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1 Introduction

In classical signal processing, signals under study are generally defined on very
regular domains, such as a path graph for temporal signals like audio, a two-
dimensional lattice for spatial signals like images, and a three-dimensional lattice
for spatio-temporal signals like video. Frequency analysis of such objects is per-
formed thanks to the Fourier transform operator, which projects the signal under
study into a basis of sines, providing a convenient dual representation for it. In the
case of more complex signals, such as images or videos, the idea remains the same,
except that the sines are now two or three-dimensional.

When the underlying domain on which signals are studied becomes irregular
— e.g., a sensor network, a social network, an affinity graph, etc. —, defining an
adapted Fourier transform is not as natural. However, providing a frequency repre-
sentation for signals evolving over such domains is of real interest, and has applica-
tions such as anomaly detection [11], brain activity comprehension [12], or topology
analysis [4].

In order to study signals over such complex topologies, graph signal processing
(GSP) has emerged as a field proposing to extend classical signal processing tools to
irregular domains modeled as graphs. The field developed from the observation that
the basis of eigenvectors associated with the Laplacian matrix of a ring graph are
exactly sines, with increasing frequency as the associated eigenvalues increase [19].
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McGill University, Montréal, Canada, e-mail: michael.rabbat@mcgill.ca

1



2 Bastien Pasdeloup, Vincent Gripon, Réda Alami, and Michael G. Rabbat

The Fourier transform operator is therefore directly given by this particular matrix,
which is strongly tied with the graph modeling the support of information. Inter-
estingly, this correspondence between the eigenvectors of the Laplacian matrix and
the Fourier modes also holds for arbitrary graphs. As a matter of fact, the eigen-
vectors associated with the lowest eigenvalues vary smoothly on the graph, while
more important variations appear as the associated eigenvalues increase. Using this
so-called Graph Fourier Transform (GFT), numerous tools have been successfully
developed, allowing operations such as filtering [19], wavelet decomposition of sig-
nals on graphs [9], translation, modulation, etc. (see [19, 14] for overviews of such
tools).

Existence of a Fourier transform for signals on graphs also raises the question of
uncertainty. In classical signal processing, it is established that a signal cannot be
simultaneously localized both in time and in the frequency domain. In this chapter,
we present a corresponding uncertainty principle for signals on graphs. We show
that the extent to which a signal can be localized in both the graph vertex domain
and in the graph spectral domain is tied to the graph topology, and that different
graphs have different locality properties.

2 Definitions

In the rest of this chapter, we adopt the following notation. Sets are denoted in
calligraphic letters (e.g., V , E ). Constants and scalar variables are written in italic
font, respectively using capital and lower-case letters (e.g., constant N, and scalar
variables i, j). Matrices and vectors are denoted in bold, respectively with capital
and lower-case letters, with entries having subscripted indices (e.g., matrix A and
vector v with entries Ai j, vi).

2.1 Graphs and matrices

Let us consider a graph G = 〈V ,E 〉, where V is the finite set of vertices and E is the
set of edges. Graphs are mathematical models that are useful to describe relations
between objects (vertices). In the context of graph signal processing, it often makes
sense to consider edges to be pairs of distinct, unordered vertices, meaning that an
edge conveys just enough information to denote whether two vertices are connected
or not. As such, there are at most

(N
2

)
edges in a graph containing N vertices. An

example of a graph is depicted in Figure 1.
In order to ease readability, let us consider vertices to be indexed from 1 to N:

V = {1,2, . . . ,N}.
Any graph can be conveniently described by its adjacency matrix. The adjacency

matrix A of a graph G = 〈V ,E 〉 with N vertices is an N-by-N matrix with entries
defined as follows:
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Fig. 1: Example of a graph containing 7 vertices 1,2, . . . ,7. Vertices are depicted as
circles and edges as lines connecting them.

∀i, j ∈ V : Ai j =

{
1 if {i, j} ∈ E
0 otherwise. (1)

In the remainder of this chapter, we always consider vertices to be integers be-
tween 1 and N, such that we make no distinction between a vertex and its index.

An example graph is shown in Figure 1, and its adjacency matrix is:

A =



0 1 0 1 0 0 0
1 0 1 1 0 1 0
0 1 0 1 0 0 0
1 1 1 0 0 1 0
0 0 0 0 0 1 0
0 1 0 1 1 0 1
0 0 0 0 0 1 0


. (2)

Note that the adjacency matrix of a graph is symmetric. This is because we chose
edges as pairs (unordered sets) of vertices. Extended definitions of graphs have
been proposed in the literature, including digraphs where edges are couples (ordered
pairs) of vertices. Digraphs are particularly useful when representing oriented rela-
tions between vertices. As a consequence, adjacency matrices of digraphs are not
necessarily symmetric. For the rest of the chapter we focus on symmetric graphs.

