process

is close to 10−2. This latter condition is severe as the equivalent HNN presents

worse error probabilities even without erased inputs. The figure includes also

the theoretical curve for a hypothetic network with efficiency equal to one. The

proximity between this latter curve and that of the proposed network is worthy

of note.
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Model HNN Proposed network ratio
Memory used (bits) 1.8× 106 1.8× 106 1

n 790 2048 ×2.6
Message length 790 64 ÷12

Error probability 9% 2% ÷4.5
Diversity 60 15000 ×250
Capacity 4.7× 104 9.6× 105 ×20

Efficiency 2.6% 52% ×20

Table 5.2: Comparison of performance between the HNN and the proposed model with
c = 8 and l = 256 for the same amount of memory used, when both are used as associa-
tive memories.
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5.1.3.3 Resilience

One of the prime interests of this network with regards to the Hopfield networks

(and the other versions such as the Boltzmann machine [20]) and biological plau-

sibility is its resilience.

It is certain that if we add noise to connections, it is likely that performance

of the overall network will decrease. However, simulations show that this loss
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is acceptable. Consider for instance Figure 5.11 where connexions have been

modified using noise with standard deviation 0.37.
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Figure 5.11: Comparison of performance between the sparse network with and without
noise on connections as a function of the number of learned messages.

This figure shows that the performance of the network remains acceptable

even when considering very significant noise added to connections. An equiva-

lent noise on a HNN would have lead to catastrophic performance.

5.2 Turbo sparse networks

5.2.1 Correlated messages

The performance results obtained are valid while making the assumption that

learned messages are i.i.d.. We show in this section that very good performance

can be achieved even if the learning set has significant correlation.

The proposed network mechanics is based on the creation of a particular cor-

relation materialized by cliques in the network. Nevertheless, the correlation

coming from the learning set can correspond to worse performance of the net-

work.

More precisely, one can distinguish two types of correlation. The first one is

intrinsically bound to the learning set and therefore cannot be counterbalanced.

For instance, if the learning set contains both messages “brain” and “train”, and if
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one of both is presented to the network with no information on the first character,

this latter will face an ambiguity in retrieving the initial message. In such a case,

the decision of any device could only be arbitrary.

On the other hand, the correlation of the learning set may create artificial

ambiguities on the proposed network. Consider for instance the learning of the

messages “brain”, “grade” and “gamin”. If all characters are mapped one to one

to a cluster, the network will also contain the clique associated with the message

“grain” which was not learned. Figure 5.12 depicts this correlation issue.
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Figure 5.12: Example of a sparse network after the learning of the messages “brain”,
“grade” and “gamin”. During this process, the clique (represented with thick connec-
tions) corresponding to the message “grain” has also been added to the network despite
the fact it has not been learned.

Performing the learning on a set with highly correlated messages, this partic-

ular event is likely to happen often. In order to avoid this side effect, a simple

solution is to add to messages to learn a context, that is a hidden signature.

Consider for instance a network made of ten clusters, each one made of twenty-

six fanals - one for each letter in the Latin alphabet. In this network are learned

all the English words made of five letters. Input messages are therefore only ad-

dressing five of the ten clusters. During the learning process, the five unmapped

clusters are initialized to a random value. For instance, if we consider the same

example as before with words “brain”, “grade” and “gamin”, a clique will also be
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created between the five clusters associated with the characters in input mes-

sages but probably not between the other ones. Figure 5.13 depicts this idea with

a single hidden signature.
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Figure 5.13: Example of a situation where words “brain”, “grade” and “gamin” have been
learned with a single hidden signature. The word “grain” is therefore not recognized by
the network as it does not correspond to a clique (corresponding connections are thick):
no signature is associated with every letter in the word. The probability to avoid the
creation of such unwanted cliques in the network grows with the number of added sig-
natures.

5.2.2 Turbo approach

In order to enhance performance on correlated messages, a turbo approach can

also be performed.

Let us consider for instance that we aim at learning all the French words made

of six characters, that is about 16000 words according to our dictionary. Con-

sidering the equations of Section 5.1.3, using clusters of size l = 26 (or slightly

more with accents and special characters) - corresponding to the natural use of

characters to split words - would result in an overfilled network with a very low

probability of success both in classification or associative memory.

If characters are grouped into pairs instead, the density will decrease down to

3.4%. However, the number of clusters is reduced to three and therefore offers a

relatively low redundancy gain.

