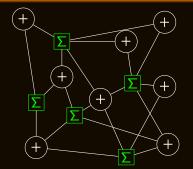
Networks of Neural Cliques

Vincent Gripon Claude Berrou

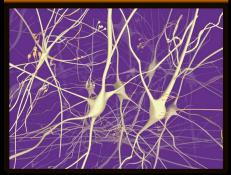
Télécom Bretagne, Lab-STICC

Jan. 31, 2011

LDPC decoder



Neocortical "decoder"



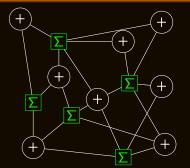
Strong analogy

But where are parity relations?

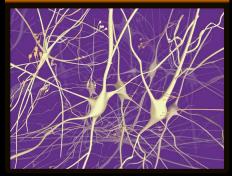
Vincent Gripon, Claude Berrou (TB)

Jan. 31, 2011 2 / 3

LDPC decoder



Neocortical "decoder"



Strong analogy

But where are parity relations?

Vincent Gripon, Claude Berrou (TB)

Jan. 31, 2011 2 / 3

Analogies

Error correcting decodingNeural decodingFixed point \leftrightarrow Uniqueness of thoughtMinimum distance \leftrightarrow Separable memoriesHuge diversity of combinations \leftrightarrow Large memory capacityLow density of graphs \leftrightarrow Low density of neocortexResilience, homeostasis, synchronization, noise impact...

Dissimilarities

- Maximum girth Bipartite graph Chosen codewords Linearly dependent codewords
- Random girth
 Random graph
 Random messages
 Independence

Analogies

Error correcting decodingNeural decodingFixed point \leftrightarrow Uniqueness of thoughtMinimum distance \leftrightarrow Separable memoriesHuge diversity of combinations \leftrightarrow Large memory capacityLow density of graphs \leftrightarrow Low density of neocortexResilience, homeostasis, synchronization, noise impact...

Dissimilarities

- Maximum girth Bipartite graph Chosen codewords Linearly dependent codewords
- \leftrightarrow Random girth
- \leftrightarrow Random graph
- \leftrightarrow Random messages
 - Independence

Vincent Gripon, Claude Berrou (TB)

Neural coding

 \leftrightarrow

Jan. 31, 2011 3 / 3

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

2 Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Associative memories, state of the art

Principle

Two operations:

- Learn a message,
- Retrieve a previously learnt message in presence of erasures or errors.

An example: the Hopfield network

Learning:
$$M$$
 binary messages \mathbf{d}^m : $w_{ij} = \sum_{m=1, i
eq j}^M d_i^m d_j^m,$

Retrieving: repeat $\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij}).$

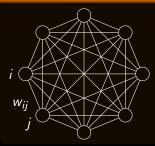
Associative memories, state of the art

Principle

Two operations:

- Learn a message,
- Retrieve a previously learnt message in presence of erasures or errors.

An example: the Hopfield network



• Learning:
$$M$$
 binary messages \mathbf{d}^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

• Retrieving: repeat
$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij})$$

Performance and bounds

Hopfield Network

- Diversity (number of learnt messages): $\frac{n}{\log(n)}$,
- Capacity: $\frac{n^2}{\log(n)}$,
- Binary information stored: $\frac{n(n-1)}{2}log_2(M+1)$,
- \Rightarrow Efficiency $\approx \frac{2}{\log(n)\log_2(M+1)}$.
- Sensitive connections, negative values, diversity and message length = f(network size), no distinction between a message and its opposite...

Theoretical bounds for a Hopfield-like network

- Memory used (connections over P values): $pprox rac{n^2}{2} log_2(P)$,
- For efficiency = 1: $\approx \frac{n}{2}log_2(P)$ messages of length n,

Performance and bounds

Hopfield Network

- Diversity (number of learnt messages): $\frac{n}{\log(n)}$,
- Capacity: $\frac{n^2}{\log(n)}$,
- Binary information stored: $\frac{n(n-1)}{2}log_2(M+1)$,
- \Rightarrow Efficiency $\approx \frac{2}{\log(n)\log_2(M+1)}$.
- Sensitive connections, negative values, diversity and message length = f(network size), no distinction between a message and its opposite...