Other extensions include weighted graphs. With such graphs, the notion of edges
is refined to take into account intensities. In this context, we introduce the weight
matrix W which is such that:

∀i, j ∈ V : (Wi j > 0)⇒ (Ai j = 1). (3)

In other words, the weight matrix of a graph has the same support as the adjacency
matrix of the graph. More precisely, it determines the weight of each edge in the
graph. If the graph is unweighted, we conveniently adopt the convention that the
weight matrix is exactly identical to the adjacency matrix of the graph.
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2.2 Basic definitions on graphs

In this section, we introduce some definitions from graph theory that will be used in
the following sections. More complete literature on graphs can be found for instance
in [8].

Let us first introduce paths and walks on a graph.

Definition 1. A walk on a graph is a (possibly infinite) sequence of vertices, such
that any two consecutive vertices form an edge in the graph. Getting back to the
example of Figure 1, the sequence (1,2,6,2,3,4) is a walk.

Definition 2. A path on a graph is a walk in which each consecutive (unordered)
pair of vertices appears at most once. As such, paths are necessarily finite because
there is only a finite number of possible pairs of vertices. The starting and ending
vertices of a path are called its extremities. An example of a path for the graph in
Figure 1 is (1,2,4,6).

Paths and walks are often confused in the literature due to their very similar
definitions. Walks are shorter to define, but paths may include cycles.

Definition 3. A cycle on a graph is a path with identical extremities. Not all graphs
admit cycles. An example of a cycle for the graph in Figure 1 is (1,2,4,1).

Definition 4. The length of a path is the number of vertices in the sequence minus 1.
For example, the length of the path (1,2,4,6) is 3. This is also the number of edges
traversed in the path.

Definition 5. The weight of a path is the sum of the weights of edges formed by
consecutive vertices in the path.

Weights and length are two separate notions for weighted graphs. Thanks to our
previously mentioned convention, in the case of unweighted graphs they are identi-
cal.

Definition 6. A connected graph is a graph for which every pair of vertices are
extremities of at least one path.

Definition 7. The geodesic distance dG on a graph G is a function that associates
a pair of vertices with the minimum weight of a path having these vertices as its
extremities.

Based on these definitions, one can define classical families of graphs:

Definition 8. A tree is a connected graph that contains no cycle.

Definition 9. A bipartite graph is a graph that contains no cycle with odd length.

Definition 10. A ring graph is an unweighted graph with N vertices in which all
edges appear in a single cycle of length N.

Definition 11. A complete graph is an unweighted graph containing all possible
edges.

Definition 12. A star graph is an unweighted graph with N vertices and N−1 edges
for which all edges have one extremity in common.
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2.3 Meaning of edge weights

It is very important to understand that the convention we use here to put 0s in the
matrices when there is no link is not without consequence. Indeed, we suppose a
weight 0 is equivalent to the absence of an edge between the corresponding vertices.
As such, weights should not represent quantities for which this is a contradiction.

For example, consider a graph in which vertices model cities and connection
weights represent road distances between these cities. The absence of a connection
between two cities could correspond to the absence of a direct road connecting them,
in which case the distance should not be 0, but to the contrary +∞. Such weights do
not make sense with respect to our convention.

Now imagine a graph in which vertices are terminals on the Internet and weights
represent the number of packets that directly travel between pairs of terminals. In
such a graph, a connection weight 0 corresponds to the absence of a direct connec-
tion, or to a completely useless one. Such weights make sense with respect to our
convention.

There are fine underlying theoretical reasons to explain why we choose this con-
vention of 0s and 1s in the adjacency matrix, and it is mainly related to the fact
that we suppose working with the regular linear algebra. Distance graphs, that we
discussed before, are better processed using the tropical algebra in which +∞ is a
neutral element for the addition [7].

The weighted graphs we introduce in this document typically model the similar-
ity of their corresponding vertices, and not their distances.

2.4 The graph Laplacian and its properties

Consider a connected graph G with N vertices together with its weight matrix W.
We call strength1 of a vertex i the quantity:

s(i) = ∑
j∈V

Wi j . (4)

Definition 13. A graph is said to be regular if all of its vertices have the same
strength.

The strengths of all vertices can be merged into a single diagonal matrix S called
the strength matrix, such that:

∀i, j ∈ V : Si j =

{
s(i) if i = j
0 otherwise.