One can artificially increase the number of clusters and the robustness of the

learning process by duplicating some pieces of information. This added diversity

will hopefully help strengthen the reliability of the decoding process. Figure 5.14

depicts such a way to transform characters in words of length six into six pairs of

partially redundant symbols, materializing a turbo-approach.
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Figure 5.14: Example of a way to transform characters to partially redundant symbols
allowing a message-passing approach in the decoding process. For instance, if charac-
ters “f” and “i” are erased, then the symbol “fi” will be completely erased and symbols
“ia” and “éf” will be partially erased. If “f” and “a” are erased in the input, then symbols
“éf”, “fi”, “ia” and “an” will be partially erased. Note that, as we share the erasures among
several symbols, we are likely to benefit from iterations.

Using the construction depicted in Figure 5.14 plus six random signatures

as described in the previous section, performance in retrieving a French

word among the 16000 learned ones when two characters are erased in-

creased from a probability p = 30% of success to approximatively p = 80%.

Moreover, the latter corresponds to the limitation due to the intrinsic cor-

relation of the learning set itself. The number of neurons in the network is

8112 (12 clusters of 676 neurons each).

5.3 Towards a fourth level of sparsity

Despite very interesting performance, the proposed network suffers from a lim-

itation: in associative memory applications its performance is mainly function

of the size of clusters l and not their number c. As a matter of fact, the length of

learned messages grows linearly with c, and logarithmically with l. If one wants

to learn many messages, it is thus preferable to increase l rather than c.

This means actually two things: first the size of learned messages is strongly

dependent on the size on the networks. And secondly good performance requires

a few clusters with a lot of fanals in each, what is not biologically plausible.

In order to counterbalance those drawbacks, two solutions are described in

this document. The first one consists in recursively dividing each cluster in sub-

clusters with an associated added decoding rule. The second one considers sparse

input messages.
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5.3.1 Fractal approach

5.3.1.1 Pseudo-fractal idea

The proposed network is not suitable for a fractal approach. As a matter of fact,

it associates neurons through cliques. Therefore a direct association of sparse

networks through a high-level sparse network would need a definition of meta-

cliques - that is: cliques of cliques. These considerations do not correspond to

the current neurobiology literature.

A pseudo-fractal approach may nevertheless be applied. In order to con-

sider smaller clusters without sacrificing performance, one can use a bottom-up

pseudo-fractal approach as follows.5

Let us consider for instance a network with c = 4 clusters of l = 256 neu-

rons each. This means that input messages, if binary, are composed of four sub-

messages of length κ = 9. One can divide recursively each sub-message mi in

smaller pieces: m = m1
im

2
i .

For more simplicity, let us suppose that m1
i is of length 2 and fanals in cluster

i form a plane grid. If so, the fanals can be organized so that the value of bits in

ni are coding the physical emplacement of the message in the network, such as

described in Figure 5.15.

This process can be iterated several times, embodying the fractal approach.

Splitting clusters can be accompanied by an added decoding rule: in each

cluster one single sub-cluster must only be activated. This rule, which is the

meta-version of the local decoding rule, echoes to neurobiology literature where

one can read that the activity of a neocortex column is likely to prevent the ac-

tivity of its neighbour ones. In other words, not only a single fanal is activated in

a cluster at a time but also a unique sub-cluster can be activated in a cluster at a

given time.

This construction does not affect the input message length, but reduces sig-

nificantly the size of clusters with unmodified performance.

5.3.1.2 Partial erasure and performance

Actually, this approach also enables the consideration for partial erasures on clus-

ters. It is now possible to erase part of a sub-message - that is for instance m1
i in

mi - with a very limited impact on performance.

In order to adapt the network to this partial erasure rule, a normalization rule

has to be applied. As a matter of fact, erasing the part m1
i of a sub-message mi

5We call this approach pseudo-fractal as it keeps the global decoding principle as it is.



