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But where are parity relations?
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Error correcting decoding Neural decoding
Fixed point > Uniqueness of thought
Minimum distance e Separable memories
Huge diversity of combinations < Large memory capacity

Low density of graphs <> Low density of neocortex
Resilience, homeostasis, synchronization, noise impact. ..
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Error correcting decoding Neural decoding
Fixed point > Uniqueness of thought
Minimum distance e Separable memories
Huge diversity of combinations < Large memory capacity

Low density of graphs <> Low density of neocortex
Resilience, homeostasis, synchronization, noise impact. ..

Maximum girth

Bipartite graph

Chosen codewords

Linearly dependent codewords

e Random girth
> Random graph
<> Random messages
> Independence
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® Associative memories and error correcting codes
» Hopfield network
® Error correcting codes

® Neural cliques networks
* Model
® Performance

® Further work
# More clusters and better performance
» Correlated entries

® Conclusion
» Biological plausibility, applications
* Openings
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@ Associative memories and error correcting codes
» Hopfield network

® Neural cliques networks

® Further work

® Conclusion



Two operations:

» Learn a message,

» Retrieve a previously learnt message in presence of erasures or errors.



Two operations:
» Learn a message,

» Retrieve a previously learnt message in presence of erasures or errors.

» Learning: M binary messages d™":
M
WIJ = Z d,'mdjm,
I m=1,i#]
» Retrieving: repeat

Vi, vi < sgn(z Vi wjj).
J#i
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Diversity (number of learnt messages): m,

. 2
Capacity: /o;—'w'

n

Binary information stored: @logz(l\/l +1),

= Efficiency ~ log(n)logz (M+1)

Sensitive connections, negative values, diversity and message length
= f(network size), no distinction between a message and its
opposite. ..
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» Diversity (number of learnt messages): ,og(n)

e Capacity: /o;—'w'

» Binary information stored: n(n 1)Iogz(l\/l +1),

~ 2
o = EfflClency ~ W

» Sensitive connections, negative values, diversity and message length
= f(network size), no distinction between a message and its
opposite. ..

* Memory used (connections over P values): ~ "72/og2(P),

* For efficiency = 1: ~ 7/og>(P) messages of length n,
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» Diversity (number of learnt messages): ,og(n)

e Capacity: /o;—'w'

» Binary information stored: n(n 1)logz(l\/l +1),

~ 2
o = EfflClency ~ W

» Sensitive connections, negative values, diversity and message length
= f(network size), no distinction between a message and its
opposite. ..

* Memory used (connections over P values): ~ "72/og2(P),
* For efficiency = 1: ~ 7/og>(P) messages of length n,

o If length = k: ~ "1o82(P),

Vincent Gripon, Claude Berrou (T8) IENEEIGE I



@ Associative memories and error correcting codes

® Error correcting codes

® Neural cliques networks

® Further work

® Conclusion



# One wants to transmit k bits ; 01100..10010, D
1110..011

1110..011



# One wants to transmit k bits : 01100..10010, D
e He adds n — k bits : 1110..011, !
#» The added bits are a function of the initial ones, D

# The codeword is the concatenation of both:
01100..100101110..011.
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# One wants to transmit k bits : 01100..10010,
e He adds n — k bits : 1110..011,

#» The added bits are a function of the initial ones,

# The codeword is the concatenation of both:
01100..100101110..011.

» Noise has been added to the codeword,
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# One wants to transmit k bits : 01100..10010,
e He adds n — k bits : 1110..011,

#» The added bits are a function of the initial ones,

[ ]
!
]

# The codeword is the concatenation of both: l
01100..100101110..011. @

» Noise has been added to the codeword, @
® The closest known one is chosen,

» A larger distance between codewords leads to better
probability of success,
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# One wants to transmit k bits : 01100..10010,
e He adds n — k bits : 1110..011,

#» The added bits are a function of the initial ones,

[ ]
!
]

A

# The codeword is the concatenation of both: l
01100..100101110..011. @
» Noise has been added to the codeword, @L/

® The closest known one is chosen,

» A larger distance between codewords leads to better
probability of success,

® = minimum distance dmnin.
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® A code is a set of codewords,

* No need of systematic part, the association message<>codeword is
arbitrary.



® A code is a set of codewords,

* No need of systematic part, the association message<>codeword is
arbitrary.

