Brain, n. An apparatus with which we think we think

Codes and neural network: Codes over cycles

Supervisors: Claude Berrou (Telecom Bretagne), Jean Pierre Nadal (ENS)

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

January 23, 2009

Plan

Introduction

- Coding
- Minimal distance
- Error correcting capability

Brain and coding

- Information and brain
- Model
- Cycles

3) Exemple: choice of the inhibitive neurons model

- Codes over cycles
- Inhibitive types
- Results

How-to?

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

January 23, 2009

Minimal distance

definition

Definition

• $t = \max(R \mid \forall word, \forall w', d(word, w') \leq R \Rightarrow decode(w') = word).$

In good cases

•
$$t = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor.$$

Definition

•
$$t = \max(R \mid \forall word, \forall w', d(word, w') \leq R \Rightarrow decode(w') = word)$$
.

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

January 23, 2009 5 /

Error correcting capability

Definition

•
$$t = \max (R \mid \forall word, \forall w', d(word, w') \leq R \Rightarrow decode(w') = word).$$

In good cases • $t = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor$.

But...

Plan

2

Introduction

- Coding
- Minimal distance
- Error correcting capability

Brain and coding

- Information and brain
- Model
- Cycles

3) Exemple: choice of the inhibitive neurons model

- Codes over cycles
- Inhibitive types
- Results

Some hypothesis

Information is coded by frequences of the signal,

- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information.
 Similarities such as:
 - High redoundancy,

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information.
 Similarities such as:
 - High redoundancy,

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information.
 Similarities such as:
 - High redoundancy,

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information.
 Similarities such as:
 - High redoundancy,

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one.
 - But where is the decoded data?

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

Our proposal

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

Our proposal

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Some hypothesis

- Information is coded by frequences of the signal,
- Information is coded by motives,
- Information is coded in the network,
- Information is coded in some physical properties of the signal (electromagnetic...).

- Can we see the brain as a decoder?
 - Uses both the network structure and the incoming information,
 - Similarities such as:
 - High redoundancy,
 - Noise resistance,
 - Hierarchical structure,
 - Local convergences before global one...
 - But where is the decoded data?

Model

Neuron

•
$$I^{\mathbb{A}} \in \{-1;1\}$$
,

•
$$au_{\textit{relax}}^{\mathbb{A}} \in \mathbb{N}$$
,

•
$$heta^{\mathbb{A}} \in [0; 1]$$

•
$$\tau_{out}^{\mathbb{A}} \in \mathbb{N}$$

•
$$\lambda^{\mathbb{A}}$$

Network

- $\omega_{i,j} \in [0;1]$,
- $au_{i,j} \in \mathbb{R}^+$,
- The network is randomly generated using an exponential decrease law for connections.

Dynamic

$$e_{\mathbb{A}} = \sum_{\mathbb{A}' \in \mathit{Pre}(\mathbb{A})} \left[l^{\mathbb{A}'} \delta_{\omega}(\mathbb{A}',\mathbb{A}) \sum_{ au \in o_{\mathbb{A}'}} \mathit{min}(1,e^{-(au_n - (au - \delta_{ au}(\mathbb{A}',\mathbb{A}) + au_{out}^{\mathbb{A}'}))\lambda^{\mathbb{A}'}})
ight]$$

Model

Neuron

•
$$I^{\mathbb{A}} \in \{-1;1\},$$

•
$$\tau^{\mathbb{A}}_{\mathit{relax}} \in \mathbb{N}$$
,

•
$$\theta^{\mathbb{A}} \in [0; 1]$$

•
$$\tau_{out}^{\mathbb{A}} \in \mathbb{N}$$

•
$$\lambda^{\mathbb{A}}$$

Network

•
$$\omega_{i,j} \in [0;1]$$
,

•
$$au_{i,j} \in \mathbb{R}^+$$
,

 The network is randomly generated using an exponential decrease law for connections.

Dynamic

$$e_{\mathbb{A}} = \sum_{\mathbb{A}' \in \mathsf{Pre}(\mathbb{A})} \left[l^{\mathbb{A}'} \delta_{\omega}(\mathbb{A}',\mathbb{A}) \sum_{\tau \in o_{\mathbb{A}'}} \min(1, e^{-(au_n - (au - \delta_{ au}(\mathbb{A}',\mathbb{A}) + au_{out}^{\mathbb{A}'}))\lambda^{\mathbb{A}'}})
ight]$$

Model

Neuron

•
$$I^{\mathbb{A}} \in \{-1;1\},$$

•
$$au_{\textit{relax}}^{\mathbb{A}} \in \mathbb{N}$$
,

•
$$heta^{\mathbb{A}} \in [0; 1]$$

•
$$\tau_{out}^{\mathbb{A}} \in \mathbb{N}$$
,

•
$$\lambda^{\mathbb{A}}$$

Network

•
$$\omega_{i,j} \in [0;1]$$
,

•
$$au_{i,j} \in \mathbb{R}^+$$
,

 The network is randomly generated using an exponential decrease law for connections.

Dynamic

$$e_{\mathbb{A}} = \sum_{\mathbb{A}' \in Pre(\mathbb{A})} \left[I^{\mathbb{A}'} \delta_{\omega}(\mathbb{A}', \mathbb{A}) \sum_{\tau \in o_{\mathbb{A}'}} \min(1, e^{-(\tau_n - (\tau - \delta_{\tau}(\mathbb{A}', \mathbb{A}) + \tau_{out}^{\mathbb{A}'}))\lambda^{\mathbb{A}'}}) \right]$$

Other models

• Spiking neurons > our model > classical artificial neuron networks

Expressivity

Infinite neuron network ↔ Turing machine.

