Neural coding: a perspective for new associative memories

Vincent Gripon

Télécom Bretagne

February 26, 2012

Vincent Gripon (Télécom Bretagne)

Plan

Introduction

- Challenge
- Approach

2) Our model

- Principle
- Performance
- Application example

3 Direction: learning sequences

Openings

Challenge

Context

Exponential growth of the amount of information

Challenge

Challenge

Context

Exponential growth of the amount of information

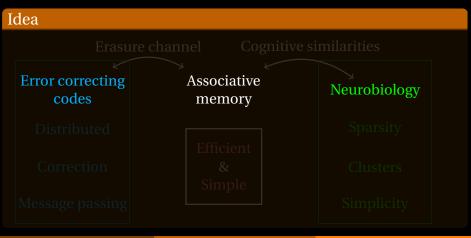
Challenge

User	Difficult to find the desired piece of information.
Engineer	Algorithms complexity is limiting, Ad-hoc solutions are often required.

Vincent Gripon (Télécom Bretagne)

Definition

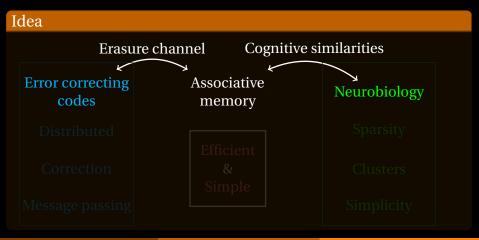
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

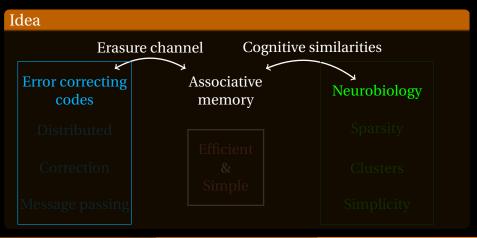
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

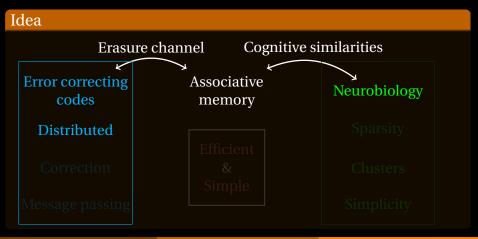
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

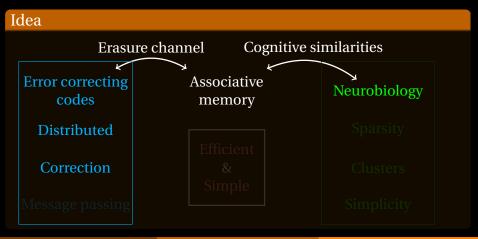
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

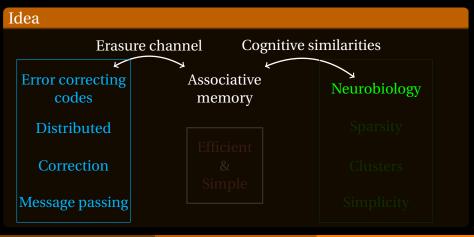
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

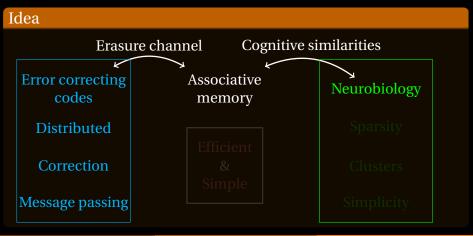
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

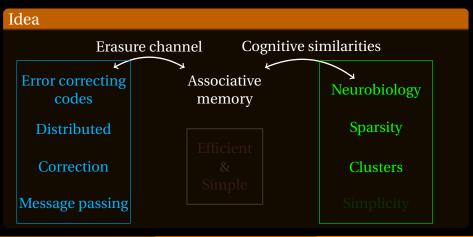
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

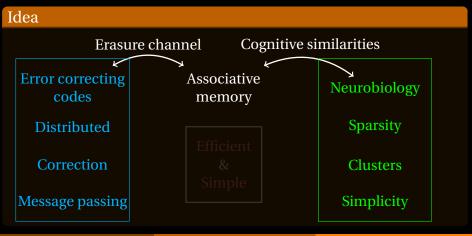
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

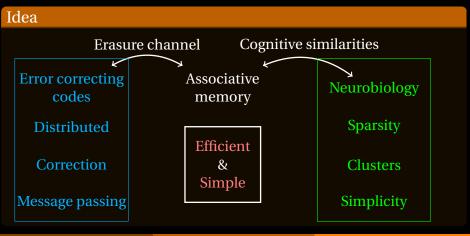
Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Definition

Associative memory = device that can retrieve previously learned messages from part of them.