» Codewords contain exactly w 1 and do not share more than « 1 at the
same locations,

» These are called constant weight codes with parameters w, o and with
length n: C"(w, @),
» For instance, C"(1,0) contains all codewords with a single 1
(C3(1,0) = {100,010, 001}),
» Weak dmin = 2,
e but easily decodable, low energy consumption,
e Can be aggregated as in distributed codes. ..
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® 1 maximum 4-clique




® 2 maximum 4-cliques

* Minimum distance (edges): 2(c — 1) =~ 2c,




® 2 maximum 4-cliques

* Minimum distance (edges): 2(c — 1) =~ 2c,

2 1
» Rate of the code ~ {E-‘ ——— ~ = = Merit factor = 2.
2l c(c—1) ¢




|
1 e 1 maximum 5-clique
|
|

* Minimum distance (edges): 2(c — 1) =~ 2c,

2 1
» Rate of the code ~ {E-‘ ——— ~ = = Merit factor = 2.
2l c(c—1) ¢




@ Associative memories and error correcting codes

® Neural cliques networks
* Model

® Further work

® Conclusion



® 1 neurons

» c clusters,

(TB)  Neuwralcoding ~ [7777"""Jan 31,2011 14 /34
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1000 0011 0010 1001 ,
N = =~ =~

Jjiincy j2incy j3incs jeince
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n neurons (fanals),

c clusters,

K bits to address a specific
cluster,

| = Z = 2" neurons in each
cluster,

k = ck bits in learnt
messages,




1000 0011 0010 1001 ,
N = =~ =~

Jjiincy j2incy j3incs jeince
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n neurons (fanals),

c clusters,

K bits to address a specific
cluster,

| = Z = 2" neurons in each
cluster,

k = ck bits in learnt
messages,

Sparsity : A unique fanal is
active in each cluster.




* Fanal value: ppi =1 if neuron j of cluster b is associated with
message m,

M
R m m
* Whyjibyj, = min( Z Hby jy Py 1)
m=1,b;#b>



* Fanal value: ppi =1 if neuron j of cluster b is associated with

message m,
M
o m .m
* Whyjibyjo = min( Z Mbl_]‘lﬂszz’l)
m=1,b;#b>

L, P(connection)

~



* Fanal value: ppi =1 if neuron j of cluster b is associated with
message m,

M
R m m
* Whyjibyj, = min( Z Hby jy Py 1)
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» After M random messages: (1—%2)’\”, P(no connection|M)
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* Fanal value: ppi =1 if neuron j of cluster b is associated with
message m,

M
R m m
* Whyjibyj, = min( Z Hby jy Py 1)
m=1,b;#b>

« After M random messages: d ~ 1 — (1—)",

» A density close to 1 corresponds to an overloaded network.



* Fanal value: ppi =1 if neuron j of cluster b is associated with

message m,
M
o m .m
* Whyjibyjo = min( Z Mbl_]‘lﬂszz’l)
m=1,b;#b>

« After M random messages: d ~ 1 — (1—)",

» A density close to 1 corresponds to an overloaded network.

(c —1)n?
M ==
TP 2c2log (L)




» Globally, using neurons as adders (clique code):
Vb, j1veyjy < Z Whiji baja bajz + VHibyjy
J2:b27#by
» Locally, winner-take-all (constant weight code):
» Vb, Sk

max

= Max Vpy,
J

1 if Vbj = St and S > o

max max

® Vb, j, pbj < { 0 otherwise
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» Globally, using neurons as adders (clique code):
Vb1, jtvinis <= O Whnjibajalbajs + Vibbyjs-
J2:b27#by

» Locally, winner-take-all (constant weight code):
» Vb, Sk

max

L4 Vb’jnU/bj — {

= Max Vpy,
J

1 if vy = Sh
0 otherwise

and Sk

max max —
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@ Associative memories and error correcting codes

® Neural cliques networks

® Performance

® Further work

® Conclusion
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Error rate, density
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T
Messages retrieval- error rate (4-itgfation simulated)
Messages retrieval error rate (1-iration theoretical)
g Network density -

Error probability while
retrieving learnt messages

| with 4 out of 8 clusters with
no provided information and
1 with [ = 256.

Number of learnt messages (M)

0 10000 20000 30000 40000

50000

* Gain in comparison with the Hopfield network: 130 in diversity, 12 in
capacity, and 11 in efficiency (4.9% — 53.3%). Performance depends
mainly of /.
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c=4 (Isimulated) "o
G c=6 (simulated)  x
g 01 F c=8 (simulated) =
4 c=4, theoretical
£ 0.01 F c=6, theoret!cal -------
E . c=8, theoretical
o
°
g 0.001 ¢ of|o
e Error probability of second
[=2} . _pe
£ ooy . kind (probability to accept a
§ 1eosf x non learnt message) with
S
g 1e-06 x I = 512
g + i
S le07f
a :

16-08 S —— et .
0 0.2 0.4 0.6 0.8 1
Network density (d)

» No first kind error (a learnt message is always recognized),

» A very good second kind error, depending on c.
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1e+08 T

1e+07 |

Network capacity

1000 L

Sparse network -
Upper bound (efficiency=1) -

HNN

1e+06

2e+06 3e+06
Memory used (bits)

» Near the optimum,

4e+06

5e+06

Capacity of Hopfield neural
networks and sparse coding
neural networks in function
of the amount of stored
information.