(5)

1 This quantity is often referred to as degree in the literature of GSP. In graph theory the degree
refers to the number of neighbors of a given vertex whereas its strength takes into account the
weights of corresponding edges. These two quantities are identical when considering unweighted
graphs.
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The strength matrix of a graph is especially useful to perform various kinds of
normalizations on this graph. For instance, a common way to transform a graph into
a Markov chain consists in considering the matrix S−1W, of which sums of rows
always equal 1.

The strength matrix of a graph can also be used to define the Laplacian of a
graph:

Definition 14. The Laplacian of a graph G with weight matrix W and strength ma-
trix S is:

L = S−W . (6)

As an example, the Laplacian of the example graph in Figure 1 is:

L =



2 −1 0 −1 0 0 0
−1 4 −1 −1 0 −1 0

0 −1 2 −1 0 0 0
−1 −1 −1 4 0 −1 0

0 0 0 0 −1 −1 0
0 −1 0 −1 −1 4 −1
0 0 0 0 0 −1 1


(7)

Being a symmetric, real-valued matrix, the Laplacian of a graph with N vertices
can be written as:

L = FΛΛΛF> , (8)

where F is such that FF−1 = F−1F = IN , IN being the identity matrix of dimension
N, and ΛΛΛ is a diagonal matrix of which diagonal elements are λ1 ≤ λ2 ≤ ·· · ≤ λN . In
other words, F is a matrix of eigenvectors and ΛΛΛ is a diagonal matrix of eigenvalues,
arranged in ascending order.

The Laplacian of a graph offers multiple interesting properties, as pointed out in
the next propositions.

Proposition 1. Let L be the Laplacian matrix of a graph G . The vector 1 with all
entries equal to 1 is an eigenvector of L associated with the eigenvalue 0.

Proof. The proof is straightforward:

∀i ∈ V : (L1)i = (S1)i− (W1)i = s(i)− ∑
j∈V

Wi j = 0 . (9)

Proposition 2. The eigenvalues of the Laplacian of a graph are all nonnegative.

Proof. Suppose, for the sake of a contradiction, that some negative eigenvalue ex-
ists. Let us denote it λ and let f be an associated nonzero eigenvector. Let us look at
one of the entries i of f such that |fi| is maximum. We obtain:

s(i)fi− ∑
j∈V

Wi jf j = λ fi , (10)

which can be rewritten as:
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fi− ∑
j∈V

Wi j

s(i)
f j =

λ

s(i)
fi . (11)

Without loss of generality, we can suppose that fi is positive. As such, the right term
of this equality is negative. We conclude that:

N

∑
j∈V

Wi j

s(i)
f j > fi , (12)

which is a contradiction since the left part of this inequality is a weighted average
of values of f j that are by definition all less than or equal to fi.

From the two previous propositions we conclude that λ1 = 0, in all cases.

Proposition 3. The second eigenvalue of the Laplacian of a graph G is 0 if and only
if the graph is not connected.

Proof. It is immediate to see that the second eigenvalue is 0 if the graph is not
connected. Indeed, fix some vertex i ∈ V and consider the set Vi ⊂ V of vertices
connected to i and the complement set Vi. Then the two linearly independent vectors
obtained by putting 1s on coordinates in Vi and 0s in those of Vi, and conversely,
are both eigenvectors associated with the eigenvalue 0.

Conversely, consider a non-constant eigenvector associated with eigenvalue 0.
Denote it by f, and let i be an index such that |fi| is maximum. Since we have:

fi =
N

∑
j∈V

Wi j

s(i)
f j (13)

is a weighted sum of the value of the neighbors of vertex i, we conclude that all its
neighbors have the same value as i. By repeating this process, we conclude that any
vertex connected to i has the same value in f as i. If the graph were connected, the
obtained vector would be constant.

Proposition 4. The quadratic form of the Laplacian L of a graph is such that:

x>Lx = ∑
{i, j}∈E

Wi j (xi−x j)
2 . (14)

Proof. We use simple mathematics here:
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x>Lx = x>(S−W)x
= ∑

i∈V
s(i)x2

i − ∑
i, j∈V

i< j

2Wi jxix j

= ∑
i, j∈V

i< j

Wi j
(
x2

i +x2
j
)
− ∑

i, j∈V
i< j

2Wi jxix j

= ∑
i, j∈V

i< j

Wi j (xi−x j)
2 . (15)

Some authors prefer to use the normalized Laplacian ŁŁŁ instead of the Laplacian
L, where:

ŁŁŁ = S−
1
2 LS−

1
2 . (16)

Quadratic forms involving the normalized Laplacian satisfy a similar relationship:

x>ŁŁŁx = ∑
{i, j}∈E

Wi j

(
xi√
s(i)
−

x j√
s( j)

)2

. (17)

The normalized Laplacian also satisfies Proposition 3, along with three others:

Proposition 5. Consider the normalized Laplacian ŁŁŁ of a connected graph G , then
the spectrum of ŁŁŁ is between 0 and 2.

