
Brain, n. An apparatus with which we think we think

Codes and neural network: Codes over cycles
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Minimal distance

de�nition

dmin = min
word ,word ′

d(word ,word ′)

dmin
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Error correcting capability

De�nition

t = max
(
R | ∀word ,∀w ′, d(word ,w ′) ≤ R ⇒ decode(w ′) = word

)
.

In good cases

t =

⌊
dmin − 1

2

⌋
.
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Information and brain

Some hypothesis

Information is coded by frequences of the signal,

Information is coded by motives,

Information is coded in the network,

Information is coded in some physical properties of the signal

(electromagnetic. . . ).

Our proposal

Can we see the brain as a decoder?

Uses both the network structure and the incoming information,
Similarities such as:

High redoundancy,

Noise resistance,

Hierarchical structure,

Local convergences before global one. . .

But where is the decoded data?
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Model

Neuron

IA ∈ {−1; 1},
τA
relax ∈ N,

θA ∈ [0; 1],

τA
out ∈ N,

λA.

Network

ωi ,j ∈ [0; 1],

τi ,j ∈ R+,

The network is randomly

generated using an

exponential decrease law

for connections.

Dynamic

eA =
∑

A′∈Pre(A)

IA′
δω(A′,A)

∑
τ∈oA′

min(1, e−(τn−(τ−δτ (A′,A)+τA′
out

))λA′
)
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Model position

Other models

Spiking neurons > our model > classical arti�cial neuron networks

Expressivity

In�nite neuron network ↔ Turing machine.

Chaotic behaviour

One may de�ne a network where the time between two successive

emissions (k and k + 1) of a neuron is the k-th decimal of π.

But. . .

Once again, where is the decoded data?
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Demonstration
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Cycles

De�nitions

Two kinds of cycles:

Source cycles: non linear combining e�ects,

Visual cycles: may contain inhibitive neurons.

Given N a subset of impulsive neurons, A(N) is the set of neurons

that are activated in�nitely often. Visuals cycles ↔ A(N),

We de�ne C the function that associate to any subset N a minimal

element such that A(N) = A(C (N)). Source cycles ↔ C (N).

E�ective computing

Source cycles: hard to compute, not considerated yet,

Visual cycles: A(N) may be approximated by the neurons visited a
large number of times.

But the model being chaotic, there is no reason to know if the

convergence is over.
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Codes over cycles

Objects tested

Networks of size 12 ∗ 12,
12 impulsive entry neurons (4096 possible entries),

After 100 seconds, the network is projected such as neurons that have

been activated more than x times are considered as belonging to

cycles and other not.
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Inhibitive types

Population

50 networks tested, with the two kinds of models,

The threshold is �xed to 250, where most networks act as if they had

converged.

Results

Entry messages are grouped by equivalence classes,

Two messages belong to the same class if they activate the same cycles.

The result is the size of the smallest class,
This size is linked to the minimal distance of the associated code.

There is no reason for the code to have a good behavior. . .

. . . There is no reason for the code to have a bad behavior!
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In�uence of the inhibitive neuron type

Results

Performances are better for reset type in 68% of tested networks,

Moreover interesting networks are almost all with the reset type,

And when they are not they are still good.
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Open questions

Being studied

Finding the optimal parameters of networks (and comparing with the

brain data),

Showing the exact expressivity of the network (with a �nite number of

neurons),

Considering impulsions more complicated than just synchronous

activations (particularly in order to combine networks).

Further work

Theory of cycles,

Finding algorithms to caracterise and study networks:

Links between simplex polytop and cycles inequations,

Using test theory,

Adaptation of graph theory algorithms,

Network learning. . .
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Using test theory,

Adaptation of graph theory algorithms,

Network learning. . .
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