Networks of neural cliques

Vincent Gripon

Télécom Bretagne, Lab-STICC

McGill University

2011, Nov. 11th

V. Gripon (Télécom Bretagne)

Networks of neural cliques

2011. Nov. 11th

In a word...

Learning messages in recurrent neural networks

Our contribution

Hopfield neural networks

V. Gripon (Télécom Bretagne)

Networks of neural cliques

In a word...

Learning messages in recurrent neural networks

Our contribution Sparsity Error correcting code Hopfield neural networks

V. Gripon (Télécom Bretagne)

Networks of neural cliques

2011, Nov. 11th

In a word...

Learning messages in recurrent neural networks

Hopfield neural networks

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Starting idea

LDPC decoder

Neocortical "decoder"

decoding = remembering nodes Σ = neurons parity = ? ? = learning

Outline

Associative memories and error correcting codes

- Associative memory
- Error correcting codes
- Code of cliques

2 Sparse networks, principles and performance

- Learning
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Sparse messages
- Learning sequences

Conclusion

Plan

Associative memories and error correcting codes

- Associative memory
- Error correcting codes
- Code of cliques

2) Sparse networks, principles and performance

- Learning
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Sparse messages
- Learning sequences

Conclusion

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

Learning:
$$M$$
 binary messages d^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

Retrieving: iterates

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning:
$$M$$
 binary messages \mathbf{d}^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

• Retrieving: iterates

$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij}).$$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning:
$$M$$
 binary messages \mathbf{d}^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

• Retrieving: iterates

$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij}).$$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning:
$$M$$
 binary messages \mathbf{d}^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

• Retrieving: iterates

$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij}).$$

Associative memories

Two operations:

- Learning messages,
- Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

• Learning:
$$M$$
 binary messages \mathbf{d}^m :
 $w_{ij} = \sum_{m=1, i \neq j}^M d_i^m d_j^m$,

Retrieving: iterates

$$\forall i, v_i \leftarrow \operatorname{sgn}(\sum_{j \neq i} v_j w_{ij}).$$

Hopfield networks $(n \text{ neurons } \leftarrow \rightarrow)$

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$,
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, 🔛
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with n = 790 :

Hopfield networks $(n \text{ neurons } \leftarrow \rightarrow)$

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$, ---
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, 🔛
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with n = 790 :

Hopfield networks (*n* neurons $\leftarrow \rightarrow$)

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$, ---=
- Total amount of required memory: $\binom{n}{2}log_2(M+1)$, \blacksquare
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.

 Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with n = 790 :

Hopfield networks (*n* neurons $\leftarrow \rightarrow$)

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$, ---
- Total amount of required memory: $\binom{n}{2}\log_2(M+1)$, \blacksquare
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.

 Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Hopfield networks (*n* neurons $\leftarrow \rightarrow$)

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$, ---=
- Total amount of required memory: $\binom{n}{2}\log_2(M+1)$, \square
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Hopfield networks (*n* neurons \longleftrightarrow)

- Diversity : $M = \frac{n}{2\log(n)}, \leftrightarrow$
- Capacity : $\frac{n^2}{2\log(n)}$, ---
- Total amount of required memory: $\binom{n}{2}\log_2(M+1)$, \boxplus
- \Rightarrow Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.
- Sensitive connections, length of messages = size of the network, messages and their inverse are learned at the same time...

Example with
$$n = 790$$
 :

V. Gripon (Télécom Bretagne)

2011, Nov. 11th 8

amin

Example: the thrifty code

Code containing only binary words with a single "1":

Drawback: d_{min} = 2 :

But easy to decode and minimise the energy:

• These codes can be associated like the distributed codes...

/ 28

Example: the thrifty code

• Code containing only binary words with a single "1":

Drawback: d_{min} = 2 :

But easy to decode and minimise the energy:

 Interpretation

 winner-take-all

These codes can be associated like the distributed codes...

Example: the thrifty code

• Code containing only binary words with a single "1":

Drawback: d_{min} = 2 :

• These codes can be associated like the distributed codes...

Example: the thrifty code

• Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$:

- But easy to decode and minimise the energy:
- These codes can be associated like the distributed codes...

8 / 28

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

2 distinct nodes $d_{
m min}=6$ edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(c-1) \approx 2c,$ $\Rightarrow F = rd_{\min} \approx 2,$

Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{min} = 6$ edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(c-1) \approx 2c,$ $\Rightarrow F = rd_{\min} \approx 2,$

Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(c-1) \approx 2c,$ $\Rightarrow F = rd_{\min} \approx 2,$

Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\mathsf{min}} = 2(c-1) pprox 2c$, rate $r pprox rac{c}{2}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx rac{c}{2} {c \choose 2}$
- \Rightarrow $F = rd_{\min} \approx 2$,

Cliques are codewords of a very interesting error correcting code...

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx rac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow F = rd_{min} pprox 2,

Cliques are codewords of a very interesting error correcting code....

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) pprox 2c$, rate $r pprox rac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$,

Cliques are codewords of a very interesting error correcting code...