84 Chapter 5. Sparsity and networks of neural cliques

0000
0000

0010
0000

0001
0000

0011
0000

0000
1000

0010
1000

0001
1000

0011
1000

0000
0100

0010
0100

0001
0100

0011
0100

0000
1100

0010
1100

0001
1100

0011
1100

0000
0010

0010
0010

0001
0010

0011
0010

0000
1010

0010
1010

0001
1010

0011
1010

0000
0110

0010
0110

0001
0110

0011
0110

0000
1110

0010
1110

0001
1110

0011
1110

0000
0001

0010
0001

0001
0001

0011
0001

0000
1001

0010
1001

0001
1001

0011
1001

0000
0101

0010
0101

0001
0101

0011
0101

0000
1101

0010
1101

0001
1101

0011
1101

0000
0011

0010
0011

0001
0011

0011
0011

0000
1011

0010
1011

0001
1011

0011
1011

0000
0111

0010
0111

0001
0111

0011
0111

0000
1111

0010
1111

0001
1111

0011
1111

0100
0000

0110
0000

0101
0000

0111
0000

0100
1000

0110
1000

0101
1000

0111
1000

0100
0100

0110
0100

0101
0100

0111
0100

0100
1100

0110
1100

0101
1100

0111
1100

0100
0010

0110
0010

0101
0010

0111
0010

0100
1010

0110
1010

0101
1010

0111
1010

0100
0110

0110
0110

0101
0110

0111
0110

0100
1110

0110
1110

0101
1110

0111
1110

0100
0001

0110
0001

0101
0001

0111
0001

0100
1001

0110
1001

0101
1001

0111
1001

0100
0101

0110
0101

0101
0101

0111
0101

0100
1101

0110
1101

0101
1101

0111
1101

0100
0011

0110
0011

0101
0011

0111
0011

0100
1011

0110
1011

0101
1011

0111
1011

0100
0111

0110
0111

0101
0111

0111
0111

0100
1111

0110
1111

0101
1111

0111
1111

1000
0000

1010
0000

1001
0000

1011
0000

1000
1000

1010
1000

1001
1000

1011
1000

1000
0100

1010
0100

1001
0100

1011
0100

1000
1100

1010
1100

1001
1100

1011
1100

1000
0010

1010
0010

1001
0010

1011
0010

1000
1010

1010
1010

1001
1010

1011
1010

1000
0110

1010
0110

1001
0110

1011
0110

1000
1110

1010
1110

1001
1110

1011
1110

1000
0001

1010
0001

1001
0001

1011
0001

1000
1001

1010
1001

1001
1001

1011
1001

1000
0101

1010
0101

1001
0101

1011
0101

1000
1101

1010
1101

1001
1101

1011
1101

1000
0011

1010
0011

1001
0011

1011
0011

1000
1011

1010
1011

1001
1011

1011
1011

1000
0111

1010
0111

1001
0111

1011
0111

1000
1111

1010
1111

1001
1111

1011
1111

1100
0000

1110
0000

1101
0000

1111
0000

1100
1000

1110
1000

1101
1000

1111
1000

1100
0100

1110
0100

1101
0100

1111
0100

1100
1100

1110
1100

1101
1100

1111
1100

1100
0010

1110
0010

1101
0010

1111
0010

1100
1010

1110
1010

1101
1010

1111
1010

1100
0110

1110
0110

1101
0110

1111
0110

1100
1110

1110
1110

1101
1110

1111
1110

1100
0001

1110
0001

1101
0001

1111
0001

1100
1001

1110
1001

1101
1001

1111
1001

1100
0101

1110
0101

1101
0101

1111
0101

1100
1101

1110
1101

1101
1101

1111
1101

1100
0011

1110
0011

1101
0011

1111
0011

1100
1011

1110
1011

1101
1011

1111
1011

1100
0111

1110
0111

1101
0111

1111
0111

1100
1111

1110
1111

1101
1111

1111
1111

Figure 5.15: Example of a disposition of fanals such that the two first bits of the sub-
message they correspond to are coding their physical placement: 00 for top left, 01 for
top right, 10 for bottom left and 11 for bottom right.

gives the possibility of an ambiguity on a large number of fanals in the corre-

sponding cluster. Due to the decoding process, these fanals have the same ac-

tivity as those from the clusters with perfect information. This means that the

partially erased clusters will have a much more important impact - as they will

have more activated fanals - than the perfect information ones on the final deci-

sion, what is clearly counterproductive.

So let us add to the network a normalization rule, which could correspond

biologically to a distribution of energy among clusters. This rule states that the

sum of all activities of fanals in a cluster cannot surpass 1. Figure 5.16 depicts the

performance of this modified network when used as an associative memory and
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after four iterations6. It is compared with the initial network for a comparable

amount of erased bits.

Actually, the worst case is when all erased bits are in the same cluster, leading

to the same performance as the initial model (see Equation (5.12)).

One can see that in any case of partial erasures among several clusters the

performance is slightly increased. We can actually explain this gain as

when the erasures are shared among different clusters, the performance is

benefiting from several iterations.
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Figure 5.16: Comparison of performance of the classic network with the fractal one when
erasing an equivalent amount of information (8 bits). These networks are composed of
c = 4 clusters of l = 256 neurons each. The decoding process uses 4 iterations and the
memory effect has been set to a large value.

5.3.2 Sparse networks of sparse messages

5.3.2.1 Construction

Though it presents an interest in virtually reducing the size of clusters, the de-

scribed above method does not dissociate the length of learned messages from

6These results were obtained by simulations made by Xiaoran Jiang, Ph.D. student at Télécom
Bretagne.
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the size of the network. Moreover, the network has always an active fanal in every

meta-cluster, contradicting the observations made by neurologists that specific

regions in the brain are associated with different stimulations.

In order to dissociate the length of messages and the number of neurons, one

can consider learning sparse messages (that is shorter messages).