Chaotic behaviour

• One may define a network where the time between two successive emissions (k and k + 1) of a neuron is the k-th decimal of π .

But. . .

Other models

• Spiking neurons > our model > classical artificial neuron networks

Expressivity

Infinite neuron network ↔ Turing machine.

Chaotic behaviour

One may define a network where the time between two successive emissions (k and k + 1) of a neuron is the k-th decimal of π .

But. . .

Other models

• Spiking neurons > our model > classical artificial neuron networks

Expressivity

Infinite neuron network ↔ Turing machine.

Chaotic behaviour

• One may define a network where the time between two successive emissions (k and k + 1) of a neuron is the k-th decimal of π .

But. . .

Other models

• Spiking neurons > our model > classical artificial neuron networks

Expressivity

Infinite neuron network ↔ Turing machine.

Chaotic behaviour

• One may define a network where the time between two successive emissions (k and k + 1) of a neuron is the k-th decimal of π .

But...

Demonstration

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles $\leftrightarrow A(N)$,
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles $\leftrightarrow A(N)$,
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles ↔ A(N),
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles ↔ A(N),
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles ↔ A(N),
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.
 - But the model being chaotic, there is no reason to know if the
 - convergence is over.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles ↔ A(N),
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.
 - But the model being chaotic, there is no reason to know if the convergence is over.

Definitions

- Two kinds of cycles:
 - Source cycles: non linear combining effects,
 - Visual cycles: may contain inhibitive neurons.
- Given N a subset of impulsive neurons, A(N) is the set of neurons that are activated infinitely often. Visuals cycles ↔ A(N),
- We define C the function that associate to any subset N a minimal element such that A(N) = A(C(N)). Source cycles $\leftrightarrow C(N)$.

Effective computing

- Source cycles: hard to compute, not considerated yet,
- Visual cycles: A(N) may be approximated by the neurons visited a large number of times.
 - But the model being chaotic, there is no reason to know if the convergence is over.

Plan

Introduction

- Coding
- Minimal distance
- Error correcting capability

Brain and coding

- Information and brain
- Model
- Cycles

3 Exemple: choice of the inhibitive neurons model

- Codes over cycles
- Inhibitive types
- Results

Codes over cycles

Objects tested

- Networks of size 12 * 12,
- 12 impulsive entry neurons (4096 possible entries),
- After 100 seconds, the network is projected such as neurons that have been activated more than x times are considered as belonging to cycles and other not.

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

January 23, 2009

Codes over cycles

Objects tested

- Networks of size 12 * 12,
- 12 impulsive entry neurons (4096 possible entries),
- After 100 seconds, the network is projected such as neurons that have been activated more than x times are considered as belonging to cycles and other not.

Codes over cycles

Objects tested

- Networks of size 12 * 12,
- 12 impulsive entry neurons (4096 possible entries),
- After 100 seconds, the network is projected such as neurons that have been activated more than x times are considered as belonging to cycles and other not.

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles
- The result is the size of the smallest class

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

Results

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.

re is no reason for the code to have a good behavior

. There is no reason for the code to have a bad behavior!

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

Results

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.

There is no reason for the code to have a good behavior...
 ... There is no reason for the code to have a bad behavior!

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.
 - There is no reason for the code to have a good behavior...
 -There is no reason for the code to have a bad behavior!

- 50 networks tested, with the two kinds of models,
- The threshold is fixed to 250, where most networks act as if they had converged.

- Entry messages are grouped by equivalence classes,
 - Two messages belong to the same class if they activate the same cycles.
- The result is the size of the smallest class,
 - This size is linked to the minimal distance of the associated code.
 - There is no reason for the code to have a good behavior...
 - There is no reason for the code to have a bad behavior!

- Performances are better for reset type in 68% of tested networks,
- Moreover interesting networks are almost all with the reset type,
- And when they are not they are still good

Results

Performances are better for reset type in 68% of tested networks,

- Moreover interesting networks are almost all with the reset type,
- And when they are not they are still good.

- Performances are better for reset type in 68% of tested networks,
- Moreover interesting networks are almost all with the reset type,
- And when they are not they are still good.

- Performances are better for reset type in 68% of tested networks,
- Moreover interesting networks are almost all with the reset type,
- And when they are not they are still good.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:

Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:

Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:

Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations.
 - Using test theory,
 - Adaptation of graph theory algorithms,
- Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations,
 - Using test theory,
 - Adaptation of graph theory algorithms,
- Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations,
 - Using test theory,
 - Adaptation of graph theory algorithms,
- Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations,
 - Using test theory,
 - Adaptation of graph theory algorithms,
- Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations,
 - Using test theory,
 - Adaptation of graph theory algorithms,

• Network learning.

Being studied

- Finding the optimal parameters of networks (and comparing with the brain data),
- Showing the exact expressivity of the network (with a finite number of neurons),
- Considering impulsions more complicated than just synchronous activations (particularly in order to combine networks).

Further work

- Theory of cycles,
- Finding algorithms to caracterise and study networks:
 - Links between simplex polytop and cycles inequations,
 - Using test theory,
 - Adaptation of graph theory algorithms,
- Network learning...

Questions?

Vincent GRIPON (Telecom Bretagne)

Codes over cycles

January 23, 2009