Vincent Gripon (Télécom Bretagne)

Outline

Introduction

- Challenge
- Approach

2) Our model

- Principle
- Performance
- Application example

3 Direction: learning sequences

Introduction

- Challenge
- Approach

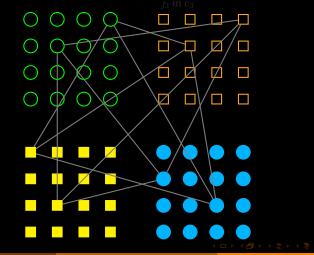
2) Our model

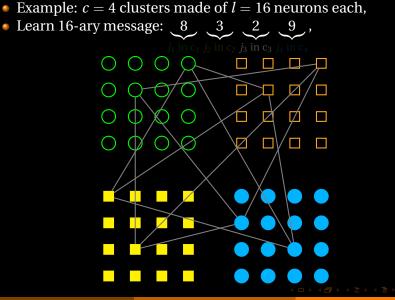
- Principle
- Performance
- Application example

3 Direction: learning sequences

Openings

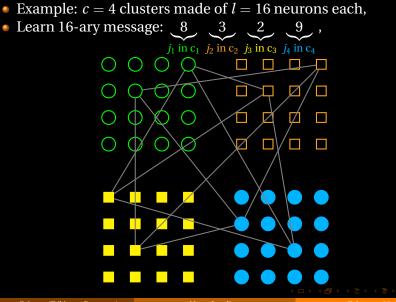
- Example: c = 4 clusters made of l = 16 neurons each,
- Learn 16-ary message:





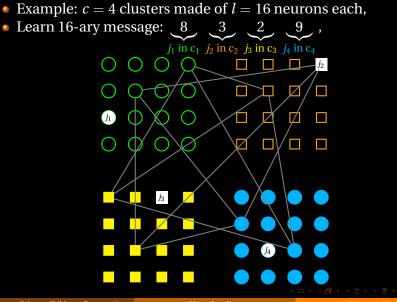
Vincent Gripon (Télécom Bretagne)

Neural coding



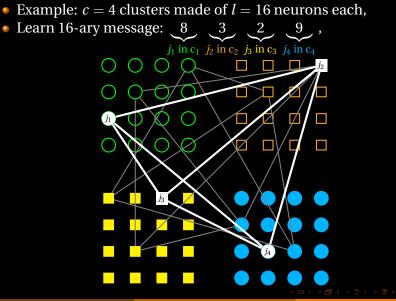
Vincent Gripon (Télécom Bretagne)

Neural coding



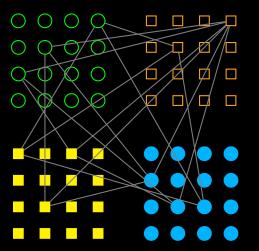
Vincent Gripon (Télécom Bretagne)

Neural coding



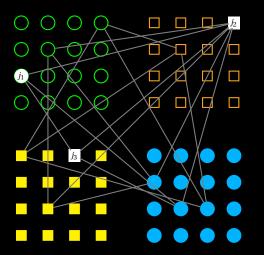
Vincent Gripon (Télécom Bretagne)

Neural coding



- Projection to the network,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

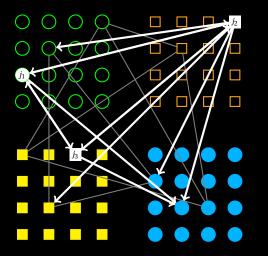
 j_1 in c_1 j_2 in c_2 j_3 in c_3



Projection to the network,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

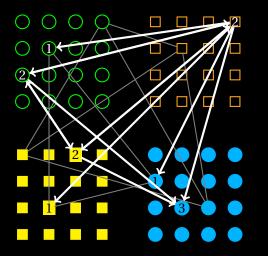
 j_1 in c_1 j_2 in c_2 j_3 in c_3



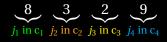
Projection to the network,

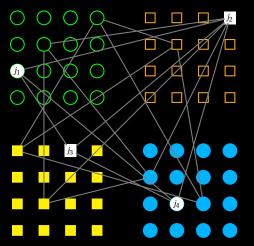
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

 j_1 in c_1 j_2 in c_2 j_3 in c_3

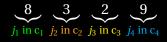


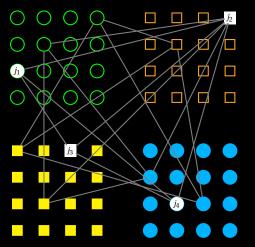
- Projection to the network,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.





- Projection to the network,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

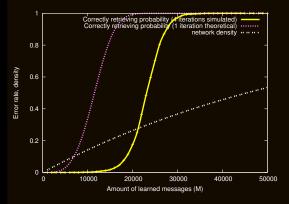




- Projection to the network,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Performance

Associative memory



c = 8, l = 256 neurons each. Input messages have just 4 known symbols.

State-of-the-art Hopfield network

Our network

Vincent Gripon (Télécom Bretagne)

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰,
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰,
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰,
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰,
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

An example: cache design

Role

Speed-up the lookup of frequently accessed data.

Context

- With associativity decreases the miss rate,
- Current implementations are limited to 8-ways associativity,
- Speed and area limitations.