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) pprox 2c$, rate $r pprox rac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) pprox 2c$, rate $r pprox rac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Plan

1

Associative memories and error correcting codes

- Associative memory
- Error correcting codes
- Code of cliques

Sparse networks, principles and performance

- Learning
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Sparse messages
- Learning sequences

Conclusion

V. Gripon (Télécom Bretagne)

Networks of neural cliques

- Example: c = 4 clusters made of l = 16 neurons each,
- 1000 = 8,0011 = 3,0010 = 2,1001 = 9,

V. Gripon (Télécom Bretagne)

Networks of neural cliques

 $\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3} ????,$

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

V. Gripon (Télécom Bretagne)

 $\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3} ????,$

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

V. Gripon (Télécom Bretagne)

2011. Nov. 11t

 $\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3} ????,$

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

 $\underbrace{1000}_{j_1 \text{ in } c_1} \underbrace{0011}_{j_2 \text{ in } c_2} \underbrace{0010}_{j_3 \text{ in } c_3} ????,$

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

2011. Nov. 11t

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $dpprox 1-ig(1-rac{1}{l^2}ig)^M.$

Curves

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,
- $d \approx \frac{M}{T^2}$, for $M \ll l^2$.

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Curves

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,
- $d pprox rac{M}{T^2}$, for $M \ll l^2$.

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $dpprox 1-\left(1-rac{1}{l^2}
 ight)^M$.

V. Gripon (Télécom Bretagne)

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,
- $d \approx \frac{M}{l^2}$, for $M \ll l^2$.

V. Gripon (Télécom Bretagne)

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,

Introducing a new parameter

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between learned and not learned messages,
- d = f(I, M), not depending on c,

•
$$d \approx \frac{M}{l^2}$$
, for $M \ll l^2$.

V. Gripon (Télécom Bretagne)

Performance (1/3)

As an associative memory

c = 8 clusters of l = 256neurons each (\sim messages of Error probability when retrieving messages half

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Performance (2/3)

Set implementation

Second kind error rate for various sizes of clusters c and for l = 512 neurons per cluster.

Hopfield network (n = 740)

Our network

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Comparison of capacities of our network and of the Hopfield one

Performance (3/3)

Comparison of the capacities of the Hopfield network with ours (as associative memories) and for the same amount of memory used.

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated.
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

Limitations

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

17 / 28

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-al
Clusters	\leftrightarrow	Neocortical column
Thrifty code	\leftrightarrow	Specific neurons

Limitations

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

17 / 28

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

Limitations

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

17 / 28

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

Analogies

Our network		Neuroscience litterature
Cliques of neurons	\leftrightarrow	Neural cliques
Local decoding	\leftrightarrow	Winner-take-all
Clusters	\leftrightarrow	Neocortical columns
Thrifty code	\leftrightarrow	Specific neurons

- Necessity to provide a perfect yet incomplete content,
- Messages must not be correlated,
- Clusters must be large and few,
- Constant messages length,
- Systematic use of all clusters.
- Bidirectional connections and full inter-connectivity.

Plan

Associative memories and error correcting code

- Associative memory
- Error correcting codes
- Code of cliques

2) Sparse networks, principles and performance

- Learning
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Sparse messages
- Learning sequences

Conclusion

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Performance

Simulations

Comparison of performance when messages are partially erased and when they are blurred (b = 5).

Why performance are better?

• Erasing: \searrow competitive cliques (pprox /) earrow probability (pprox d^{c-1}),

• Bruit : \nearrow competitive cliques ($\approx b^c$) \searrow probability ($\approx d^{\frac{c(c-1)}{2}}$).

V. Gripon (Télécom Bretagne)

Networks of neural cliques

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned ightarrow *rain ?
 - Another effect coming from our network:
Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain grade

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain grade gamin

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

- There are two effects of correlation:
 - An inescapable effect: brain and train are learned $\rightarrow *rain$?
 - Another effect coming from our network:

brain +c1 grade +c2 gamin +c3 grain +c?

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes.
- Sparse network,
- Sparse messages.

Solution

Global winner-take-all

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes.
- Sparse network,
- Sparse messages.

Solution

Global winner-take-all

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea

- Shorter messages,
- Clusters and thrifty codes,
- Sparse network,
- Sparse messages.

Solution

Global winner-take-all

V. Gripon (Télécom Bretagne)

Networks of neural cliques

2011. Nov. 11th

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea Shorter messages, Clusters and thrifty codes,

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea Shorter messages, Clusters and thrifty codes, Sparse network,

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea Shorter messages, Clusters and thrifty codes, Sparse network, Sparse messages.

Limitations

- Clusters must be large and few,
- Learned messages are all of the same length.

Idea Shorter messages, Clusters and thrifty codes, Sparse network, Sparse messages. Solution Global winner-take-all.

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

- \sim Diversity $\propto c^2$
- Learned messages length may vary.

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

- Diversity $\propto c^2$
- Learned messages length
 may vary

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection

- Diversity $\propto c^2$
- Learned messages length may vary.

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

- Diversity $\propto c$
- Learned messages length may vary.

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

- Diversity $\propto c^2$,
- Learned messages length may vary.

Idea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

- Diversity $\propto c^2$,
- Learned messages length may vary.

Problem

Bidirectional connections and full inter-connectivity.

Problem

Bidirectional connections and full inter-connectivity.

Problem

Bidirectional connections and full inter-connectivity.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \leq 0.01$.

- c = 50 clusters,
- I = 256 neurons/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

Plan

Associative memories and error correcting codes

- Associative memory
- Error correcting codes
- Code of cliques

2 Sparse networks, principles and performance

- Learning
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Sparse messages
- Learning sequences

Conclusion

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Networks of neural cliques

27 / 28

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Approach

Results

- Nearly optimal capacities, substantial diversities,
- Massively parallel architecture,
- Analogies with neurobiological architecture and functioning,
- Robustness, resiliency, synchronization...,
- Degrees of freedom: inhibitions, time, weights,
- No trade off required between performance and plausibility.

Thank you for your attention. I am at your disposal if you have any question.

LDPC decoder

