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In a word. . .

Learning messages in recurrent neural networks

Learning diversity
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Starting idea

LDPC decoder
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decoding = remembering

nodes Σ = neurons
parity = ?

? = learning
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Outline
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Associative memories and the Hopfield network

Associative memories

Two operations:

Learning messages,

Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

i

j

wij

Learning: M binary messages d
m:

wij =
M∑

m=1,i 6=j

dm
i dm

j ,

Retrieving: iterates

∀i , vi ← sgn(
∑

j 6=i

vjwij).

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 6 / 28



Associative memories and the Hopfield network

Associative memories

Two operations:

Learning messages,

Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

i

j

wij

Learning: M binary messages d
m:

wij =
M∑

m=1,i 6=j

dm
i dm

j ,

Retrieving: iterates

∀i , vi ← sgn(
∑

j 6=i

vjwij).

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 6 / 28



Associative memories and the Hopfield network

Associative memories

Two operations:

Learning messages,

Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

1 -1

1

-1

1

-1 1

-1

i

j

wij

Learning: M binary messages d
m:

wij =
M∑

m=1,i 6=j

dm
i dm

j ,

Retrieving: iterates

∀i , vi ← sgn(
∑

j 6=i

vjwij).

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 6 / 28



Associative memories and the Hopfield network

Associative memories

Two operations:

Learning messages,

Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

1 -1

1

-1

1

-1 1

-1

i

j

wij

Learning: M binary messages d
m:

wij =
M∑

m=1,i 6=j

dm
i dm

j ,

Retrieving: iterates

∀i , vi ← sgn(
∑

j 6=i

vjwij).

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 6 / 28



Associative memories and the Hopfield network

Associative memories

Two operations:

Learning messages,

Retrieving previously learned messages from part of their content.

State of the art: the Hopfield network

1 -1

1

-1

1

-1 1

?

i

j

wij

Learning: M binary messages d
m:

wij =
M∑

m=1,i 6=j

dm
i dm

j ,

Retrieving: iterates

∀i , vi ← sgn(
∑

j 6=i

vjwij).

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 6 / 28



Performance and bounds

Hopfield networks (n neurons )

Diversity : M = n
2log(n) ,

Capacity : n2

2log(n) ,
=

Total amount of required memory:
(
n
2

)
log2(M + 1),

⇒ Efficiency ≈ 1
log(n)log2(M+1) .

Sensitive connections, length of messages = size of the network,
messages and their inverse are learned at the same time. . .

Example with n = 790 :
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Error correcting codes

dmin

Example: the thrifty code

Code containing only binary words with a single “1”:

Drawback: dmin = 2 :

But easy to decode and minimise the energy:

winner-take-all

These codes can be associated like the distributed
codes. . .
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Codes made of cliques of constant size

Clique

Set of nodes that
are all connected
one to another.

Example: codewords = 4 nodes cliques

2 distinct nodes
⇒ dmin = 6 edges

Codes of cliques of size c ≪ n

dmin = 2(c − 1) ≈ 2c , rate r ≈ c
2

(
c
2

)−1

⇒ F = rdmin ≈ 2,

Cliques are codewords of a very interesting error correcting code. . . and
they are free!
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Our model: learning

Example: c = 4 clusters made of l = 16 neurons each,

1000 = 8
︸ ︷︷ ︸

j1 in c1

0011 = 3
︸ ︷︷ ︸

j2 in c2

0010 = 2
︸ ︷︷ ︸

j3 in c3

1001 = 9
︸ ︷︷ ︸

j4 in c4

,
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Our model: retrieving

1000
︸︷︷︸

j1 in c1

0011
︸︷︷︸

j2 in c2

0010
︸︷︷︸

j3 in c3

????,

Local connection,

Global decoding: sum,

Local decoding:
winner-take-all,

Possibly iterate the two
decodings.
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Density

Introducing a new parameter

Density d is the ratio of the number of used connections to the total
number of possible ones,

If messages are i.i.d.: d ≈ 1−
(
1− 1

l2

)M
.

Curves
Remarks

d = 1: no more
distinction between
learned and not learned
messages,

d = f (l ,M), not
depending on c ,

d ≈ M
l2

, for M ≪ l2.
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Performance (1/3)

As an associative memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000

E
rr

or
 r

at
e,

 d
en

si
ty

Amount of learned messages (M)

Correctly retrieving probability (4 iterations simulated)
Correctly retrieving probability (1 iteration theoretical)

network density

c = 8 clusters of l = 256
neurons each (∼ messages of
64 bits),
Error probability when
retrieving messages half
erased.

Hopfield network (n = 790) Our network

V. Gripon (Télécom Bretagne) Networks of neural cliques 2011, Nov. 11th 14 / 28



Performance (2/3)
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Comparison of capacities of our network and of the Hopfield

one

Performance (3/3)
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A word about plausibility

Analogies

Our network Neuroscience litterature
Cliques of neurons ↔ Neural cliques
Local decoding ↔ Winner-take-all
Clusters ↔ Neocortical columns
Thrifty code ↔ Specific neurons

Limitations

Necessity to provide a perfect - yet incomplete - content,

Messages must not be correlated,

Clusters must be large and few,

Constant messages length,

Systematic use of all clusters.

Bidirectional connections and full inter-connectivity.
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Plan

1 Associative memories and error correcting codes
Associative memory
Error correcting codes
Code of cliques

2 Sparse networks, principles and performance
Learning
Retrieving
Performance

3 Developments
Blurred messages
Correlated sources
Sparse messages
Learning sequences

4 Conclusion
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Blurred messages

Limitation

Partial messages must contain perfect information.

Noise model

? ?

Soft decoding
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Performance

Simulations
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Why performance are better?

Erasing: ց competitive cliques (≈ l) ր probability (≈ d c−1),

Bruit : ր competitive cliques (≈ bc) ց probability (≈ d
c(c−1)

2 ).
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Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

There are two effects of correlation:

An inescapable effect: brain and train are learned → ∗rain ?

Another effect coming from our network:

b
g

ra am

i
d

enc1
c2

c3
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Towards a fourth level of sparsity

Limitations

Clusters must be large and few,

Learned messages are all of the same length.

Illustration

0000101000001011 Idea
1 Shorter messages,

2 Clusters and thrifty codes,

3 Sparse network,

4 Sparse messages.

Solution

Global winner-take-all.
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Global winner-take-all

Illustration
Idea

After global message
passing. . .

After local maximum
selections. . .

Global maximum selection.

Interests

Diversity ∝ c2,

Learned messages length
may vary.
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Tournament chains and unidirectional connections

Problem

Bidirectional connections and full inter-connectivity.

r
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Learning arbitrarily long sequences

Performance

c = 50 clusters,

l = 256
neurons/cluster,

L = 1000 symbols in
messages,

m = 1823 learned
messages,

Pe ≤ 0.01.
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Conclusion

Approach

Designing an associative memory
neocortical architecture

sparsity
distributed codes

Results

Nearly optimal capacities, substantial diversities,

Massively parallel architecture,

Analogies with neurobiological architecture and functioning,

Robustness, resiliency, synchronization. . . ,

Degrees of freedom: inhibitions, time, weights,

No trade off required between performance and plausibility.
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Thank you for your attention. I am at your disposal if you have any
question.

LDPC decoder
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Neocortical “decoder”
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