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Motivation

Associative memory
Principle: retrieve a previously stored message given part of its
content,
Used in CPU caches, databases, intrusion detection systems. . .

Framework
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Error correcting codes

Neural network
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Existing techniques

Parameters
Diversity (# of messages), memory efficiency, speed convergence,
error rate. . .

Electronics
CAMs
Pros:
Speed,
Error rate.

Cons:
Power consumption,
Flexibility.

Neural networks
Hopfield Networks
Pros:
Flexibility
Redundancy.

Cons:
Error rate,
Diversity and memory
efficiency.
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Inspiration from neural network

Architecture
Partition into macrocolumns, microcolumns,
Population coding,
Neural clique (set of neurons fully interconnected).

Laws
Hebb’s rule (creation of connections between simultaneously
activated neurons),
Aggregation of inputs in neurons (McCulloch and Pitts’ model),
Local winner-take-all.
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Bio-inspired error correcting codes

Definition
Encoding of pieces of information into distant representations in order
to protect them against noise.

Thrifty code

winner-take-all

Clique code
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How to store?

Message to store: 1000001100101001
Let us use a network of c = 4 clusters of l = 16 neurons each,
1000︸ ︷︷ ︸
j1 in c1

0011︸ ︷︷ ︸
j2 in c2

0010︸ ︷︷ ︸
j3 in c3

1001︸ ︷︷ ︸
j4 in c4

,
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How to retrieve?

1000︸ ︷︷ ︸
j1 in c1

0011︸ ︷︷ ︸
j2 in c2

0010︸ ︷︷ ︸
j3 in c3

????,

Projection to the
network,
Global decoding: sum,
Local decoding:
winner-take-all,
Possibly iterate the
two decodings.
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Performance as an associative memory

Context
Retrieve a previously stored message given half its bits.

Error probability
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network density

c = 8 clusters of l = 256
neurons each (∼ messages
of 64 bits).

Hopfield network equivalent: 60 messages stored.
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Performance as a classifier

Type I error
No Type I error: a stored message is always recognized.

Type II error
Type II error is not zero: a non stored message may be recognized.
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Type II error rate for
various number of clusters
c and for l = 512 neurons
per cluster.
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Performance against connections erasures

Context
Connections are erased at random.

Error probability
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0.1% of connections failures

c = 8 clusters of l = 256
neurons each (∼ messages
of 64 bits). 4 symbols
missing.
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Performance against components faults

Context
Neurons occasionally miss fire.

Error probability
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c = 8 clusters of l = 256
neurons each (∼ messages
of 64 bits). 4 symbols
missing.
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Conclusion

Performance
Nearly optimal associative memories,
Simple and concurrent functionning,
Parameters to balance performance and complexity.

Robustness and applications
Reliable on unreliable hardware,
Can be directly used as a cache, a set implementation or a
database engine.
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Questions
Thank you for your attention, I am at your disposal if you have any
questions.

If you read French To learn more
Visit:
http://www.vincent-gripon.com/?p1=100

XKCD of January 21st, 2013.
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