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Abstract—In the past few years, Graph Signal Processing
(GSP) has attracted a lot of interest for its aim at extending
Fourier analysis to arbitrary discrete topologies described by
graphs. Since it is essentially built upon analogies between
classical temporal Fourier transforms and ring graphs spectrum,
these extensions do not necessarily yield expected convolution and
translation operators when adapted on regular multidimensional
domains such as 2D grid graphs. In this paper we are interested in
alternate definitions of Fourier transforms on graphs, obtained by
projecting vertices to regular metric spaces on which the Fourier
transform is already well defined. We compare our method with
classical graph Fourier transform and demonstrate its interest
for designing accurate convolutional neural networks on graph
signals.

Index Terms—Graph Signal Processing, Graph Embedding

I. INTRODUCTION

Graph Signal Processing (GSP) is a mathematical frame-
work that allows to define generalized discrete Fourier trans-
form adapted to any topology described by a graph [8].
Formally, let us consider a weighted graph G = 〈V,W 〉, where
V = {v1, . . . , vn} is the set of indexed vertices and W ∈ Rn2

is the symmetric adjacency matrix. We call Laplacian L
associated with G the matrix L = D −W , where D is the
diagonal strength matrix associated with G. Being symmetric
and real valued, L can be written as L = FΛF> where F is
orthonormal and Λ is diagonal. We call signal a vector x ∈ Rn

and Graph Fourier Transform (GFT) of x the vector x̂ , F>x.
When the adjacency matrix W is circulant, columns of F
can be chosen as usual Fourier modes. More generally, the
rationale behind GSP is that columns of F are ad-hoc Fourier
modes for the considered graph topology.

Based on these definitions, it is possible to propose convo-
lutions and translations [10] on graphs. These definitions have
for example been used in order to design Graph Convolutional
Neural Networks [1]. When considering the toy example of a
ring graph, these definitions usually match exactly the usual
corresponding 1D regular operators. However, when consider-
ing regular graphs of higher intrinsic dimension, they diverge
from their regular counterparts. In this work we are interested
in defining GFTs that match exactly their regular counterparts
when defined on regular grid graphs, as we believe such GFTs
could improve the performance of machine learning routines
(including Convolutional Neural Networks) defined on graph
signals.

To this end, we propose the following methodology, taking
as inputs a graph G and an integer d:

1) Project vertices of the graph to Zd, such that geodesic
distances between vertices in the graph are close to
Manhattan distance between their projections in Zd,

2) Define GFT on G as a particularization of the usual
multidimensional GFT on Zd.

Obviously we expect this method to perform particularly well
when facing approximations of (regular) grid graphs.

In this paper, we introduce the problem statement for step 1
and initial results in Section II. We prove this method guaran-
tees that a 2D grid graph projection is exactly a rectangle in
Z2, and that it is robust to minor changes in the graph structure
in Section III. In Section IV we introduce an optimization
method for step 1. In Section V we perform experiments
and compare with other existing methods. Section VI is a
conclusion.

II. PROBLEM STATEMENT

Let us consider a weighted graph G = 〈V,W 〉.
Definition 1. We call embedding a function φ : V → Zd,
where d ∈ N∗.

We are specifically interested in embeddings that preserve
distances. Specifically, we define the cost cα(φ) of an embed-
ding φ as the following quantity:

cα(φ) ,
∑

v,v′∈V
|α‖φ(v)− φ(v′)‖1 − dG(v, v′)| , (1)

where dG is the shortest path distance in G. In the remaining of
this work, we denote δ(v, v′) = |α‖φ(v)−φ(v′)‖1−dG(v, v′)|.
Definition 2. Given a fixed value of α, we call optimal
embedding an embedding with minimum cost.

Let us motivate the choices in this definition:
• First, we consider all pairs of vertices and not only

edges. Consider for example a ring graph where each
vertex has exactly two neighbors. Then there are plenty of
embeddings that would minimize the cost if considering
only edges, but only a few that minimize the sum over
all pairs of vertices.