Theoretical bounds for a Hopfield-like network

- Memory used (connections over P values): $\approx rac{n^2}{2}log_2(P)$,
- For efficiency = 1: $\approx \frac{n}{2}\log_2(P)$ messages of length n,
- If length = k: $\approx \frac{n^2 \log_2(P)}{2k}$

Performance and bounds

Hopfield Network

- Diversity (number of learnt messages): $\frac{n}{\log(n)}$,
- Capacity: $\frac{n^2}{\log(n)}$,
- Binary information stored: $\frac{n(n-1)}{2}log_2(M+1)$,
- \Rightarrow Efficiency $\approx \frac{2}{\log(n)\log_2(M+1)}$.
- Sensitive connections, negative values, diversity and message length = f(network size), no distinction between a message and its opposite...

Theoretical bounds for a Hopfield-like network

- Memory used (connections over P values): $\approx rac{n^2}{2}log_2(P)$,
- For efficiency = 1: $\approx \frac{n}{2}log_2(P)$ messages of length n,

• If length
$$= k$$
: $pprox rac{n^2 \log_2(P)}{2k}$.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Systematic coding

- One wants to transmit k bits : 01100..10010,
- He adds n k bits : 1110..011,
- The added bits are a function of the initial ones,
- The codeword is the concatenation of both: 01100..100101110..011.

- Noise has been added to the codeword,
- The closest known one is chosen
- A larger distance between codewords leads to better probability of success,
- \Rightarrow minimum distance d_{\min} .

Systematic coding

- One wants to transmit k bits : 01100..10010,
- He adds n k bits : 1110..011,
- The added bits are a function of the initial ones,
- The codeword is the concatenation of both: 01100..100101110..011.

- Noise has been added to the codeword,
- The closest known one is chosen
- A larger distance between codewords leads to better probability of success,
- \Rightarrow minimum distance d_{\min} .

Systematic coding

- One wants to transmit k bits : 01100..10010,
- He adds n k bits : 1110..011,
- The added bits are a function of the initial ones,
- The codeword is the concatenation of both: 01100..100101110..011.

- Noise has been added to the codeword,
- The closest known one is chosen,
- A larger distance between codewords leads to better probability of success,
- \Rightarrow minimum distance d_{\min} .

Systematic coding

- One wants to transmit k bits : 01100..10010,
- He adds n k bits : 1110..011,
- The added bits are a function of the initial ones,
- The codeword is the concatenation of both: 01100..100101110..011.

- Noise has been added to the codeword,
- The closest known one is chosen,
- A larger distance between codewords leads to better probability of success,
- \Rightarrow minimum distance d_{\min} .

Systematic coding

- One wants to transmit k bits : 01100..10010,
- He adds n k bits : 1110..011,
- The added bits are a function of the initial ones,
- The codeword is the concatenation of both: 01100..100101110..011.

- Noise has been added to the codeword,
- The closest known one is chosen,
- A larger distance between codewords leads to better probability of success,
- \Rightarrow minimum distance d_{\min} .

Error correcting codes, general approach

Definition

A code is a set of codewords,

 No need of systematic part, the association message↔codeword is arbitrary.

An example: constant weight codes

- Codewords contain exactly ω 1 and do not share more than α 1 at the same locations,
- These are called constant weight codes with parameters ω , α and with length *n*: $C^n(\omega, \alpha)$,
- For instance, $C^{n}(1,0)$ contains all codewords with a single 1 $(C^{3}(1,0) = \{100,010,001\}),$
 - Weak d_{min} = 2,
 - but easily decodable, low energy consumption,
 - Can be aggregated as in distributed codes..

Error correcting codes, general approach

Definition

- A code is a set of codewords,
- No need of systematic part, the association message↔codeword is arbitrary.

An example: constant weight codes

- Codewords contain exactly ω 1 and do not share more than α 1 at the same locations,
- These are called constant weight codes with parameters ω, α and with length n: Cⁿ(ω, α),
- For instance, C'(1,0) contains all codewords with a single 1 $(C^{3}(1,0) = \{100,010,001\}),$
 - Weak $d_{\min} = 2$,
 - but easily decodable, low energy consumption,
 - Can be aggregated as in distributed codes...