Our proposal

- Adaptation of the network:
 - Given the address, find the associated data,
- Additionnal error probability: 10⁻³⁰,
- Area consumption reduced by 65%,
- Pipelined architecture using a few clock cycles.

Plan

Introduction

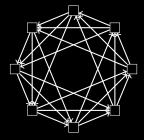
- Challenge
- Approach

2) Our model

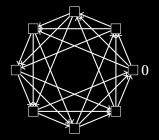
- Principle
- Performance
- Application example

3 Direction: learning sequences

Openings

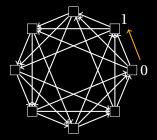


- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.

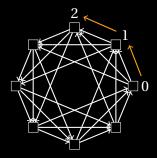


- c = 50 clusters,
- l = 256neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.

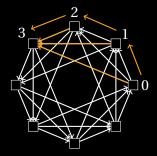




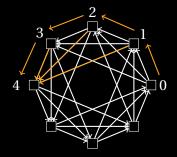
- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.



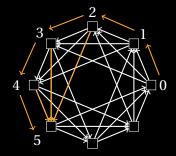
- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



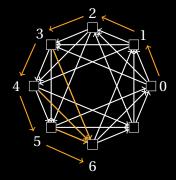
- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



- c = 50 clusters,
- l = 256neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.



- c = 50 clusters,
- l = 256neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.



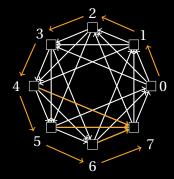
Performance

- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.

Vincent Gripon (Télécom Bretagne)

Neural coding

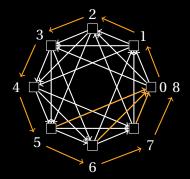
February 26, 2012 12 / 15



Performance

- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.

Vincent Gripon (Télécom Bretagne)



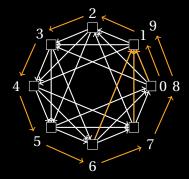
Performance

- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.

Vincent Gripon (Télécom Bretagne)

Neural coding

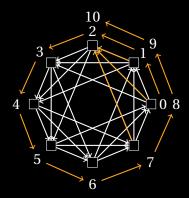
February 26, 2012 12 / 15



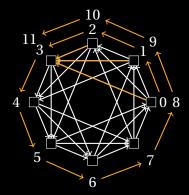
Performance

- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.

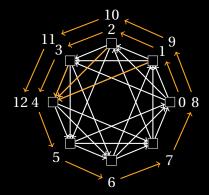
Vincent Gripon (Télécom Bretagne)



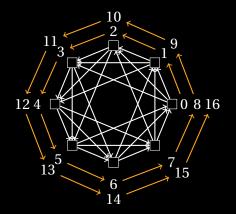
- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



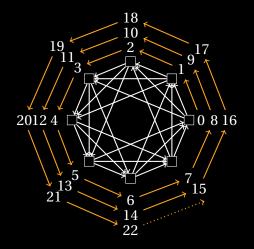
- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



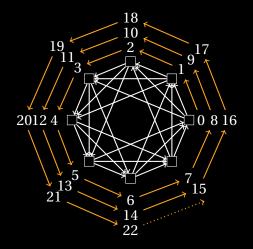
- c = 50 clusters,
- l = 256neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \leq 0.01$.



- c = 50 clusters,
- *l* = 256 neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



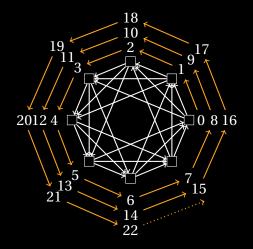
- c = 50 clusters,
- l = 256neurons/cluster,
- L = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.



Performance

- c = 50 clusters,
- *l* = 256 neurons/cluster,
- *L* = 1000 symbols in sequences,
- *m* = 1823 learned sequences,

• $P_e \leq 0.01$.



- c = 50 clusters,
- *l* = 256 neurons/cluster,
- *L* = 1000 symbols in sequences,
- *m* = 1823 learned sequences,
- $P_e \le 0.01$.

Plan

Introduction

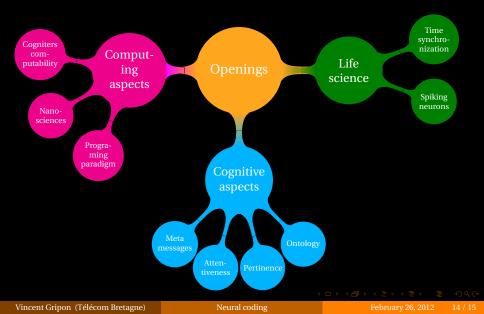
- Challenge
- Approach

2) Our model

- Principle
- Performance
- Application example

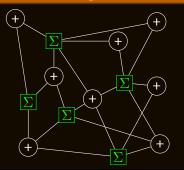
3 Direction: learning sequences

Openings



Thank you for your attention. I am at your disposal if you have any question.

Error correcting code



Neocortical network