• Second, we use a sum and not a maximum. This is
because small perturbations of grid graphs would lead
to dramatic changes in embeddings minimizing the cost
if using a maximum. Consider for instance a 2D grid
graph in which an arbitrary edge is removed.

• Thirdly, we choose embedding in Zd instead of in Rd,
as we want to particularize multidimensional discrete
Fourier transforms.



• Fourthly, we use the Manhattan distance, as it is more
naturally associated with Zd than the Euclidean distance.
It also ensures there exists natural embeddings for grid
graphs with cost 0.

• Finally, α is a scaling factor.
Note that the question of finding suitable embeddings for

graphs is not novel [4], [5]. But to our knowledge enforcing the
embedding to be in Zd is a main discriminative point compared
to previous work. Even though Definitions 1 and 2 work for
any d we are going to show the consistency of these definitions
by considering the particular case d = 2.

Definition 3. We call (2D) grid graph a graph whose vertices
are of the form {1, . . . , `} × {1, . . . , h} where `, h ≥ 3, and
edges are added between vertices at Manhattan distance one
from each other.

Definition 4. We call natural embedding of a grid graph the
identity function.

A first interesting result is related to optimal embeddings of
grid graphs.

Theorem 1. The natural embedding of a grid graph is its only
optimal embedding for α = 1, up to rotation, translation and
symmetry.

Proof: The proof is straightforward, as the cost of the
natural embedding is clearly 0. Reciprocally, a cost of 0 forces
any group of vertices {(x, y), (x, y′), (x′, y), (x′, y′)} to be
projected to a translation, rotation and/or symmetry of the
corresponding rectangle in Z2. Then any remaining vertex is
uniquely defined from these four ones.

III. ROBUSTNESS TO SMALL PERTURBATION OF GRID
GRAPHS

In this section we are interested in showing that the optimal
embedding is robust to small perturbations of grid graphs.
Here, we always consider α = 1. Let us first introduce quasi
grid graphs as grid graphs with one missing edge:

Definition 5. A quasi grid graph is a grid graph with one
missing edge between vertices (i, j) and (i + 1, j), with 1 ≤
i < ` and 1 < j < `.

We first prove results on two-slices graphs which is illus-
trated on Figure 1:

Definition 6. We call two-slices graph a weighted graph with
vertices of {1, 2, 3} × {1, h}, where h ≥ 2. It contains four
weight-1 edges between vertices at Manhattan distance 1 from
each other, and two weight-h edges between vertices on the
corner. We call natural embedding of a two-slices graph the
identity function on its vertices.

First observe that the natural embedding of a two-slices
graph has a cost of 4.

Lemma 1. Consider an embedding φ of a two-slices graph
for which ‖φ((2, 1))− φ((2, h))‖1 ≥ h+ 4, then c1(φ) ≥ 6.
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Figure 1. Depiction of a two-slices graph.

Proof. It holds that c1(φ) ≥ 2δ((2, 1), (2, h)) +
2δ((1, 1), (2, h)) + 2δ((1, 1), (2, 1)). In particular the
first term of the sum is at least 4. Then we discuss two cases:
a) δ((1, 1), (2, 1)) ≥ 1 in which case the result is immediate
or b) δ((1, 1), (2, 1)) ≤ 1 in which case the Manhattan
distance between (1, 1) and (1, h) is at least 3.

Lemma 2. Consider an embedding φ of a two-slices graph
for which ‖φ((2, 1))− φ((2, h))‖1 = h+ 3, then c1(φ) ≥ 8.

Proof. Again, we look at the vertex (1, 1). Either
δ((1, 1), (2, 1)) ≥ 1 or (1, 1) is at distance at
least h + 2 from (2, h). In both cases, we obtain
δ((1, 1), (2, 1)) + δ((1, 1), (2, h)) ≥ 1. We repeat the process
for the other three vertices (1, h), (3, h) and (3, 1).

Lemma 3. Consider an embedding φ of a two-slices graph
for which ‖φ((2, 1))− φ((2, h))‖1 = h+ 2, then c1(φ) ≥ 8.