Constant weight codes $(\omega=1)$ and neural decoding

Decoding

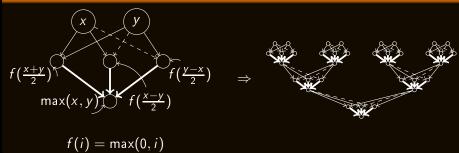
Neural decoding

$f(i) = \max(0, i)$

Constant weight codes $(\omega=1)$ and neural decoding

Decoding

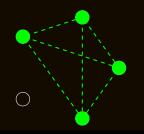
Neural decoding



Vincent Gripon, Claude Berrou (TB)

Jan. 31, 2011 11 /

Example: 4-cliques

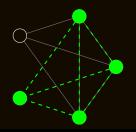


1 maximum 4-clique

Cliques and codes

- Minimum distance (edges): 2(c-1)pprox 2c,
- Rate of the code $\approx \left[\frac{c}{2}\right] \frac{2}{c(c-1)} \approx \frac{1}{c} \Rightarrow$ Merit factor = 2

Example: 4-cliques

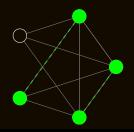


2 maximum 4-cliques

Cliques and codes

- Minimum distance (edges): 2(c-1)pprox 2c,
- Rate of the code $\approx \left\lceil \frac{c}{2} \right\rceil \frac{2}{c(c-1)} \approx \frac{1}{c} \Rightarrow$ Merit factor = 2

Example: 4-cliques

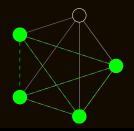


2 maximum 4-cliques

Cliques and codes

Minimum distance (edges): 2(c - 1) ≈ 2c,
Rate of the code ≈ [c/2] 2/c(c - 1) ≈ 1/c ⇒ Merit factor = 2.

Example: 4-cliques



1 maximum 5-clique

Cliques and codes

Minimum distance (edges): 2(c - 1) ≈ 2c,
Rate of the code ≈ [^c/₂] ²/_{c(c-1)} ≈ ¹/_c ⇒ Merit factor = 2.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

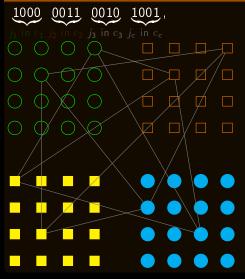
- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Neural network with sparse coding

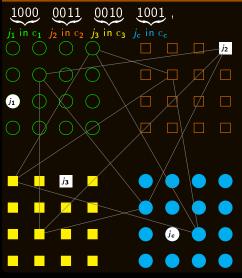
Idea



- n neurons (fanals),
- c clusters,
- κ bits to address a specific cluster,
- $l = \frac{n}{c} = 2^{\kappa}$ neurons in each cluster,
- $k = c\kappa$ bits in learnt messages,
- Sparsity : A unique fanal is active in each cluster.

Neural network with sparse coding

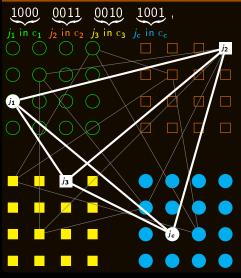
ldea



- n neurons (fanals),
- c clusters,
- κ bits to address a specific cluster,
- *l* = ^{*n*}/_{*c*} = 2^κ neurons in each cluster,
- $k = c\kappa$ bits in learnt messages,
- Sparsity : A unique fanal is active in each cluster.

Neural network with sparse coding

Idea



- *n* neurons (fanals),
- c clusters,
- κ bits to address a specific cluster,
- *l* = ^{*n*}/_{*c*} = 2^κ neurons in each cluster,
- k = cκ bits in learnt messages,
- Sparsity : A unique fanal is active in each cluster.