Proof. Introduce the Rayleigh coefficient:

r(ŁŁŁ,x) =
x>ŁŁŁx
x>x

. (18)

It is thus sufficient to show that this coefficient is between 0 and 2 [13]. We obtain:

x>ŁŁŁx
x>x

=
x>S−

1
2 LS−

1
2 x

x>x

=
x>Lx(

S
1
2 x
)>

S
1
2 x

=

∑i, j∈V
i< j

Wi j (xi−x j)
2

∑i∈V s(i)x2
i

. (19)

This quantity is clearly nonnegative. This concludes the proof since, for any real
numbers a and b, (a−b)2 ≤ 2(a2 +b2).

Proposition 6. The largest eigenvalue of the normalized Laplacian ŁŁŁ of a connected
unweighted graph G is 2 if and only if the graph is bipartite.

Proof. The proof is omitted here. See [3] for details.



Uncertainty Principle on Graphs 9

Proposition 7. The first eigenvalue of the normalized Laplacian is always 0, and it
has associated eigenvector f where:

∀i ∈ V : fi =

√
s(i)

∑ j∈V s( j)
. (20)

Proof. Observe that

f =
S

1
2 1√

∑ j∈V s( j)
. (21)

We have: [√
∑
j∈V

s( j)

]
ŁŁŁf = S

1
2 1−S−

1
2 W1

= 0 . (22)

3 Graph signals and Fourier transform

3.1 Graphs and signals

As mentioned in the introduction, a graph is a convenient tool to model the topology
of a signal. Consider a snippet of audio for instance, which is a continuous, smooth
function of time. Typically, such signal is represented in computer memories using
a regular sampling of time. It is thus a collection of values corresponding to the
amplitude of the sound measured at distinct, regularly-spaced time steps. With no
additional priors about the considered sound, it is reasonable to model smoothness
by saying that two consecutive measurements are likely to be similar—at least, more
than two measurements separated by more time. A natural representation of the
topology of a sound is therefore obtained using a line graph, as depicted in Figure 2
(left). Considering an image instead, and following the same reasoning, a typical
graph to model its topology would be a grid, as depicted in Figure 2 (right).

As such, we have a first correspondence between signals and graphs. If a signal
is a vector x ∈ RN , then its topology should be modeled by a graph containing N
vertices, one per coordinate of the vector.

Of course there is no real interest in introducing graphs to represent the topology
of images or sounds. These are just particular examples of topologies. In practice
we are interested in other families of graphs, some of which we introduce in the
following definitions.

Definition 15. An Erdős–Rényi graph with parameters N and P is an unweighted
graph with N vertices that is obtained by drawing independently at random each
edge with a Bernoulli random variable with parameter P.
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Fig. 2: Example of a line graph (left) and a grid graph (right) that are natural topolo-
gies to represent a sound or an image.

As such, an Erdős–Rényi graph with P = 1 is a complete graph.

Definition 16. A random geometric graph with parameters N and R is an un-
weighted graph with N vertices that is obtained by drawing uniformly at random
2D coordinates between 0 and 1 for the N vertices. Then vertices which coordinates
are less than R apart, considering `2 norm, are connected through an edge.

Again, choosing R≥
√

2 leads to a complete graph.
Erdős–Rényi graphs have interesting asymptotic properties, such as possibly be-

ing at the same time sparsely connected together with each pairs of vertices at very
small distances. Random geometric graphs are often used to describe sensor net-
works, as they are built using underlying 2D coordinates. Although they may have
irregular, complex structure, random geometric graphs often have properties which
are very similar to those of a two-dimensional grid.

3.2 Sharpness

Given a signal x ∈ RN , there are 2(
N
2) possible unweighted graphs to represent its

topology, and an infinite number of weighted graphs. Understanding the relations
between graphs and signals requires to quantify these relationships.