However, the proposed network is not directly adapted for the learning of

sparse messages. As a matter of fact, the network requires every cluster to select

a fanal and therefore forces all characters to be retrieved.

Yet it is possible to slightly modify the dynamic rules of the network so that it

becomes adapted to sparse messages. Actually, the learning process is not mod-

ified. Thus, the clique printed in the network after the learning of a message is

that containing all the fanals corresponding to its characters.

In order to enable the retrieving of messages, we have to restrict the set of pos-

sible messages. Note that with each message is associated a unique sub-network

where only the clusters corresponding to non-absent characters are considered.

By forcing sub-networks to satisfy some constraints it is possible to retrieve sparse

messages with no need for modifying deeply the network principles.

The constraint we propose is that distinct sub-networks should not share

more than a single cluster in common. Also, for more simplicity, we force the

different sub-networks to address the same number of clusters. In other words,

if we index each cluster by a number and represent a sub-network by a binary

word that contain “1” at the locations corresponding to the cluster it addresses

- “0” elsewhere -, the sub-networks will form a constant-weight code with over-

lapping r = 1.

There are two reasons why this constraint is a good choice - though it is not

likely to be the best one. The first one is that any sub-network can be unam-

biguously retrieved given only two clusters. The second one is that the density

between two given clusters is only affected by the learnings on a single sub-

network.

Figure 5.17 depicts an example of a list of sub-networks compatible with the

constraint previously defined.

5.3.2.2 Decoding process

During the decoding process, the network must identify without ambiguity the

sub-network a partially erased sparse message is addressed to. As sub-networks

may share up to a single cluster in common, the partial information has to con-

tain at least information on two clusters. This is not really a restriction as trying
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Figure 5.17: Example of sub-networks made of 3 clusters each such that they do not
share more than one cluster in common.

to retrieve messages having only pieces of information in a single cluster would

limit dramatically the number of learned messages (to at most l).

To recognize whether a cluster should be activated or not - whether it is part

of the sub-network or not -, we add a time diversity to the network. Actually, we

use the fact that if clusters are not characteristic to sub-networks, connections

on the other hand specify two clusters each and are therefore characteristic to

sub-networks. In other terms, one can add to connections a temporal signature

associated with the sub-network it corresponds to (that is: use an edge-coloured

graph).

For instance, let us consider that every sub-network si is characterized by a

time propagation ti. If the network is initialized with pieces of information on

two clusters belonging to sub-network si, other clusters in si will receive two in-

coming signals - one for each cluster provided with information - at the same

time (that is ti). On the other hand, some other clusters will possibly receive two

signals but, if so, at different times. Indeed, if they receive signals at the same

time, this means that those two clusters belong to the same sub-network, and as

pairs of clusters are characteristic of sub-networks, it necessarily corresponds to

si.

Thus, adding a minimal activity condition on fanals (corresponding to thresh-

old σ = 2) and forcing time coincidence in order to aggregate different inputs,

the modified network is able to select and restrain its activity to the correct sub-

network. In addition, note that the amount of memory necessary to store those

propagation times is negligible and will therefore not have a significant impact

on efficiency. These considerations for synchronisation echo to neurobiological

literature [8].
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5.3.2.3 Performance

As already explained, sub-networks form a constant weight code with length c,

weight c′ and overlapping r = 1. According to section 4.2.2, one may find up to
c(c−1)
c′(c′−1) such sub-networks if c′ is a prime number and c a power of c′.

Using Equation 5.12, if l is large enough and as a first approximation, the

number of messages our network can learn is

M = αl2

where α > 0. If the network is made of c clusters, this equation may be rewritten

as follows:

M = α
(n
c

)2

With the same total of neurons, and if one divide the size of clusters by c′ (that

is multiply the number of clusters by c′), this number is reduced to:

Mc′ = α
( n

cc′

)2

But on the other hand, rather than learning messages in the whole network,

one can prefer learning messages on the sub-networks previously defined of c

clusters each. They will then all be able to learn Mc′ messages each, leading to a

total of:

Msparse =
cc′(cc′ − 1)

c(c− 1)
α
( n

cc′

)2
(5.16)

≈ α
(n
c

)2
(5.17)

It is thus possible to maintain the same number of learned messages while

decreasing l (and increasing c accordingly) if the latter are sparse.

Actually, by giving a closer look to Equation (5.13), it can be observed that l

has a double impact on performance: it decreases the probability of error as it

grows since the density decreases, but it also increases the former since there are

more competition between the fanals in the clusters. In other words, when one

cluster in the network is not provided with information, it corresponds to a bigger

erasure on the input if l is larger.
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Considering this property, one can expect to increase diversity when con-

sidering sparse messages. Simulations support this remark: with c = 5

clusters of l = 2500 neurons, and considering a division of clusters in

c′ = 25 parts each, the diversity is multiplied by a factor of 3.2 and ca-

pacity by a factor of 2.5 with the same error probability.





