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Neocortical “decoder”

Both systems aim at retrieving a previously stored piece of information
given part of its content.
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First hypothesis: the information scale

Macroscopic scale

Mesoscopic scale

Microscopic scale
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Second hypothesis: redundancy

Illustration
02 29 00 12 77

02 29 00 1- 77

12 77

12 -7

Redundancy
We lose approximately one neuron per second,
But we remember our phone number,
Mental information is robust,
Therefore redundant.
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Third hypothesis: recurrent graph

The neocortex can be essentially regarded as a distributed recurrent
graph.

illustration

=⇒
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In one sentence

The neocortex is a recurrent, distributed graph of neocortical columns
(fanals) that is able to store redundant pieces of information.
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Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Error correcting codes

dmin

Example: the thrifty code
Code containing only binary words with a single
“1”:

Drawback: dmin = 2 :

But easy to decode and minimize the energy:

winner-take-all
These codes can be associated like the
distributed codes. . .

Vincent Gripon Resilient associative memories April 7th, 2013 9 / 30



Codes made of cliques of constant size

Clique
Set of nodes that
are all connected
one to another.

Example: codewords = 4 nodes cliques

2 distinct nodes
⇒ dmin = 6 edges

Codes of cliques of size c � n

dmin = 2(c − 1) ≈ 2c , rate r ≈ c
2
(c
2
)−1

⇒ F = rdmin ≈ 2,
Cliques are codewords of a very interesting error correcting
code. . . and they are free!
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Associative memories and the Hopfield network

What is an associative memory?
Two operations:
Store a message,
Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:
Store binary message -11-111-1-11
Retrieve it from -11-111-1?1

0

1
2

3

4

5
6

7
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Performance and bounds

Hopfield networks (n neurons )
Diversity : M = n

2log (n ) ,

Capacity : n2
2log (n ) ,

=

Efficiency ≈ 1
log (n )log2(M+1) .

Example with n = 790 :
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Our model: storing

Example: c = 4 clusters made of l = 16 fanals each,
8︸︷︷︸

j1 in c1

3︸︷︷︸
j2 in c2

2︸︷︷︸
j3 in c3

9︸︷︷︸
j4 in c4

,
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Our model: retrieving

8︸︷︷︸
j1 in c1

3︸︷︷︸
j2 in c2

2︸︷︷︸
j3 in c3

?,

Local connection,
Global decoding: sum,
Local decoding:
winner-take-all,
Possibly iterate the
two decodings.
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Density

A binary model of long term memory
Density d is the ratio of the number of used connections to the
total number of possible ones,

If messages are i.i.d.: d ≈ 1−
(
1− 1

l 2
)M .

Curves
Remarks

d = 1: no more
distinction between
stored and not stored
messages,
d = f (l ,M ), not
depending on c ,
d ≈ M

l 2 , for M � l 2.
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Performance

As an associative memory
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Performance

Set implementation
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Blurred messages

Limitation
Partial messages must contain perfect information.

Noise model

? ?

Soft decoding
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Performance
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Correlated messages

Limitation
With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy
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Global winner-take-all

Illustration
Idea
After global message
passing. . .
After local maximum
selections. . .
Global maximum selection.

Interests
Diversity ∝ c 2,
Stored messages length
may vary.
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Tournament chains and unidirectional connections

Problem
Bidirectional connections and full inter-connectivity.

r
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Learning arbitrarily long sequences

Performance
c = 50 clusters,
l = 256
fanals/cluster,
L = 1000 symbols
in messages,
m = 1823 learned
messages,
Pe ≤ 0.01.
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Storing hierarchical messages

Question
How to store pieces of hierarchical information (e.g. sentences of
words of letters) into associative memories?

Idea
Provide networks with a third dimension,
Connect layers using subsampling,
Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.
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Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Combining associative memories and classifiers

Idea
Combine the discriminative abilities of associative memories with
that, associative, of classifiers,
Use classifiers to project input space into one where Hamming
distance is meaningful.

image

Spatial
Fourrier
transform
Edge
detection

Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Kohonen
maps Clique

Perception Memory

Vincent Gripon Resilient associative memories April 7th, 2013 28 / 30



Towards new computation models based on
information

Idea
Finite input/output problem ≡ finite set of couples
(input ,output ),
Store them into an associative memory to obtain a solution.

Perspectives
Extend to nonfinite input/output problems,
Organize multiple associative memories jointly,
Construct meta associative memories to build up solutions to
more complex problems.
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Questions
I am at your disposal if you have any question.

A bit of reading
To learn more
Visit:
http://www.vincent-gripon.com/?p1=100
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