Since the graphs we introduce in this chapter typically model similarities between
their vertices, it is natural to expect connected vertices to contain similar values. This
can be measured with sharpness:

Definition 17. Consider a graph G with N vertices and normalized Laplacian ŁŁŁ, and
a signal x ∈ RN . The sharpness2 of x on G is the quantity:

h(x) = x>ŁŁŁx . (23)

Note that sharpness grows quadratically with the norm of a signal:

2 This quantity is often denoted smoothness in the GSP literature. However, the lower this value,
the smoother the signal on the graph.
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∀x ∈ RN ,∀α ∈ R : α
2h(x) = h(αx) , (24)

such that we consider in the following the normalized sharpness:

h̄(x) =
x>ŁŁŁx
‖x‖2

2
= h

(
x
‖x‖2

)
, (25)

for nonzero signals, with the convention that h̄(0) = 0.
More generally, signals with very similar values at well-connected vertices will

present a smaller normalized sharpness than signals with significant differences be-
tween those vertices. As such, when the normalized sharpness is close to zero, it
makes sense to say that the signal is aligned with the graph whereas when sharp-
ness is large it is not. In other words, signals aligned with the graph are signals that
are close (in terms of angle) to the span of the first eigenvectors of ŁŁŁ (those with
smallest eigenvalues).

3.3 Diffusion sequence

Definition 18. Consider a signal x. We call diffusion sequence of x the sequence:(
(IN−ŁŁŁ)t x

)
t∈N∗ . (26)

In other words, the diffusion sequence takes a signal x, and iteratively mixes it
using the matrix IN−ŁŁŁ.

Proposition 8. For any connected graph, the diffusion sequence of a signal x con-
verges to the first eigenvector of its normalized Laplacian (the one associated with
eigenvalue 0) if the graph is not bipartite.

Proof. Denote 0 = λ1 < λ2 ≤ ·· · ≤ λN the eigenvalues of the normalized Laplacian
ŁŁŁ of a connected graph G , and f1, . . . , fN the corresponding unit norm eigenvectors.
Then for any unit norm signal x, we obtain:

(IN−ŁŁŁ)t x = (1−λ1)
t
(

x>f1

)
f1 + · · ·+(1−λN)

t
(

x>fN

)
fN . (27)

Because of Proposition 6, we have ∀i≥ 2 : |1−λi|< 1, and thus:

lim
t
(IN−ŁŁŁ)t x =

(
x>f1

)
f1 . (28)

In the case of a bipartite graph, it is interesting to see that in the above expression
both 1− λ1 = 1 and 1− λN = −1 do not vanish, leading to an almost alternative
sequence.

In some sense, as we go through the diffusion sequence of a signal, it is increas-
ingly more bound to the graph, with the extreme case of reaching a sharpness of
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0 (using normalized Laplacian) after an infinite number of steps when the graph is
not bipartite. In Figure 3, we draw the average normalized sharpness of randomly
uniformly generated signals on a path graph, an Erdős–Rényi graph and a random-
geometric graph as a function of the number of steps. The path graph is a bipartite
graph, which explains why its curve does not seem to converge to 0. But interest-
ingly, we see here that some graphs have faster convergence to 0 than others, which
is due to the spectrum of their normalized Laplacian, more concentrated around 1.
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Fig. 3: Normalized sharpness of uniformly drawn random signals, as a function of
the number of diffusion steps and for three graphs: path, Erdős–Rényi and random-
geometric. All graphs contain exactly 200 vertices. Erdős–Rényi graphs were gener-
ated with P = 0.07 and random-geometric graphs with R = 0.2. Drawn curves were
obtained by averaging over 100 graphs.
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4 Graph Fourier Transform (GFT)

4.1 Analogy with discrete Fourier transform and definitions

In the case of a ring graph, vertices can be indexed so that the adjacency matrix
becomes circulant [6]. For a ring graph with 7 vertices, it would look like:

A =



0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0


Of course, it is also the case for its Laplacian matrix, which is:

L =



2 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
−1 0 0 0 0 −1 2


,

and the normalized Laplacian is also circulant.
As a consequence, it is possible to obtain a mathematical closed form of the

eigenvectors, which in this case are exactly discrete Fourier modes. In other words,
consider a signal x ∈ RN , and multiply it by the transpose matrix of eigenvectors F
of the Laplacian of the ring graph, and you obtain the discrete Fourier transform of
x.

Following this analogy, the graph Fourier transform (GFT) can be defined.

Definition 19. The Graph Fourier Transform (GFT) of a signal x on a graph G is
the operation:

x̂ = F>x . (29)

The Inverse Graph Fourier Transform (IGFT) of a signal x̂ on a graph G is the
operation:

x = Fx̂ . (30)
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4.2 Examples

In order to illustrate some of the previously introduced properties, we consider here
a random-geometric graph G , depicted in Figure 4. A uniformly random signal x
has been initialized on its vertices. Its spectrum x̂ = F>x (using the eigenvectors of
the normalized Laplacian) is also shown.