6
Conclusion, opening

6.1 Conclusion

We have considered different ways to embed coding techniques into neural net-

works in order to increase their performance as associative memories. First we

have shown that cliques are easily controllable entities that are perfect candi-

dates for the storage of pieces of information in neural networks. We also pro-

posed a very simple way to associate pieces of information with virtual cliques

giving a much better performance than the state-of-the-art HNN.

Then we showed that several codes can be efficiently decoded using neural

networks: constant weight codes and c-cliques. We presented a way to introduce

codes in the heart of the HNN dynamic, which considerably increased the num-

ber of learnt messages as well as the retrieving performance.

Finally, we introduced an original network that almost achieves optimality.

It uses c-cliques and constant weight codes as the heart of its learning and re-

trieving scheme. It can be easily adapted to be scalable and to present efficient

performance on correlated messages.

Associative memories give an answer to just a very small part of the question

of the storage of pieces of information in the brain. They do not consider com-

putation, and they would not be in any case sufficient to model a brain mimetic

device. Nevertheless, they seem to be at the very heart of the human capability

to store, retrieve and, above all, combine pieces of information. As far as those

aspects are concerned, the model described in this document is extremely satis-

fying in various aspects.

An aspect of prime importance is the biological plausibility. From this point

of view, the improvements given by the network presented in Chapter 5, by com-

parison with the HNN, are sizeable.

Neurons are binary, like in the HNN, but with positive values (0 or 1). They
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are grouped into clusters having fanals with similar activity (i.e. addressing the

same sub-message). Those clusters are linked one to each other through neu-

ral cliques, producing a sparse coding of the impulse. The number of messages

learnt can be made independent of the number of neurons (with the limit of the

efficiency), as well as from their size. Actually, one should not consider drawing

an analogy directly between fanals and neurons in the neocortex. A more plau-

sible comparison would be to associate fanals with mini-columns, each of them

being seen as a specific machinery implementing the various roles of fanals.

The dynamic of the network is completely compatible with some observa-

tions recently published in the neurobiology literature. For instance, in [42] is

described an experience in which the neurons of a cat are excited. This leads to

the activity of a set of other neurons that completely change when a neighbour

neuron is excited instead. The same experience on our network would lead to the

same observation: the activation of a fanal would activate a clique completely

different from the one we would obtain by activating another fanal.

The network is sparse, and connections are also binary (0 or 1). Those con-

nections are resistant to noise, and coherent with the Hebbian rule. The activity

can be restricted to several clusters, possibly in a neighbourhood, offering a large

number of openings on the way information is carried over the different clus-

ters. Finally, the dynamic of the retrieving process requires a very few iterations,

either in synchronous or asynchronous ways, and provide the network with an

increasingly precise idea of its convergence state.

Yet the bidirectional connections are still a major drawback. They do not cor-

respond to any plausibility. The possibility to consider unidirectional connec-

tions instead has already been considered, and should appear in an upcoming

thesis. Unidirectionality allows the network to learn sequence of sub-messages,

providing the network with a temporal dimension. They also allow it to learn ar-

bitrary long messages (even longer than the number of neurons), using the same

clusters at different times during the learning and decoding process. Figure 6.1

depicts this idea.

Another aspect of prime importance is the performance of the network.

Concerning the diversity, the number of messages the network can learn grows

quadratically with its size, leading to the upper-bound introduced in the first sec-

tion. Compared to the state of the art, this is a dramatic increase as the gain is

asymptotically infinitely large. On typical sizes (several hundreds of neurons), it

corresponds to a factor of several hundreds.

Regarding capacity, the proposed networks are able to surpass efficiency 1,

leading to a compression of the inputs. This ability is far better than that of the
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Figure 6.1: Use of unidirectional connections to learn arbitrary long sequential messages

HNN which tends to zero as the number of neurons tends to infinity. It allows the

proposed network to be a very interesting candidate for new memories based on

associative functioning.

The main interest of the work described in this document is that it shows

one does not need to find a trade-off between biological plausibility and

efficiency. Both aspects can be plainly satisfied without any conflict.

6.2 Openings

A very interesting opening consists of pointing out that the network presented in

Chapter 5 is ready to learn any kind of data. This original memory device arises

a lot of openings on how these intertwined representations of information could

enable cross breeding or production of new one.

There is still a lot of work to be done, all the more since this memory is at the

junction of three main domains: neurobiology, cognitive science and computer

science. Some openings are described in Figure 6.2.

They are classified into three main concepts.