Proof. Denote v one of the four border vertices
((1, 1), (1, h), (3, 1) or (3, h)). Either a) δ(v, (2, 1)) =
δ(v, (2, h)) = 0, or b) δ(v, (2, 1)) + δ(v, (2, h)) ≥ 2. Indeed,
either v is on a shortest (Manhattan) path between (2, 1)
and (2, h), or it is not. If two of the border vertices verify
b) the proof is finished. If only one verifies b), then one of
the following holds: i) ‖φ((1, 1)) − φ((3, h))‖1 = h or ii)
‖φ((3, 1)) − φ((1, h))‖1 = h. In both cases we conclude.
Finally, if all border vertices are in case a), then both i) and
ii) hold.

Lemma 4. Consider an embedding φ of a two-slices graph
for which ‖φ((2, 1))− φ((2, h))‖1 = h+ 1, then c1(φ) ≥ 8.

Proof. The proof is omitted as it is similar to that of Lemma 2.

Lemma 5. The only embedding φ of a two-slices graph for
which ‖φ((2, 1)) − φ((2, h))‖1 = h and c1(φ) = 4 is the
natural embedding, up to rotation, translation and symmetry.

Proof. If φ((2, 1)) and φ((2, h)) are on the same line or
column, the reasoning is very similar to that of Theorem 1.

We already have δ((2, 1), (2, h)) = 2. So to achieve c1(φ) =
4, we must have (1, 1) and (1, h) not embedded on a shortest
(Manhattan) path between the embedded versions of (2, 1) and
(2, h). Their distance is thus h+ 2.

Lemma 6. The only optimal embedding of a two-slices graph
is the natural embedding, up to rotation, translation and
symmetry.



Proof. First observe that any embedding for which
δ((2, 1), (2, h)) ≥ 3 is not optimal. We conclude with
Lemmas 1 to 5.

Now we can derive the main result of the Section:

Theorem 2. The only optimal embedding of a quasi grid
graph is the natural embedding, up to rotation, translation
and symmetry.

Proof. Consider the missing edge in the quasi grid graph is at
column j. Now we can discuss the sum in c1. For couple of
vertices one of which is not on column j−1, j or j+1, observe
that the natural embedding has cost 0. For the remaining
couple of vertices, we discuss on the rows: if both rows are
above or both rows are below the missing edge, cost is 0. For
the remaining cases, we use Lemma 6 to prove the natural
embedding is the only one to minimize the cost.

IV. PROPOSED OPTIZIMATION METHOD

Using a bruteforce approach to find optimal embeddings is
clearly impossible for graphs on reasonable order. In order
to find a proxy to an optimal embedding, we propose to use
the combination of gradient descent and barrier [7] methods.
We start with a random projection in a hypercube of Rd. The
gradient descent aims at minimizing the weighted sum of the
cost of the embedding and a penalty of how far away it is
from Zd. The barrier method consists in smoothly modifying
the scaling of the two parts of the cost by making use of
two scaling parameters β and γ. As a result, at the first
iterations the optimization is performed in Rd and we only
aim at minimizing the cost, whereas in the last iterations we
enforce the solution to be in Zd. In the experiments, we use
β = 10−6 and γ = 1.03.

An overview of the algorithm is:

Data: Graph G, dimension d, scaling factor α.
φ0 ← random embedding
β0 ← β
for i in (1,. . . ,K) do

βi ← γβi−1

φi ← GradMinφ

(
cα(φ)+βi[

∑
v d1(φ(v),Z

d)]
1+βi

, φi−1

)
end

Algorithm 1: Proposed method, d1(φ(v),Zd) de-
notes the Manhattan distance between φ(v) and Zd,
GradMinφ(c(φ), φ0) denotes a gradient descent algo-
rithm with parameter φ starting from φ = φ0 and aiming
at minimizing c(φ).

A depiction of different steps in the algorithm is presented
in Figure 2. On the first line we consider a 2D grid graph,
whereas on the second line we represent a random geometric
graph. As we can see, the embedding at the end of the first
gradient descent is already the natural embedding for the grid
graph. This is because of the choice of the Manhattan distance
in the definition of cα. To the contrary, the embedding obtained

at the end of the first gradient descent is not aligned with Z2

in the case of the random geometric graph.