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

λ

x̂ λ

Fig. 4: Example of a random geometric graph on which a uniformly random signal
has been initialized (top). The spectrum of this signal in the basis of the normal-
ized Laplacian is also given (bottom). We use the notation x̂λ to describe the signal
amplitude at eigenvalue λ .
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The graph Fourier transform provides two representations of a same signal on
the graph, linearly related through the matrix of eigenvectors of the Laplacian ma-
trix. When represented on the graph, the signal is a scalar value observed at each
vertex, which generally represents an observed phenomenon to analyze. Its spectral
representation gives insights of the properties of this signal, such as its sharpness on
the graph or its bandwidth for instance.

Also, these eigenvectors being vectors of dimension N, they can be seen as sig-
nals on the graph, revealing some interesting properties of the associated eigenval-
ues. Figure 5 depicts some of these.

As illustrated, the eigenvectors associated with the lowest eigenvalues of the
Laplacian matrix vary smoothly on the graph, while those associated with larger
ones tend to model more localized, sharp variations. This illustrates the analogy
between the eigenvalues of this matrix and some notion of frequencies in classical
signal processing.

When considering a diffusion process, eigenvalues in the Laplacian spectrum that
are close to 0 are located next to eigenvalue 1 in the spectrum of the diffusion matrix.
As a consequence, they vanish in a slower way compared to Laplacian higher eigen-
values. Since the eigenvectors associated to these eigenvalues are highly localized
patterns on the graph, a diffusion phenomenon on a graph can be understood as a
process that smoothens signal values across the graph, similarly to heat diffusion in
the classical settings. Figure 6 depicts a few diffusion steps of the signal in Figure 4.

5 Graph uncertainty principle

5.1 Classical uncertainty principle

In classical signal processing, the uncertainty principle states that a signal cannot
be perfectly localized both in time and frequency [10]. More precisely, define the
variance of a measurable function f as:

v( f ) = inf
a∈R

∫
(x−a)2d f . (31)

Introduce the Fourier transform f̂ of f as:

f̂ : λ 7→
∫

f (x)e−2πixλ dx . (32)

Then the uncertainty principle states that:

∀ f ∈ L2(R) :
∫

f = 1⇒ v( f )v( f̂ )≥ 1
2
. (33)
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Fig. 5: Representation of some of the eigenvectors of the normalized Laplacian
(bottom) associated with the graph in Figure 4. Eigenvectors associated with lower
eigenvalues correspond to low frequencies, and vary smoothly when used as signals
on the graph (top). On the contrary, those associated with large eigenvalues feature
some strong local variations when represented in the graph domain.
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Fig. 6: Examples of diffusions of the signal in Figure 4, for various values of t, repre-
sented both on the graph (top) and in the spectral basis of the normalized Laplacian
(bottom). As t increases, spectral components of the signal associated with eigen-
values close to 1 vanish faster than others. Eventually, as t grows to infinity, only
the signal spectrum associated with eigenvalue 0 remains. As a consequence, the
signal converges to the first eigenvalue of the normalized Laplacian, or its opposite
depending on the sign of the initial signal component associated with eigenvalue 0.
This can be observed in the present example by comparing the graph signal in (d)
with the one in Figure 5 (a).
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In other words, the variances of a function f and of its Fourier transform cannot both
simultaneously be small (since their product is at least 1

2 ). Note that the variance of
a function tends to zero precisely when the function tends to a (possibly shifted)
Dirac delta; i.e., when it is well localized.

An important consequence of the uncertainty principle is related to sampling:
a function which is very localized in time necessarily is spread in the frequency
domain; i.e., it has a wide bandwidth and thus must be sampled at a higher rate. Put
differently, if one samples a very brief portion of a time function f , then one can
only hope to reconstruct signals whose spectra have are widely spread. Conversely,
if one samples a very narrow frequency band, one can only expect to reconstruct
signals that are spread in time.

This is a very strong fundamental result. Consequently, an important literature
has been developed in the past few years about finding counterparts of this result in
the context of graph signal processing. In particular, it is of interest to know when
one may hope to sample a graph signal at a few vertices (for instance) and hope to
faithfully recover the signal value at other unobserved vertices.

5.2 Graph spread and spectral spread

Throughout this section, we consider the normalized Laplacian and not the Lapla-
cian to define the Graph Fourier Transform of signals. The notions we use are based
on those introduced in [1, 2]. We only consider connected graphs.

It is important to note that the uncertainty principle on graphs discussed in this
chapter — chosen due to its tied relationship with Heisenberg’s uncertainty principle
— is only one of multiple proposed definitions in the literature. Different uncertainty
principles have been proposed in [17, 21, 20]. Additional results on the presented
uncertainty principle can be found for instance in [18, 15, 16, 5]. Here, we choose
to focus on the fundamentals.