6.2.1 Biological aspects

To bring our model closer to biological aspects, the neurons should be consid-

ered with the spiking neuron model. This model is considered by a large part
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Figure 6.2: Mind map of openings.

of the community to be rich enough to allow parallels between neurobiological

observations and artificial networks dynamics.

The last improvement presented in this document adding sparsity to the mes-

sages also corresponds to some recent papers where synchronisation is of impor-

tance and should be investigated further [8].

Up to now, we regarded signals between neurons as binary and non impul-

sional. It is quite different in the cortex where neurons share information in the

form of spikes. There are two ways to respond to this observation, depending on

whether one considers the arrival times of these pulses as critical or not (actually

these two standpoints correspond to two distinct schools of thought in neurobi-

ology). If we assume that synapses keep the effects of the incident spikes in brief

memory and that the spikes arrive in a time window long enough to enable the

summation of these effects, then the problem can be considered as a static one.

On the other hand, if the times of arrival of multiple spikes are important in the

decision-making of neurons, we have to add a temporal dimension to our neural

model. This could be a very interesting opening since introducing a space-time

filtering constraint on the neuronal activity could lead to a powerful way to select

a particular clique among a huge number.

We have also to remember that the brain is not a deterministic machine. Neu-

ronal noise is assuredly one of the reasons that explain this. Noise can be very
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easily introduced in the proposed networks, in various ways, either on the synap-

tic weights (ideally 0 or 1) or on the activity thresholds of neurons and clusters. In

the space-time version of the model, noise could also affect propagation delays.

It is obvious that in such situations, noise can play an important role that could

explain why the recall of a particular learnt piece of information from a distorted

version of it can be very erratic.

The network model we advocate lends itself to the study of neural wave prop-

agation as brought to the fore by some recent experiments [42]. This undulatory

behaviour is that of a non linear dynamic system with a huge number of vari-

ables. It is then impossible to analyse it with mathematical tools; in return, it

could be simulated as a propagation medium (cliques can propagate their activ-

ity through overlapping vertices and edges) and interpreted: it will be very inter-

esting to discover what the physical characteristics of this medium are, from a

macroscopic point of view.

6.2.2 Computing aspects

The effectiveness of these associative memories make them perfect candidates

for an alternative to index-based classical memories. In the field of computer

science, a lot of algorithms would benefit from a dedicated hardware able to re-

alise such operations in a restricted time.

This would imply a lot of open work, from the design of circuits to the formal-

isation of the notion of associative memories, and the consideration of library

to interface programming languages with dedicated hardware. A library has al-

ready been programmed during the thesis and its documentation is available in

Appendix C.

Other improving aspects would include the consideration of distorted mes-

sages. If we want the networks to be able to recover such messages or situations,

we need to relax the winner-take-all rule and propose a new one giving the pos-

sibility of activating a small population within each cluster, according to some

vicinity law yet to be discovered. This is a typical problem in error correcting

decoders related to the concept of soft input. A soft input does not impose a

value (either 0 or 1) but gives a probability on this value. In the neural network, a

soft input would excite one particular neuron but also excite its neighbours, to a

lesser degree.
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6.2.3 Cognitive aspects

If one wants to dig further into the possibility to develop a machine able to ma-

nipulate information and based on these memories, he would have to consider a

lot of open questions.

First of all, it is clear that this machines lack objectives, which should be re-

lated to the notions of attentiveness, or pertinence. Moreover, the ability to learn

higher-order data would require to consider the learning of meta-cliques, which

has not been investigated so far.

For the need of comparison with the state of the art, we have so far considered

binary messages. Since we want to design cognitive machines, the binary mes-

sages have to be replaced with cognitive messages. This opens questions on the

definition of those cognitive messages (writing, meaning, strength, class, etc.)

that these networks will be able to store and process. Such questions will have

to be addressed in the light of the knowledge sciences outcomes, in particular

ontology metadata.

Another, and probably the most important point is about the data structure

properties. Unlike classical memories in which messages are stored in separate

physical places, these networks store overlapping messages (the cliques share

vertices and/or edges). Therefore, the recall of a particular message has a certain

influence on closely related cliques, that is, other pieces of information which

can become relevant under conditions to investigate.
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A
Efficiency gain with non-ordering of

messages

Let us show that the non-ordering of messages can result in an arbitrarily large

efficiency, even when no message has been learnt a large number of times.

First, let us recall that the efficiency is measured as the ratio between the

amount of information learnt to the amount of information used to store the

messages.

We introduce the prefix tree acceptor [43] associated with a set of messages.

This tree, which is a particular automaton, is the smallest one (in terms of num-

ber of nodes) that recognize exactly these messages.

For instance, the prefix tree acceptor associated with the learning set

{00000, 01000, 10000, 01001, 01110}

made of M = 5 messages of length n = 5 is depicted in Figure A.1.