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^M \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After M random messages: $d pprox 1 (1 rac{1}{l^2})^M$,
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^{M} \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After *M* random messages: $d \approx 1 (1 \frac{1}{l^2})^M$, *P*(connection)
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^{M} \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After M random messages: $d \approx 1 (1 \frac{1}{l^2})^M$, $P(\text{no connection}|\mathsf{M})$
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^M \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After M random messages: $d pprox 1 (1 rac{1}{l^2})^M$,
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^M \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After *M* random messages: $d \approx 1 (1 \frac{1}{T^2})^M$,
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Learning

• Fanal value: $\mu_{bj}^m = 1$ if neuron *j* of cluster *b* is associated with message *m*,

•
$$W_{b_1j_1b_2j_2} = \min(\sum_{m=1,b_1 \neq b_2}^{M} \mu^m_{b_1j_1} \mu^m_{b_2j_2}, 1)$$

Density

- After *M* random messages: $d \approx 1 (1 \frac{1}{l^2})^M$,
- A density close to 1 corresponds to an overloaded network.

Bounds

$$M_{\max} = \frac{(c-1)n^2}{2c^2\log_2(\frac{n}{c})}$$

Retrieving process

Iterative process

• Globally, using neurons as adders (clique code):

$$\forall b_1, j_1 v_{b_1 j_1} \leftarrow \sum_{j_2, b_2 \neq b_1} W_{b_1 j_1 b_2 j_2} \mu_{b_2 j_2} + \gamma \mu_{b_1 j_1},$$

Locally, winner-take-all (constant weight code):

•
$$\forall b, S^b_{\max} = \max_{j} v_{bj}$$
,
• $\forall b, j, \mu_{bj} \leftarrow \begin{cases} 1 & \text{if } v_{bj} = S^b_{\max} \text{ and } S^b_{\max} \ge \sigma \\ 0 & \text{otherwise} \end{cases}$

Correlation or not correlation

Retrieving process

Iterative process

• Globally, using neurons as adders (clique code):

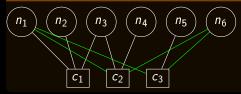
$$\forall b_1, j_1 v_{b_1 j_1} \leftarrow \sum_{j_2, b_2 \neq b_1} W_{b_1 j_1 b_2 j_2} \mu_{b_2 j_2} + \gamma \mu_{b_1 j_1},$$

Locally, winner-take-all (constant weight code):

•
$$\forall b, S^b_{\max} = \max_{j} v_{bj},$$

• $\forall b, j, \mu_{bj} \leftarrow \begin{cases} 1 & \text{if } v_{bj} = S^b_{\max} \text{ and } S^b_{\max} \ge \sigma \\ 0 & \text{otherwise} \end{cases}$

Correlation or not correlation



Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes
- 2 Neural cliques networks
 - Performance

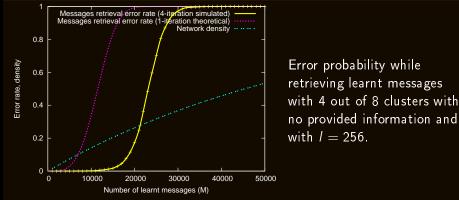
3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

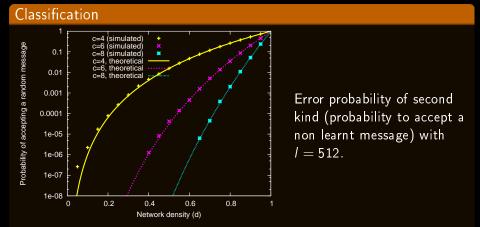
- Biological plausibility, applications
- Openings

Performance



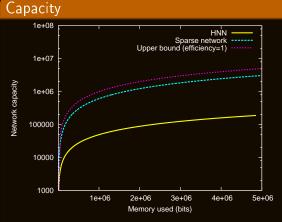
 Gain in comparison with the Hopfield network: 130 in diversity, 12 in capacity, and 11 in efficiency (4.9% → 53.3%). Performance depends mainly of *l*.

Performances (suite)



- No first kind error (a learnt message is always recognized),
- A very good second kind error, depending on c.,

Comparison in capacity



Capacity of Hopfield neural networks and sparse coding neural networks in function of the amount of stored information.

- Near the optimum,
- Huge gain compared to the Hopfield model.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Goal

Increase performance keeping / constant.

