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® Introduction
» Coding
* Minimal distance
» Error correcting capability
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» t=max (R | Yword,Vw', d(word,w") < R = decode(w') = word).
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® Brain and coding
# Information and brain
* Model
» Cycles
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» Information is coded by frequences of the signal,
» Information is coded by motives,

» Information is coded in the network,

» Information is coded in some physical properties of the signal
(electromagnetic. . . ).

» Can we see the brain as a decoder?

« Uses both the network structure and the incoming information,
« Similarities such as:

High redoundancy,

Noise resistance,
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Local convergences before global one. ..
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» Information is coded by frequences of the signal,
» Information is coded by motives,
» Information is coded in the network,

» Information is coded in some physical properties of the signal
(electromagnetic. . . ).

» Can we see the brain as a decoder?

« Uses both the network structure and the incoming information,
« Similarities such as:

» High redoundancy,

» Noise resistance,

« Hierarchical structure,

» Local convergences before global one. ..
« But where is the decoded data?

Vincent GRIPON (Telecom Bretagne) [0 Cotes aver yeies ™ DS SRS I co N



I e {-1;1},
C 7-iﬁlax < N’

04 € [0;1],
o A EN,



o JAc {_1; 1}, *wij € [0; 1],
B g +
® Trix €N * 7ij € RY,
. 04 € [0;1] » The network is randomly
o enerated using a
« A €N, generated using an
exponential decrease law
. A

for connections.

Vincent GRIPON (Telecom Bretagne) [ Cotes aver yeies ™ S SRS I co IR



o e {-1;1}, * wij€[0;1],
- ar
.TélaXEN' .T”JGR ’ .
. 0% €[0;1], * The netv;ork.|s randomly
enerated using a
'Tﬁ,tGN, generated using an
exponential decrease law
. A

for connections.

en= Y |Mo,(ALA) > min(1, e~ (= (=0r(A R +T5 )Ny
A’ePre(A) TEO



» Spiking neurons > our model > classical artificial neuron networks



» Spiking neurons > our model > classical artificial neuron networks

# Infinite neuron network < Turing machine.




» Spiking neurons > our model > classical artificial neuron networks

# Infinite neuron network < Turing machine.

» One may define a network where the time between two successive
emissions (k and k + 1) of a neuron is the k-th decimal of 7.



» Spiking neurons > our model > classical artificial neuron networks

# Infinite neuron network < Turing machine.

» One may define a network where the time between two successive
emissions (k and k + 1) of a neuron is the k-th decimal of 7.

» Once again, where is the decoded data?
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» Two kinds of cycles:
« Source cycles: non linear combining effects,
» Visual cycles: may contain inhibitive neurons.
» Given N a subset of impulsive neurons, A(N) is the set of neurons
that are activated infinitely often. Visuals cycles < A(N),

» We define C the function that associate to any subset N a minimal
element such that A(N) = A(C(N)). Source cycles < C(N).

» Source cycles: hard to compute, not considerated yet,
= Visual cycles: A(N) may be approximated by the neurons visited a
large number of times.
« But the model being chaotic, there is no reason to know if the
convergence is over.
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® Exemple: choice of the inhibitive neurons model
» Codes over cycles
» Inhibitive types
* Results
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» Networks of size 12 x 12,
» 12 impulsive entry neurons (4096 possible entries),
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» Networks of size 12 x 12,
» 12 impulsive entry neurons (4096 possible entries),

» After 100 seconds, the network is projected such as neurons that have
been activated more than x times are considered as belonging to

cycles and other not.
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« This size is linked to the minimal distance of the associated code.
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» 50 networks tested, with the two kinds of models,

» The threshold is fixed to 250, where most networks act as if they had
converged.

» Entry messages are grouped by equivalence classes,

» Two messages belong to the same class if they activate the same cycles.
# The result is the size of the smallest class,
« This size is linked to the minimal distance of the associated code.

» There is no reason for the code to have a good behavior. ..
» ... There is no reason for the code to have a bad behavior!
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» Performances are better for reset type in 68% of tested networks,

» Moreover interesting networks are almost all with the reset type,
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» Performances are better for reset type in 68% of tested networks,

» Moreover interesting networks are almost all with the reset type,

» And when they are not they are still good.
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» Finding the optimal parameters of networks (and comparing with the
brain data),

» Showing the exact expressivity of the network (with a finite number of
neurons),

» Considering impulsions more complicated than just synchronous
activations (particularly in order to combine networks).

» Theory of cycles,
» Finding algorithms to caracterise and study networks:

« Links between simplex polytop and cycles inequations,
» Using test theory,
« Adaptation of graph theory algorithms,

» Network learning. ..
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