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Context: rossbreeding between information theory andassoiative memoriesAnalogiesError orreting deoding Neural deodingFixed point ↔ Uniqueness of thoughtMinimum distane ↔ Separable memoriesHuge diversity of ombinations ↔ Large memory apaityLow density of graphs ↔ Low density of neoortexResiliene, homeostasis, synhronization, noise impat. . .DissimilaritiesMaximum girth ↔ Random girthBipartite graph ↔ Random graphChosen odewords ↔ Random messagesLinearly dependent odewords ↔ IndependeneVinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 3 / 34
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Assoiative memories, state of the artPrinipleTwo operations:Learn a message,Retrieve a previously learnt message in presene of erasures or errors.An example: the Hop�eld network
i jwij Learning: M binary messages dm:wij = M∑m=1,i 6=j dmi dmj ,Retrieving: repeat

∀i , vi ← sgn(∑j 6=i vjwij).Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 6 / 34
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Performane and boundsHop�eld NetworkDiversity (number of learnt messages): nlog(n) ,Capaity: n2log(n) ,Binary information stored: n(n−1)2 log2(M + 1),
⇒ E�ieny ≈ 2log(n)log2(M+1) .Sensitive onnetions, negative values, diversity and message length
= f (network size), no distintion between a message and itsopposite. . .Theoretial bounds for a Hop�eld-like networkMemory used (onnetions over P values): ≈ n22 log2(P),For e�ieny = 1: ≈ n2 log2(P) messages of length n,If length = k : ≈ n2log2(P)2k .Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 7 / 34
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Error orreting odes, lassial approahSystemati odingOne wants to transmit k bits : 01100..10010,He adds n − k bits : 1110..011,The added bits are a funtion of the initial ones,The odeword is the onatenation of both:01100..100101110..011.Error orreting deodingNoise has been added to the odeword,The losest known one is hosen,A larger distane between odewords leads to betterprobability of suess,
⇒ minimum distane dmin.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 9 / 34
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Error orreting odes, general approahDe�nitionA ode is a set of odewords,No need of systemati part, the assoiation message↔odeword isarbitrary.An example: onstant weight odesCodewords ontain exatly ω 1 and do not share more than α 1 at thesame loations,These are alled onstant weight odes with parameters ω, α and withlength n: C n(ω,α),For instane, C n(1, 0) ontains all odewords with a single 1(C 3(1, 0) = {100, 010, 001}),Weak dmin = 2,but easily deodable, low energy onsumption,Can be aggregated as in distributed odes. . .Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 10 / 34
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Constant weight odes (ω = 1) and neural deodingDeoding
Neural deodingx yf (x+y2 ) f (x−y2 )

f (y−x2 )max(x , y)f (i) = max(0, i) ⇒
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Coding using -liquesExample: 4-liques
1 maximum 4-lique

Cliques and odesMinimum distane (edges): 2( − 1) ≈ 2 ,Rate of the ode ≈ ⌈2⌉ 2( − 1) ≈ 1 ⇒ Merit fator = 2.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 12 / 34
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Coding using -liquesExample: 4-liques
1 maximum 5-lique
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Neural network with sparse odingIdea1000
︸︷︷︸j1 in 1 0011

︸︷︷︸j2 in 2 0010
︸︷︷︸j3 in 3 1001

︸︷︷︸j in  , n neurons (fanals), lusters,
κ bits to address a spei�luster,l = n = 2κ neurons in eahluster,k = κ bits in learntmessages,Sparsity : A unique fanal isative in eah luster.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 14 / 34
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Equations and boundsLearningFanal value: µmbj = 1 if neuron j of luster b is assoiated withmessage m,Wb1j1b2j2 = min( M∑m=1,b1 6=b2 µmb1j1µmb2j2 , 1)DensityAfter M random messages: d ≈ 1− (1− 1l2 )M ,A density lose to 1 orresponds to an overloaded network.Bounds Mmax = ( − 1)n222log2(n )Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 15 / 34
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Retrieving proessIterative proessGlobally, using neurons as adders (lique ode):
∀b1, j1vb1j1 ← ∑j2,b2 6=b1 Wb1j1b2j2µb2j2 + γµb1j1 ,Loally, winner-take-all (onstant weight ode):

∀b, Sbmax = maxj vbj ,
∀b, j , µbj ← { 1 if vbj = Sbmax and Sbmax ≥ σ0 otherwise .Correlation or not orrelationn1 n2 n3 n4 n5 n61 2 3Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 16 / 34
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PerformaneAssoiative memories
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Performanes (suite)Classi�ation
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Comparison in apaityCapaity
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To a fourth level of sparsityGoalInrease performane keeping l onstant.1,2,3. . . and 4Messages of length k ≤ n,A unique fanal in eah luster,Sparse network. . .. . . Sparse messages.Illustration
Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 22 / 34
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Illustration
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Sub-networksControlled sparsityTo avoid epilepsy, sparsity must be guided,For instane, fore messages to address lusters with some properties,
⇒ sub-networks are a ode C ′( , 1),Interest: the global density is diretly given by loal densities.DiversityThe fully addressed network learns up to ≈ α

(n )2 messages,Considering that the number of lusters has been inreased by a fator ′: We have  ′2 sub-networks of  lusters,Eah one learns up to ≈ α
( n′

)2 messages,Conlusion: ≈ α
(n )2.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 24 / 34
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Retrieving proess and other sparsity ontrolsCoinidenesThe retrieving proess is assured this way:Eah ouple of luster is olored by a unique propagation time,Neurons swith ativated only if there is temporal oinidene,The threshold σ ontrols the epilepsy.Other sparsity ontrolsOne an allow α ≥ 1 reoverings,The number of sub-networks beomes  ′α+1,On the other hand, density is more omplex to estimate,It is still an open question to �nd the best ompromise.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 25 / 34
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Another approah: a fratal sparsitywinner-take-all between lusters
Performane and remarksPerformane is the same as before in omparable states,Performane is similar in ase of partial erasures,Messages are oding their own physial loation.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 26 / 34
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Correlated entriesProblemThe learning proess produes arti�ial orrelation but su�ers from that ofmessages.CorrelationsThere are two types of orrelation:Intrinsi: brain and train are learnt → ambiguity on ∗rain.Caused by the model:If the network learns jam, jet and at, it also learns jat. . .Idea: adding hidden signatures to learnt messages:For instane: �jama�, �jetb� and �at�.ExampleLearning the Frenh words with 6 letters,Performane in retrieving proess inrease from 30% to 80%.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 28 / 34
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Plausibility, appliationsBiologial plausibilityPositive neurons, binary onnetions ⇒ strong resiliene ( 6= Hop�eld),Low global density, strong loal interations (small world philosophy),Biologially plausible operations: sum and winner-take-all,Partition into lusters,Neuron speialization. . .AppliationsAssoiative memories,Classi�ation (go no-go),Sort,Assoiating piees of information: independent messages share thesame material.Vinent Gripon, Claude Berrou (TB) Neural oding Jan. 31, 2011 30 / 34
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End of the letureThank you for listening, I am at your disposal if you have any question.
+ +++ ++
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