The spread of a signal in time is a measure of how different its values are after
large delays. As a consequence, measuring the spread of a signal on a graph should
take into account the variations of the values together with their relative distance on
the graph. Following this lead, we introduce the graph spread.

Definition 20. The graph spread δG (x) of a unit norm signal x on a connected graph
G is defined by:

δG (x) = inf
i∈V ∑

j∈V
dG ({i, j})x2

j . (34)

Note that the graph spread is trivially nonnegative. Also, it can be 0 as stated in
the following proposition.

Proposition 9. The graph spread of a one-hot signal is 0.

Proof. Consider i the vertex where the coordinate of the vector is nonzero.
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Proposition 10. The graph spread of a unit norm signal is upper bounded by the
diameter of the graph:

max
i, j∈V

dG ({i, j}) . (35)

Proof.
inf
i∈V ∑

j∈V
dG ({i, j})x2

j ≤ max
i, j∈V

dG ({i, j}) inf
i∈V ∑

j∈V
x2

j . (36)

The spectral spread of a signal is a measure of how localized the spectrum is.
Similarly to its definition in the classical case, it should take into account both the
spread between frequencies and the corresponding values of the Fourier transform
of the signal.

Definition 21. The spectral spread of a unit norm signal x on graph G is defined as:

δ̂G (x) = inf
i∈V ∑

j∈V
‖λ j−λi‖2x̂2

j . (37)

A particular case in the expression of the spectral spread is for i = 1 where the
expression boils down to that of the sharpness. Thus in general the spectral spread
is lesser than the sharpness of the signal, and as a corollary it is upper bounded by
2. It is also trivially lower-bounded by 0.

Definition 22. The uncertainty domain of a connected graph G is the set:

UG =
{(

δG (x), δ̂G (x)
)
,‖x‖2 = 1

}
. (38)

Proposition 11. The uncertainty domain of a connected graph G is compact.

Proof. By previous remarks it is bounded. It is also the image of a compact (the
sphere of unit norm vectors) by continuous functions so it is closed.

Proposition 12. Noticeable points of the uncertainty domain are the one-hot vec-
tors, which have zero graph spread and nonzero spectral spread, and eigenvectors
of the normalized Laplacian, which have zero spectral spread and nonzero graph
spread.

Proof. Consider a one-hot vector. Obviously its graph spread is zero. Its spectral
spread cannot be zero as the graph is connected, and thus each row of the normalized
Laplacian matrix contains at least two nonzero coordinates.

Conversely, each eigenvector contains at least two nonzero coordinates, and thus
has a nonzero graph spread.

Of particular interest is the lower frontier of this compact set that character-
izes the extent to which signals can simultaneously achieve low graph and spectral
spreads.
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Definition 23. The uncertainty curve of a connected graph G is the function

u : g 7→ inf
{

δ̂G (x),‖x‖2 = 1∧δG (x) = g
}
, (39)

defined on the interval [0,δG (λ1)].

5.3 Example graphs

5.3.1 Complete graphs

Proposition 13. The graph spread of a unit norm signal on a complete graph G can
be written:

δG (x) = 1−max
i∈V

x2
i . (40)

Proof.

δG (x) = inf
i∈V ∑

j∈V
dG ({i, j})x2

j

= inf
i∈V ∑

j∈V
i 6= j

x2
j (41)

Proposition 14. The normalized Laplacian of a complete graph has two eigenval-
ues: 0 and N

N−1 .

Proof. Denote N the number of vertices of the complete graph. First note that 1 is
an eigenvector associated with eigenvalue 0. Now consider any vector x orthogonal
to 1, that is to say its coordinates sum to 0. we obtain:

ŁŁŁx =


1 − 1

N−1 . . . − 1
N−1

− 1
N−1 1 . . . − 1

N−1
. . . . . . . . . . . .
− 1

N−1 −
1

N−1 . . . 1

x

=


− 1

N−1 −
1

N−1 . . . − 1
N−1

− 1
N−1 −

1
N−1 . . . − 1

N−1
. . . . . . . . . . . .
− 1

N−1 −
1

N−1 . . . − 1
N−1

x+
N

N−1
x

=
N

N−1
x. (42)

Proposition 15. Consider a unit norm signal x and denote α1 =
x>1√

N
. On the com-

plete graph we have:
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δ̂G (x) =
N

N−1
min{α2

1 ,1−α
2
1} . (43)

Proof. Using Proposition 14 we obtain that:

δ̂G (x) = inf
i∈V ∑

j∈V
‖λ j−λi‖2x̂2

j

=
N

N−1
min

{
α

2
1 ,

N

∑
j=2

x̂2
j

}
, (44)

We conclude using the orthonormality of F.