1

0

0 0 0 0

1

0 0 0

1
1 0

1

0
0 0 0

Figure A.1: Example of the prefix tree acceptor associated with the learning set
{00000, 01000, 10000, 01001, 01110}. Accepting states are denoted by double lines and
transitions are labelled by symbols (either 0 or 1).

To encode this structure into a classical memory, we simply list all branches
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using the following coding system: only the values from the first connection that

differ from the previously listed branch are denoted (all are denoted if it is the first

branch). So, for the prefix tree depicted in Figure A.1, the result of the encoding

is:100000100011100000
For instance, the two lines010001

mean that the tree contains the branch 01000 and the branch that is the same

with the difference that the last symbol is 1, that is: 01001.

Using this coding system, the number of needed symbols is simply the sum of

C the number of connections in the prefix tree and as many newline symbols as

messages, that is a total of C +M symbols. These symbols, in the case of binary

messages, are encoded over 3 values: {0; 1} and the newline symbol. Thus this

encoding requires a total of (C +M) log2(3) bits. This value has to be compared

with the amount of information learnt, that is: Mn bits.

If messages are i.i.d., the number of expected connections can be estimated

as follows: the probability that a given connection has been used is the probabil-

ity that a message matches the associated prefix. If this connection is at depth k,

then this probability is:

Pk(M) = 1− (1− (2−k))M

Since there are 2k distinct possible connections at depth k, the expected num-

ber of connections is:

C(n,M) =
n∑

k=1

2kPk(M)

Figure A.1 shows the evolution of the ratio Mn
C(n,M) , that is the expected effi-

ciency of the prefix tree acceptor, in function of the number of learnt messages

M , and for various sizes of messages n. Note that the probability that a message

is present two times in the learning set is less than 0.1 in all cases. We can see that

the efficiency can be made larger than 1 using prefix tree acceptors.
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B
Optimal construction of constant weight

codes

The next paragraphs present an upper bound for the number of elements in a

constant weight code of length n, weight w and overlapping r. Then a construc-

tive lower-bound that merges the upper one in some cases is presented.

The estimation of an upper bound is trivial: let us consider a codeCcw(n,w, r).

The constraint on the distance can be rewritten as follows: a codeword c ∈ Ccw(n,w, r)

defines
(

w
r+1

)
constraints corresponding to as many subsets of r+ 1 symbols that

cannot be found in another codeword. In other terms, if a word contains r + 1

characters at specific locations, no other word can contain the same ones at the

same locations and each word defines
(

w
r+1

)
such constraints.

On the other hand, the total number of available constraints is
(

n
r+1

)
.

Therefore an upper-bound for the number of codewords in a codeCcw(n,w, r)

is:

U b

C
(
cwn,w,r)

=
r∏

i=0

n− i

w − i
(B.0)

This upper bound is fairly accurate as we shall develop in the following para-

graphs. It is interesting to point out that once again a good compromise has to

be found between minimum distance and rate of the code.

The lower bound is much more complicated to estimate. The following para-

graphs give a constructive top achieving lower bound in some specific cases.

Let us consider as a first constraint that w is a prime number, that the code is

binary, that r = 1 and then let us add that ∃p, n = wp. Under those conditions,

the lower bound described beneath is achieving the upper bound.

To construct our words, we will consider a recursive method that will consist

in p steps. At each step, words are being added to a growing set of already consid-
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ered codewords such that they remain all together consistent with the constraints

of the constant weight code.

At step 1, the codewords that are being added to the code are those in:

S1 = {0iw1w0n−w(i+1), 0 ≤ i <
n

w
} (B.1)

Those codewords have no overlapping and therefore are trivially verifying the

constant weight constraint.

At step q+1, words contain their non-zero characters on predetermined pack-

ets of wq+1 bits. More precisely, the words added in Sq+1 are also in {0iwq+1
(0 +

1)w
q+1

0n−(i+1)wq+1
, 0 ≤ i < n

wq+1}. Those are not in conflict with the words previ-

ously defined:

Sq+1 = {0iw
q+1

S′
q+10

n−(i+1)wq+1
, 0 ≤ i <

n

wq+1
} (B.2)

Where:

S′
q+1 =

{
wq+1∏

v=0

0(v∗j+l (mod wq+1))10w
q+1−1−(v∗j+l (mod wq+1)), (B.3)

0 ≤ j < wq+1, 0 ≤ l < wq+1

}

It would be fastidious to prove the correctness of this construction. At the

end, the code is obtained as the disjoint union of the different Si:

S =

p⋃

q=1

Sq (B.4)

Thus, the number of codewords is:

#S =

p∑

q=1

n

wq
w2q−1

=
n

w

1− wp

1− w

=
n(n− 1)

w(w − 1)
(B.2)
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Figure B.1: Representation of the 775 codewords obtained with the previously described
construction and being part of a constant weight code with n = 125, w = 5 and r = 1.
Codewords are represented by large black squares, “1” in a codeword by a lighter small
square. This construction is optimal.