1,2,3...and 4

- Messages of length $k \leq n$,
- A unique fanal in each cluster,
- Sparse network...
- ...Sparse messages.

Goal

Increase performance keeping / constant.

$1,2,3\ldots$ and 4

- Messages of length $k \leq n$,
- A unique fanal in each cluster,
- Sparse network...
- Sparse messages.

Goal

Increase performance keeping / constant.

1,2,3...and 4

- Messages of length $k \leq n$,
- A unique fanal in each cluster,
- Sparse network...
- ...Sparse messages.

Illustration		
	4	
/incent Gripon, Claude Berrou (TB)	Neural coding	Jan. 31, 2011 22 / 3

Goal

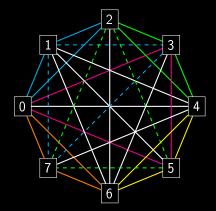
Increase performance keeping / constant.

1,2,3...and 4

- Messages of length $k \leq n$,
- A unique fanal in each cluster,
- Sparse network...
- ...Sparse messages.

Illustration					
		▶ ∢₫ ▶	< E> < E>	101	প ৎ (
/incent Gripon, Claude Berrou (TB)	Neural coding		Jan. 31, 2011		22 / 34

Illustration



Sub-networks

Controlled sparsity

- To avoid epilepsy, sparsity must be guided,
- For instance, force messages to address clusters with some properties,
- \Rightarrow sub-networks are a code $C^{cc'}(c,1)$,
- Interest: the global density is directly given by local densities.

Diversity

- $\,\,$ The fully addressed network learns up to $pprox lpha \left(rac{n}{c}
 ight)^2$ messages
- Considering that the number of clusters has been increased by a factor c':
 - We have c'^2 sub-networks of c clusters,
 - Each one learns up to $pprox lpha \left(rac{n}{cc'}
 ight)^2$ messages,
- Conclusion: $\approx \alpha \left(\frac{n}{c}\right)^2$

Sub-networks

Controlled sparsity

- To avoid epilepsy, sparsity must be guided,
- For instance, force messages to address clusters with some properties,
- \Rightarrow sub-networks are a code $C^{cc'}(c, 1)$,
- Interest: the global density is directly given by local densities.

Diversity

- The fully addressed network learns up to $\approx \alpha \left(\frac{n}{c}\right)^2$ messages.
- Considering that the number of clusters has been increased by a factor c':
 - We have c'^2 sub-networks of c clusters, Each one learns up to $\approx \alpha \left(\frac{n}{cc'}\right)^2$ messages,
- Conclusion: $\approx \alpha \left(\frac{n}{c}\right)^2$.

Coincidences

- The retrieving process is assured this way:
 - Each couple of cluster is colored by a unique propagation time,
 - Neurons switch activated only if there is temporal coincidence,
 - The threshold σ controls the epilepsy.

Other sparsity controls

- ullet One can allow $lpha \geq 1$ recoverings,
- $\circ\,$ The number of sub-networks becomes $c'^{lpha+1},$
- On the other hand, density is more complex to estimate,
- It is still an open question to find the best compromise.

Coincidences

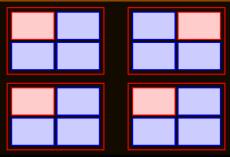
- The retrieving process is assured this way:
 - Each couple of cluster is colored by a unique propagation time,
 - Neurons switch activated only if there is temporal coincidence,
 - The threshold σ controls the epilepsy.

Other sparsity controls

- One can allow $lpha \geq$ 1 recoverings,
- The number of sub-networks becomes c'^{lpha+1} ,
- On the other hand, density is more complex to estimate,
- It is still an open question to find the best compromise.

Another approach: a fractal sparsity

winner-take-all between clusters



Performance and remarks

- Performance is the same as before in comparable states,
- Performance is similar in case of partial erasures,
- Messages are coding their own physical location.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

The learning process produces artificial correlation but suffers from that of messages.

Correlations

There are two types of correlation:

- Intrinsic: *brain* and *train* are learnt \rightarrow ambiguity on **rain*.
- Caused by the model:
 - If the network learns jam, jet and cat, it also learns jat...
 - 🔹 ldea: adding hidden signatures to learnt messages:
 - 🔹 🔹 For instance: ''jama'', ''jetb'' and ''cate

Example

Learning the French words with 6 letters,

Performance in retrieving process increase from 30% to 80%.