V. EXPERIMENTS AND RESULTS

In terms of experiments, we first compare costs of different
methods for finding an embedding of grid graphs. We compare
our proposed method with: a) a random embedding and b) an
embedding obtained by considering the two eigenvectors asso-
ciated with the smallest nonzero eigenvalues of the Laplacian
of the graph. Note that for each method we choose the value
of α that minimizes the cost. In the next experiment, we look
at the effect of removing some of the edges in a grid graph
with parameters l, h = 10 in terms of the distance between
the obtained embedding and the natural one. Both results are
summarized in Figure 4. Note that for random methods, we
averaged the results on 100 tests. We observed very little
deviation due to the initialization step, in the proposed method.

In Figure 3, we compare the eigenvectors/Fourier modes
associated with the first nonzero eigenvalues/frequencies on a
random geometric graph for a spectral definition based on the
Laplacian and our proposed graph-projected approach. We can
clearly see the interest of our proposed method in such a case
where the underlying 2D structure is very important during
the creation of the graph.

Finally, we compare our method against CNNs and graph
CNNs in regular 2D grids and irregular 3D grid scenarios.
In Table I we compare the performance of convolutional
neural networks using our methodology with spectral solutions
on the CIFAR-10 dataset an image dataset (2D grid). Our
method is able to use the same architecture as a classic CNN,
while [3] and [9] use a comparable but not equal architecture.
Considering data augmentation, random crops are used for
all methods but [9], which uses a method that approximates
random crops using translations learned from the graph.

Table I
CIFAR-10 TEST SET ACCURACY COMPARISON TABLE.

Spectral Nonspectral
MLP [6] CNN Support [3] [9] Proposed

78.62% 92.73% Grid 84.41% 92.81% 92.73%
Covariance
graph —— 91.07% 89.25%

For the irregular 3D grid scenario we use the PINES dataset,
which consists of fMRI scans on 182 subjects, during an
emotional picture rating task [2]. We use the same methods
from [9] to generate an irregular 3D grid. The final volumes
used for classification contain 369 signals for each subject
and rating. We used a shallow network for the classification
task. The results are presented on Table II. We show that the
proposed method is competitive with existing methods.
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Figure 2. Illustration of successive steps in the proposed optimisation procedure (using Algorithm 1). Left column is initial random embedding, middle
column is after the first gradient descent, and right column at the end of the process. A parameter of α = 1 was used for the grid graph and α = 2 for the
random geometric graph.

Figure 3. Depiction of the first eigenvectors/Fourier modes (associated with
the lowest nonzero eigenvalues/frequencies) of a random geometric graph.
First line corresponds to the classical graph signal processing definition (using
the Laplacian), and second line to the proposed embedding.

VI. CONCLUSION

We introduced an alternative definition of the Fourier
transform on a graph. In the case of graphs obtained by a
sampling of a regular metric space, we believe the proposed
method can lead to better definition of Fourier modes and
associated operators. This is supported by the experiments
using convolutional neural networks.

In our experiments, finding Fourier modes for graphs con-
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Figure 4. Comparison of embedding costs obtained by various methods (left)
and evolution of the distance between a noisy grid graph embedding found
using Algorithm 1 and its natural embedding (right).

Table II
PINES FMRI DATASET ACCURACY COMPARISON TABLE. RESULTS ARE

PRESENTED USING THE MEAN OVER 10 TESTS. CNNS USE A 9X9X9
FILTER SIZE.

Graph None Neighborhood Graph
Method Dense CNN [3] [9] Proposed
Accuracy 82.62% 85.47% 82.80% 85.08% 84.78%

taining up to a few thousands of vertices can be performed
in a few minutes on a modern computer, thus requiring a
time similar to that of finding eigenvectors and eigenvalues
of the corresponding Laplacian matrix. It would be interesting
to stress the interest of the proposed method for other graph
signal uses. Also we consider running experiments on highly
irregular graphs.
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