Thus we are able to build, for r = 1, w a prime number and ∃p, n = wp,

a constant weight code that achieves optimality as far as the rate of the

code is concerned (or indifferently the merit factor). This result is used in

Chapter 5.

Figure B.1 depicts the 775 codewords obtained with this method when n =

125, w = 5 and r = 1. This construction is optimal.





C
OCaml library for our proposed

associative memories

This appendix contains the documentation of a library that was developped dur-

ing the thesis. This library is available for OCaml1 and is licensed under GPL. It

can be downloaded from the Caml-Hump2.

The library is provided with an example of use corresponding to the curve

depicted in Figure 5.9.

C.1 Module Sam : Sparse Associative Memories

The module Sam allows common operations on sparse associative memories ac-

cording to the model introduced in Chapter 5. They store tuples of elements

(called messages of characters) such that they are able to retrieve them given

only partial information with a good probability. This implementation allows to

consider associative memories of any type. On the other hand, performance is

limited: it can be 10 times longer than using an ad hoc construction (it uses hash

tables at multiple locations). A typical use is:

• # let sam = Sam.
reate 4;;val sam : '_a Sam.t = Sam.Sam [|<abstr>; <abstr>; <abstr>; <abstr>|℄
• # Sam.add sam [|"Hel";"lo";" Wo";"rld!"|℄;;- : unit = ()
• # Sam.retrieve_unique sam [|None; Some "lo"; None; Some "rld!"|℄;;- : string array = [|"Hel"; "lo"; " Wo"; "rld!"|℄

1OCaml is a programming language developped at INRIA.
2http://caml.inria.fr/cgi-bin/hump.cgi?contrib=762
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• # Sam.add sam [|"H";"i";" Wo";"rld!"|℄;;- : unit = ()
• # Sam.retrieve sam [|None; None; Some " Wo"; Some "rld!"|℄;;- : string list array = [|["H"; "Hel"℄; ["i"; "lo"℄; [" Wo"℄; ["rld!"℄|℄type 'a t = {mutable max_iterations : int ;mutable total_iterations : int ;mutable nb_retrievals : int ;size : int ;length : int ;table : ('a, ('a, bool) Hashtbl.t array) Hashtbl.t array ;lists : ('a, 'a list array) Hashtbl.t array ;}

Type for internal representation of sparse associative memories.val 
reate : ?length:int -> int -> 'a tSam.
reate n creates an associative memory working on n characters.Sam.
reate �length:l n creates an associative memory working on n

characters with the information that the number of different characters

will be about l.val size : 'a t -> intSam.size sam returns the number of characters in messages in sam.val add : 'a t -> 'a array -> unitSam.add sam motive adds message motive to the sam described by sam.

Learning a second time the same message will leave the sam unchanged.val retrieve_from_lists :'a t -> ?iterations:int -> 'a list array -> 'a list arraySam.retrieve_from_lists ?iterations sam listed_motives takes an

array of lists of characters as argument, which contains the possibilities at

each position. The list [℄ is interpreted as being all possibilities for

associated character. It iterates until reaching a fixed point unless a

maximum number of iterations is given.val retrieve : 'a t -> ?iterations:int -> 'a option array -> 'a list array



C.1. Module Sam : Sparse Associative Memories 109Sam.retrieve sam some_motive considers None values as characters to be

retrieved. It is equivalent to Sam.retrieve_from_lists samlisted_motives when listed_motives is the same array as some_motive
where Some x has been replaced by [x℄ and None by [℄.ex
eption Not_unique
Exception raised when finding several solutions in the decoding ofretrieve_unique.val retrieve_unique : 'a t -> ?iterations:int -> 'a option array -> 'a arraySam.retrieve_unique sam some_motive is the same as Sam.retrieve but it

gives as a result the unique retrieved pattern. If several are decoded, it

raises exception Not_unique.val alphabet : 'a t -> int -> 'a listSam.alphabet sam i returns the list of all used characters at position i insam.val density :?length:int -> 'a t -> floatSam.density sam returns the density of sam considering only used

characters. Sam.density �length=l sam returns the density of sam
considering that characters can take l different values.val average_iterations : 'a t -> floatSam.average_iterations sam returns the average number of iterations

during the previously retrievals realized on sam.val max_iterations : 'a t -> intSam.max_iterations sam returns the maximum number of iteration

observed for a single retrieval previously realized on sam.
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