Proposition 16. For sufficiently large number of vertices N, the uncertainty domain
of complete graphs can be made arbitrarily close to (0,0).

Proof. Consider a one-hot vector. Its graph spread is 0 and its spectral spread is
1

N−1 .

Proposition 16 suggests there is no equivalent of the classical uncertainty prin-
ciple for signals on complete graphs. This is not a surprising result as the complete
graph is a degenerate topology in which all elements are identically close to all
others.

5.3.2 Star graphs

Proposition 17. Normalized Laplacians of star graphs admit only three eigenval-
ues: 0, 1 and 2.

Proof. Proposition 7 gives us that the first eigenvector of a star graph is a vector

containing values
√

1
2N−2 everywhere but at one coordinate where it is

√
1
2 . Without

loss of generality, let us suppose the coordinate where it is
√

1
2 is 1.

It is trivial to verify that vectors containing a 1 at coordinate i≥ 2 and a−1 at co-
ordinate i+1 are linearly independent and eigenvectors associated with eigenvalue
1.

Finally, being bipartite, Proposition 6 gives us that 2 is an eigenvalue. We easily

check that the corresponding eigenvector is the one that contains−
√

1
2 at coordinate

1 and
√

1
2N−2 everywhere else.

Proposition 18. For sufficiently large number of vertices N, the uncertainty domain
of star graphs can be made arbitrarily close to (0,0).

Proof. Following the notations introduced in the proof of Proposition 17, we con-
sider a one-hot vector where the 1 is not at coordinate 1 but at some other coordi-
nate j. Its graph spread is thus 0. Also, its Fourier transform is a vector containing√

1
2N−2 at coordinates 1 and N.



22 Bastien Pasdeloup, Vincent Gripon, Réda Alami, and Michael G. Rabbat

Finally, choosing j = i we obtain that the spectral spread is not greater than

2
√

1
2N−2 .

Similar to complete graphs, Proposition 18 is not surprising as star graphs also
correspond to degenerate topologies.

5.3.3 Ring graphs

Proposition 19. Eigenvectors of the normalized Laplacian of ring graphs associ-
ated with a nonzero eigenvalue can be chosen as uniformly sampled cosines and
sines describing at least one period.

Proof. Denote:

xk =


cos(0)

cos
( k2π

N

)
cos
( k4π

N

)
. . .

cos
(
(N−1)k2π

N

)

 . (45)

Then:(
ŁŁŁxk
)

i
= 2cos

(
i2πk

N

)
− cos

(
(i+1)2πk

N

)
− cos

(
(i−1)2πk

N

)
= 2

(
1− cos(2πk)

N

)
xk

i . (46)

A very similar proof can be derived using sines instead of cosines.

Proposition 20. There exist N0 ∈ Z and M > 0 such that for any number of vertices
N ≥ N0, the uncertainty domain of a ring graph is at least at a distance M from the
set {(0,0)}.

Proof. Fix α > 0 and consider a unit-norm signal x with a graph spread of at most
α:

α ≥ inf
i∈V ∑

j∈V
dG ({i, j})x2

v

≥ inf
i∈V ∑

j∈V
i6= j

x2
j

= inf
i∈V
{1−x2

i } (47)

Denote i∗ a value of i that reaches the minimum of the last quantity:

x2
i∗ ≥ 1−α . (48)
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Now using Proposition 19 we obtain that the largest magnitude value in an eigen-
vector of a ring graph is of the order of 1√

N
. Thus, each value in x̂ is at most of the

order of
√

1−α+
√

α√
N

. Because ‖x̂‖2 = 1, we obtain that of the order of N of the coor-
dinates of x̂ are close to this maximum.

We conclude by observing the span of eigenvalues yielded in Proposition 19 and
the definiton of δ̂G (x).

So, contrary to the previous examples of the complete graph and the star graph,
in the case of a ring graph does exhibit a non-trivial uncertainty principle.

6 Conclusion

We introduced graphs and signals on graphs. We showed there are strong relations
that tie signals to the graphs they are defined on. We considered several examples of
graphs, either deterministic or randomized.

As when it comes to an uncertainty principle, we showed examples where such
a principle holds and examples where it does not.

Better understanding the connections between graphs and this principle could
lead to important developments in the field. In particular being able to characterize
for which graphs the principle does not hold could allow very the rise of very effi-
cient sampling strategies, able to capture very precise events both in the vertex and
in the spectrum domains.
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