The learning process produces artificial correlation but suffers from that of messages.

Correlations

- There are two types of correlation:
 - Intrinsic: brain and train are learnt \rightarrow ambiguity on *rain.
 - Caused by the model:
 - If the network learns jam, jet and cat, it also learns jat...
 - Idea: adding hidden signatures to learnt messages:
 - For instance: "jama", "jetb" and "cate".

Example

- Learning the French words with 6 letters,
- Performance in retrieving process increase from 30% to 80%.

The learning process produces artificial correlation but suffers from that of messages.

Correlations

- There are two types of correlation:
 - Intrinsic: brain and train are learnt \rightarrow ambiguity on *rain.
 - Caused by the model:
 - If the network learns jam, jet and cat, it also learns jat...
 - Idea: adding hidden signatures to learnt messages:
 - For instance: "jama", "jetb" and "catc".

Example

- Learning the French words with 6 letters,
- Performance in retrieving process increase from 30% to 80%.

The learning process produces artificial correlation but suffers from that of messages.

Correlations

- There are two types of correlation:
 - Intrinsic: brain and train are learnt \rightarrow ambiguity on *rain.
 - Caused by the model:
 - If the network learns jam, jet and cat, it also learns jat...
 - Idea: adding hidden signatures to learnt messages:
 - For instance: "jama", "jetb" and "catc".

Example

- Learning the French words with 6 letters,
- Performance in retrieving process increase from 30% to 80%.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Plausibility, applications

Biological plausibility

- ullet Positive neurons, binary connections \Rightarrow strong resilience (eq Hopfield),
- Low global density, strong local interactions (small world philosophy),
- Biologically plausible operations: sum and winner-take-all,
- Partition into clusters,
- Neuron specialization...

Applications

- Associative memories,
- Classification (go no-go),
- Sort,
- Associating pieces of information: independent messages share the same material.

Plausibility, applications

Biological plausibility

- Positive neurons, binary connections \Rightarrow strong resilience (eq Hopfield),
- Low global density, strong local interactions (small world philosophy),
- Biologically plausible operations: sum and winner-take-all,
- Partition into clusters,
- Neuron specialization...

Applications

- Associative memories,
- Classification (go no-go),
- Sort,

 Associating pieces of information: independent messages share the same material.

Outline

Associative memories and error correcting codes

- Hopfield network
- Error correcting codes

Neural cliques networks

- Model
- Performance

3 Further work

- More clusters and better performance
- Correlated entries

Conclusion

- Biological plausibility, applications
- Openings

Results and openings

What is already done

- Sparse coding:
 - Important gains on the diversity and the capacity,
 - Increase in the network efficiency,
- Distributed coding: more learnt messages than neurons,
- Biological plausibility,
- Perspectives in the design of intelligent machines,
- Immediate applications: associative memories and classification.

Ongoing work

- Noise influence, retrieving blurred messages,
- Partial erasures of clusters
- Networks of networks

Results and openings

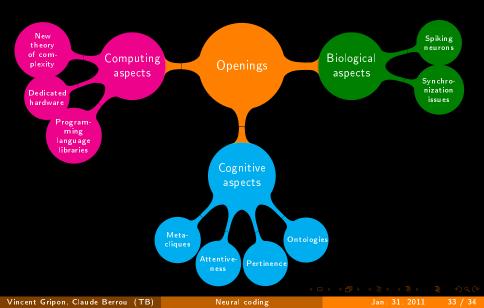
What is already done

- Sparse coding:
 - Important gains on the diversity and the capacity,
 - Increase in the network efficiency,
- Distributed coding: more learnt messages than neurons,
- Biological plausibility,
- Perspectives in the design of intelligent machines,
- Immediate applications: associative memories and classification.

Ongoing work

- Noise influence, retrieving blurred messages,
- Partial erasures of clusters,
- Networks of networks.

Openings



End of the lecture

Thank you for listening, I am at your disposal if you have any question.