* Huge gain compared to the Hopfield model.
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Increase performance keeping / constant.




Increase performance keeping / constant.

» Messages of length k < n,

# A unique fanal in each cluster,
» Sparse network. ..

e .. .Sparse messages.



Increase performance keeping / constant.

» Messages of length k < n,

# A unique fanal in each cluster,
» Sparse network. ..

e .. .Sparse messages.




Increase performance keeping / constant.

» Messages of length k < n,

# A unique fanal in each cluster,
» Sparse network. ..

) parse messages.
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To avoid epilepsy, sparsity must be guided,

For instance, force messages to address clusters with some properties,

* = sub-networks are a code C<¢'(c, 1),

Interest: the global density is directly given by local densities.
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* To avoid epilepsy, sparsity must be guided,

» For instance, force messages to address clusters with some properties,

* = sub-networks are a code C<¢'(c, 1),

Interest: the global density is directly given by local densities.

p)
* The fully addressed network learns up to ~ « (g) messages,
» Considering that the number of clusters has been increased by a factor
/
c
« We have ¢’? sub-networks of ¢ clusters,
« Each one learns up to ~ o ()~ messages,

» Conclusion: ~ «a (5)2
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» The retrieving process is assured this way:

= Each couple of cluster is colored by a unique propagation time,
« Neurons switch activated only if there is temporal coincidence,
« The threshold o controls the epilepsy.
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» The retrieving process is assured this way:

= Each couple of cluster is colored by a unique propagation time,
« Neurons switch activated only if there is temporal coincidence,
« The threshold o controls the epilepsy.

One can allow a > 1 recoverings,

The number of sub-networks becomes c’a+1,

On the other hand, density is more complex to estimate,

It is still an open question to find the best compromise.
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» Performance is the same as before in comparable states,

» Performance is similar in case of partial erasures,

» Messages are coding their own physical location.
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@ Associative memories and error correcting codes

® Neural cliques networks

® Further work

# Correlated entries

® Conclusion



The learning process produces artificial correlation but suffers from that of
messages.
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* There are two types of correlation:
= Intrinsic: brain and train are learnt — ambiguity on xrain.
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* There are two types of correlation:

= Intrinsic: brain and train are learnt — ambiguity on xrain.
« Caused by the model:

» If the network learns jam, jet and cat, it also learns jat. ..
» |dea: adding hidden signatures to learnt messages:

« For instance: “jama”, “jetb” and “catc”.




The learning process produces artificial correlation but suffers from that of
messages.

* There are two types of correlation:
= Intrinsic: brain and train are learnt — ambiguity on xrain.
« Caused by the model:

» If the network learns jam, jet and cat, it also learns jat. ..
» |dea: adding hidden signatures to learnt messages:

« For instance: “jama”, “jetb” and “catc”.

* Learning the French words with 6 letters,

» Performance in retrieving process increase from 30% to 80%.



® Associative memories and error correcting codes

® Neural cliques networks

® Further work

® Conclusion
* Biological plausibility, applications



» Positive neurons, binary connections = strong resilience (# Hopfield),

Low global density, strong local interactions (small world philosophy),

Biologically plausible operations: sum and winner-take-all,

# Partition into clusters,

Neuron specialization. ..

Vincent Gripon, Claude Berrou (T8) IENEEIEEn



» Positive neurons, binary connections = strong resilience (# Hopfield),

Low global density, strong local interactions (small world philosophy),

Biologically plausible operations: sum and winner-take-all,
» Partition into clusters,

» Neuron specialization. ..

# Associative memories,

Classification (go no-go),
* Sort,

® Associating pieces of information: independent messages share the
same material.
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@ Associative memories and error correcting codes

® Neural cliques networks

® Further work

® Conclusion

* Openings



» Sparse coding:

« Important gains on the diversity and the capacity,
» Increase in the network efficiency,

Distributed coding: more learnt messages than neurons,

Biological plausibility,
» Perspectives in the design of intelligent machines,

» Immediate applications: associative memories and classification.
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» Sparse coding:

« Important gains on the diversity and the capacity,
» Increase in the network efficiency,

Distributed coding: more learnt messages than neurons,

Biological plausibility,
» Perspectives in the design of intelligent machines,

» Immediate applications: associative memories and classification.

» Noise influence, retrieving blurred messages,
» Partial erasures of clusters,

» Networks of networks.
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Thank you for listening, | am at your disposal if you have any question.
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